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Abstract

This paper reviews past work comparing modern speech recognition systems and humans to determine how far recent
dramatic advances in technology have progressed towards the goal of human-like performance. Comparisons use six modern
speech corpora with vocabularies ranging from 10 to more than 65,000 words and content ranging from read isolated words
to spontaneous conversations. Error rates of machines are often more than an order of magnitude greater than those of
humans for quiet, wideband, read speech. Machine performance degrades further below that of humans in noise, with
channel variability, and for spontaneous speech. Humans can also recognize quiet, clearly spoken nonsense syllables and
nonsense sentences with little high-level grammatical information. These comparisons suggest that the human–machine
performance gap can be reduced by basic research on improving low-level acoustic-phonetic modeling, on improving
robustness with noise and channel variability, and on more accurately modeling spontaneous speech. q 1997 Elsevier
Science B.V.

Resume´ ´

Ce papier presente un bilan des travaux comparant les performances des systemes de reconnaissance de parole modernes´ `
a celles des locuteurs humains. Les comparaisons sont basees sur six types de corpus de parole avec des vocabulaires allant` ´
de 10 a plus de 65 000 mots et des contenus allant des mots isoles a des conversations spontanees. Les taux d’erreurs des` ´ ` ´
machines sont souvent superieures de plus d’un ordre de grandeur a celles des humains pour la parole lue en atmosphere´ ` `
calme et transmise en large-bande. Les performances des machines se degradent encore par rapport a celles des humains´ `
dans les contextes bruites, ou de qualite de transmission variable et pour la parole spontanee. Les locuteurs humains peuvent´ ´ ´
egalement reconnaitre, avec peu d’information linguistique de haut-niveau, des syllabes ou des phrases sans signification´
quand elles sont prononcees clairement dans des atmospheres calmes. Ces comparaisons suggerent que l’ecart important qui´ ` ` ´
subsiste entre les performances des machines et celles des humains peut etre reduit par des recherches de base sur les sujetsˆ ´
suivants: l’amelioration de la modelisation acoustico-phonetique de bas-niveau, l’amelioration de la robustesse au bruit et a´ ´ ´ ´ `
la variabilite des conditions de transmission, et la modelisation plus precise de la parole spontanee. q 1997 Elsevier Science´ ´ ´ ´
B.V.
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1. Introduction

Dramatic advances have been made in speech
recognition technology over the past few years. Vo-
cabulary sizes now exceed 65,000 words and fast
decoding algorithms allow continuous-speech recog-
nition systems to provide near real-time response.
Despite these advances, commercial recognizers have
been successful only in a few constrained application
areas. Many researchers believe that recognizers will
enjoy widespread use and become commonplace only
if their performance approaches that of humans un-
der everyday listening environments. This paper
measures how far research has progressed towards
this goal. Results from scattered studies which have
compared human and machine speech recognition on
similar tasks are summarized to determine how much
speech recognizers must improve to match human
performance. Speech corpora used in these compar-
isons do not represent everyday listening conditions,
but they span a continuum ranging from quiet read
isolated words, to noisy read sentences, to sponta-
neous telephone speech. Results clearly demonstrate
that modern speech recognizers still perform much
worse than humans, both with wideband speech read
in quiet, and with band-limited or noisy spontaneous
speech.

Results comparing humans to machines are pre-
sented with four important goals. These are to moti-
vate research in directions that will decrease the
human–machine performance gap, to promote fur-
ther human–machine comparisons, to promote fur-
ther experimental work with human listeners to un-
derstand how humans adapt to talker and environ-
mental variability, and to encourage a multi-disci-
plinary dialog between machine recognition and
speech perception researchers. In the remainder of
this paper, Section 2 describes six modern speech
corpora used to evaluate machine recognizers, Sec-
tion 3 discusses some important issues involved in
comparing human and machine performance, Section
4 presents human and machine error rates for the six
corpora, and Section 5 presents a summary and
discussion.

2. Talker-independent speech recognition corpora

The six speech corpora shown in Fig. 1 were
created to develop and evaluate machine speech

recognizers. Human and machine performance can
be compared using the many machine results ob-
tained using these corpora and human recognition
studies obtained with these or similar speech materi-
als. These corpora span a wide range of difficulty
and represent many different potential applications
of speech recognition technology. All are designed to
test talker-independent recognition of speech from
talkers not used for training. Materials were recorded
by prompting talkers to produce words in isolation,
by having talkers read carefully prepared sentences,
and also by recording extemporaneous telephone
conversations on various topics including ‘‘credit
cards’’. Vocabulary sizes range from 10 to 5,000
words for the smaller corpora. Recent tests using the

Ž .North American Business News NAB and the
Switchboard corpus use an unlimited vocabulary size
and often employ machine recognizers with vocabu-

Žlaries that exceed 65,000 words e.g. Woodland et
.al., 1996 . In these tests, out-of-vocabulary errors are

introduced by the small numbers of test words that
are not contained in the vocabularies of machine
recognizers.

Most corpora focus on a dictation task where the
goal is to identify all spoken words. Word error rates
reported for these corpora treat substitutions, dele-
tions, and word insertions as errors. The Switchboard
corpus, however, was used both for dictation and
also to determine the ability of machine wordspotters
to detect 20 common words in conversational tele-
phone speech. Wordspotters are used for computer
and telephone interfaces with untrained users be-
cause they do not rely on strong grammars to pro-

Fig. 1. Six speech recognition corpora used to compare humans
and machines have vocabularies ranging from 10 to more than
65,000 words and contain both spontaneous conversations and
read isolated words or sentences.



( )R.P. LippmannrSpeech Communication 22 1997 1–15 3

vide good performance. The performance metric used
for wordspotting is the average detection rate, or the
percentage of true keyword occurrences that are
detected. The ‘‘miss’’ rate is 100 minus the detection
rate. The detection rate is averaged over wordspotter
systems adjusted to provide false alarm rates ranging
from 1 to 10 false alarms per keyword per hour of
conversational speech.

Characteristics of the six speech corpora are pro-
vided in Table 1. Data in Table 1 refer either to the
total amount of spoken speech data contained in each

Ž .corpus TI Digits, Alphabet Letters, Switchboard or
to the amount of speech data available for training
Ž .all other corpora . Ranges are provided in columns
three through five for the NAB and Switchboard
corpora because these corpora have grown in size
over the years. Early smaller versions were used for
initial tests, and larger versions are being used for
more recent evaluations. The column labeled ‘‘per-
plexity’’ is provided because perplexity is a much
better predictor of recognition difficulty than vocabu-
lary size. This statistical measure can be thought of
as the average number of alternative words which
the recognizer must choose between or the ‘‘branch-
ing factor’’ of the language model used by machine

Ž .recognizers e.g. Jelinek, 1985 . For all machine
recognizers, perplexity is determined both by the
language model and the materials used for testing.
The value of perplexity is 10 for digit recognizers
which treat each digit as equally likely, independent
of the surrounding digits. Perplexity increases to
values ranging from 45 to 160 for read sentences
from business publications and spontaneous speech.
The maximum perplexity of 1,000 is obtained by

recognizers for the 1,000-word Resource Manage-
ment task when each word is treated as equally
likely. High-performance continuous-speech recog-
nizers for the NAB and Switchboard corpora often
use trigram language models which estimate proba-
bilities of the next word in a sequence using the

Židentity of only the two previous words e.g. Jelinek,
.1985 . Free parameters in trigram grammar models

can be estimated using textual materials containing
more than 300 million words of text that are now
provided along with the speech materials in the NAB

Ž .corpus Stern, 1996 .
These corpora include a wide range of speech

Ž .materials. The TI-digits corpus Leonard, 1984 con-
tains isolated digits and two-to-seven digit se-

Žquences. The alphabet letters corpus Cole et al.,
.1990 contains isolated spoken letters which could

be used to spell a person’s name. The Resource
Ž .Management corpus Price et al., 1988 contains

highly constrained sentences that can be used to
query a naval data base. Two sample sentences are
‘‘ Are there fourteen ships at sea’’ and ‘‘List all
cruisers and their fleet identifications’’. The NAB
corpus originally contained only sentences selected

Žfrom articles in the Wall Street Journal Paul and
.Baker, 1992 . In recent years it has been expanded to

contain sentences from other business publications
Ž .Kubala, 1995; Stern, 1996 . Two sample sentences
are ‘‘For the first time in years the Republicans also
captured both houses of Congress’’ and ‘‘Terms
weren’t disclosed, but industry sources said the price
was about $2.5 million’’.

ŽThe NIST Switchboard corpus Godfrey et al.,
.1992; LDC, 1995 has been used both for wordspot-

Table 1
Characteristics of six talker-independent speech recognition corpora

Corpus Description Numbers Vocabulary Number of Total Recognition
of talkers size utterances duration perplexity

TI digits Read digits 326 10 25,102 4 hrs 10
Alphabet letters Read alphabet letters 150 26 7,800 1 hr 26
Resource Management Read sentences 109 1,000 4,000 4 hrs 60–1,000
North American Business Read sentences 84–284 5,000 – 7,200–37,200 12–62 hrs 45–160

Ž .News NAB Unlimited
Switchboard continuous Spontaneous telephone 70–543 2,000 – 35–2400 2–240 hrs 80–150
speech recognition conversations Unlimited conversations
Switchboard wordspotting Spontaneous telephone 70 20 keywords 2,000 keyword 2 hrs y

conversations occurrences
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ting and continuous speech recognition. It contains
speech recorded over normal telephone lines from
two talkers located at home or work who were
instructed to carry on a spontaneous conversation
concerning a specific topic. One component of this
corpus called the Credit Card corpus contains con-
versations concerning the topic of credit cards. Two
sample excerpts are ‘‘I don’t know if I’m really
afraid of spending too much’’ and ‘‘I uh, I try to get
maybe just one or two’’. These phrases contain false
starts and are frequently non-grammatical due to the
spontaneous nature of the conversations. This mate-
rial also samples a wide range of talking styles and
acoustic environments. Wordspotter tests with the
Credit Card corpus search for 20 frequently occur-
ring keywords including ‘‘card’’, ‘‘credit’’ and
‘‘charge’’. Continuous speech recognition tests rec-
ognize all spoken words.

3. Issues in comparing the performance of ma-
chines and humans

The performance of machines and humans is
compared in this paper using only word error rates
because other measures such as training time, recog-
nition time, and amount of prior information required
concerning the task such as vocabulary size, type of
additive noise, bandwidth, and semantic context is
difficult to measure and compare. The lowest ma-
chine and human error rates are always reported.
This involves finding the lowest machine error rates
from the recent literature for each speech corpus and
also finding the lowest human error rates reported
for each corpus or for a similar task. In most experi-
ments, human listening tests were performed with
materials from the same speech corpus used for
testing machine recognizers. Only for the Resource
Management corpus with a null grammar and for the
Alphabet Letters corpus, are machine results com-
pared to human results obtained with other materials.
These comparisons use materials with roughly the
same perplexity and acoustic characteristics.

Human error rates would ideally be compared
only to error rates of the current single best-perfor-
ming machine recognizer. Such comparisons are im-
possible because no single machine recognizer has
been tested on all corpora and no single recognizer

has been shown to provide best performance across
all conditions sampled by these corpora. Compar-
isons provided in this paper inflate machine perfor-
mance because they use the machine recognizer
which provided the best performance on each corpus,
and no single machine recognizer can uniformly
obtain such low scores. In general, recognizers de-
veloped for one corpus degrade on other corpora due
to the careful tuning required to provide best perfor-
mance. Tuning includes limiting the recognition vo-
cabulary, testing using a constrained grammar, se-
lecting input features, adjusting free grammar param-
eters, adjusting noise and channel adaptation algo-
rithms, and training under conditions similar to those
expected during testing. Tuning may lead to only
small differences in error rates across corpora when

Žspeech corpora are similar e.g. Wall Street Journal
sentences read by Native English versus Native

.American talkers . It can also lead to large variations
Žin error rate when corpora are more dissimilar e.g.

read wideband Wall Street Journal sentences versus
.spontaneous Switchboard telephone conversations .

Results obtained with human listeners are also
sometimes inflated because experimenters reduced
errors caused by inattention by allowing multiple
listening passes and by using a committee majority
vote across multiple listeners instead of using the
average individual error rate. Experimenters also
sometimes corrected for spelling errors to eliminate
out-of-vocabulary responses. Such out-of-vocabulary
responses are not possible for machine recognizers
which use limited-vocabulary testing when the train-
ing and testing vocabularies are known and identical.
Spelling corrections typically correct proper nouns
such as ‘‘Fannie Mae’’ and ‘‘Shearson Lehman’’

Žand sometimes halve human error rates Ebel and
.Picone, 1995 . Using a committee majority vote to

eliminate errors caused by inattention also some-
Žtimes halves the human error rate e.g. Ebel and

.Picone, 1995 .
In all experiments described in this paper, human

listeners always first verify the accuracy of speech
materials by creating a text transcription before these
materials are then used with other listeners for intel-
ligibility testing. Valid intelligibility testing requires
accurate transcription. Transcription accuracy is
maintained at a high level high first because listeners
used during transcription are generally highly-moti-
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Ž .vated they are often the experimenters , because
they typically only make a simple binary decision
and decide whether a talker produced the text used
for prompting, and because any questionable speech
tokens can be eliminated from intelligibility test
experiments. The best listening conditions are also
used during transcription. Speech is presented before
artificially adding noise or other channel degrada-
tions and, in noisy or reverberant environments, an
additional reference microphone positioned close to
the talker is often provided to obtain high-quality

Ž .speech for transcription e.g. Pallett et al., 1995 . In
addition, a committee of motivated listeners is often
used to transcribe some of the more difficult materi-

Ž .als e.g. Leonard, 1984; Martin, 1996 . If it is as-
sumed that the transcription word error rate is lower
than reported word error rates for intelligibility test-
ing with human listeners, then the transcription error

Žrate is less than 0.009% for read digits Leonard,
.1984 , less than 0.4% for read sentences from the

Ž .Wall Street Journal Ebel and Picone, 1995 , and
less than 4% for spontaneous conversations recorded

Ž .over the telephone Martin, 1996 .

4. Performance comparisons

Sections 4.1, 4.2, 4.3, 4.4 and 4.5 summarize
recent comparisons between the speech recognition
performance of humans and machines using the six
speech corpora shown in Fig. 1 supplemented by
other speech materials that have been used to evalu-
ate human performance. Studies using digit strings
and isolated letters are summarized in Section 4.1.
Reviews of studies that evaluated continuous-speech
recognition performance with the Resource Manage-
ment and NAB read-sentence corpora and with the
Switchboard spontaneous speech corpus are pre-
sented in Sections 4.2, 4.3 and 4.4. Section 4.5
summarizes studies which used the Switchboard
spontaneous speech corpus for wordspotting.

4.1. Digits and alphabet letters

ŽThe Texas Instruments digit corpus Leonard,
.1984 which contains more than 25,000 utterances

has been used extensively to evaluate the perfor-
mance of talker-independent machine speech recog-

nizers designed to recognize isolated digits and digit
strings. Human error rates were obtained using 26
highly motivated listeners who initially listened to
degraded 12th-order LPC synthesized versions of the
original data, received bonus pay when they made
fewer errors, entered responses on a keyboard, and

Ž .could listen to segments repeatedly Leonard, 1984 .
The average digit-string or per-utterance error rate
for listeners presented with vocoded speech was
0.105%. The string error rate for vocoded speech
dropped to 0.01% when the majority vote from a
committee of three listeners was used to measure
performance. The intelligibility of original un-
vocoded speech was estimated by presenting three
listeners with wideband speech at a sample rate of 20
kHz. They only listened to those 70 tokens which
were misclassified at least once when vocoded. The
average string error rate for individual listeners was
reduced to 0.009% using wideband speech. This
error rate is plotted in Fig. 2 along with the average
human string error rate for vocoded speech and the

Žmachine recognition string error rate from Chou et
.al., 1994 obtained using a hidden Markov model

Ž .HMM recognizer designed specifically for this task.
This machine recognizer has the lowest published
error rate on this corpus. Fig. 2 demonstrates that
highly motivated human performance on this task is
extremely good. The human error rate of 0.009% for
wideband speech represents an average of 2 to 3
errors per listener over more than 25,000 tokens.
Machine performance at 0.72% is almost two orders
of magnitude worse. Human performance degrades
with vocoded speech, but human error rates still
remain roughly a factor of 7 lower than machine
error rates.

The human error rate for continuously spoken
letters of the alphabet and the machine error rate for

ŽFig. 2. Human and machine error rates for the digit corpus Chou
.et al., 1994; Leonard, 1984 .
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ŽFig. 3. Human error rates for continuously spoken letters Daly,
. Ž1987 and machine error rates for isolated spoken letters Cole et

.al., 1990 .

isolated letters from the Alphabet Letters corpus
described in Table 1 are presented in Fig. 3. The
1.6% human error rate shown in Fig. 3 is an upper
bound for isolated letters because it was measured
using more difficult continuously spoken letters. It
was obtained using a corpus of spelled English words
and nonsense words with 8 listeners and materials

Žproduced by 10 male and 10 female talkers Daly,
.1987 . Talkers produced a total of 1,000 sequences

Ž .350 words and 650 nonsense words of 3–8 contin-
uously spoken letters by spelling letters in each
word. The average error rate of letters for listeners
was 1.6% both for meaningful words and nonsense
words and the standard deviation across listeners was

Ž .low 0.72 percentage points . This low error rate for
continuously produced sequences of letters is similar
to the low human error rates that have been reported
for isolated nonsense syllables presented to well-

Žtrained and motivated listeners Fletcher and Stein-
.berg, 1929; Lippmann et al., 1981 . Early intelligibil-

ity testing experiments at Bell Laboratories used
Ž .consonant–vowel–consonant CVC nonsense sylla-

bles and crews of typically eight well-trained sub-
jects serving as both listeners and talkers. These
talkers performed live tests using lists of 66 CVCs
each constructed by randomly choosing from 22
consonants and 11 vowels. The average syllable
error rate in a quiet environment with direct air
transmission was 2.0% with a standard deviation of

Ž .0.4 percentage points Fletcher and Steinberg, 1929 .
The consonant error rate measured in similar experi-

Ž .ments for consonant–vowel CV and vowel–conso-
Ž .nant VC nonsense syllables constructed from 25

Žconsonants and 3 vowels was only 0.5% Fletcher
.and Steinberg, 1929 . More recent experiments used

CVC nonsense syllables formed by randomly choos-

ing from 16 consonants and 6 vowels. The average
syllable error rate for three listeners and 750 sylla-
bles with quiet wideband speech was only 1.5%
Ž .Lippmann et al., 1981 .

The isolated-letter machine error rate in Fig. 3 for
the Alphabet Letters corpus is from a neural network
recognizer designed specifically for recognizing iso-

Ž .lated letters Cole et al., 1990 . This recognizer was
trained using one repetition of each letter from 60

Ž .male and 60 female talkers 3,120 tokens and then
tested using two repetitions of each letter from 30

Ž .different talkers 1,560 tokens . It has the best pub-
lished performance on this task. As can be seen, the
1.6% human error rate for continuously spoken let-
ters is roughly three times lower than the 5% ma-
chine recognition error rate for isolated letters.

The spoken letter corpus used to obtain the human
error rate in Fig. 3 was also used for spectrogram

Ž .reading experiments Daly, 1987 . Six trained spec-
Žtrogram readers transcribed 100 utterances each five

.from each of the 20 talkers containing roughly 1r3
real words and 2r3 nonsense words. They were told
that some utterances were real words, but were not
told the exact proportion of real to nonsense words.
They were also provided the talker identity for each
utterance and other gross characteristics of the spo-
ken letter corpus. Spectrogram readers provided a
letter sequence for each spectrogram to permit com-
parisons to human listening experiments. The aver-
age error rate across all 5,601 letters was 9% ranging
from 5% to 14% across spectrogram readers. There
was also a wide range in the error rate across the 20

Ž .talkers 2.4% to 16% , female utterances were more
difficult than those produced by males, and real
words were generally easier to transcribe than non-
words. These results demonstrate that sequences of
spoken letters can be recognized using only low-level
acoustic-phonetic information conveyed to humans
using a spectrographic display. The 5% error rate for
the best spectrogram reader on this task is good, but
still substantially worse than the 1.6% error rate for
the average human listener.

4.2. Resource management

The Resource Management corpus was the first
large-vocabulary corpus that was widely used for
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talker-independent continuous speech recognition.
Over a period of roughly four years, machine error
rates on this corpus using a word-pair grammar with

Ža perplexity of 60 dropped from roughly 20% Lee,
. Ž .1989 to 3.6% Huang et al., 1991; Pallett, 1991 .

One study measured the human word recognition
error rate for a single listener using the 300 1989

ŽResource Management test sentences Zue et al.,
.1989 . This error rate was 0.1% corresponding to

missing only 3 out of 2561 words. This error rate
was not obtained using many listeners, but it is
substantially lower than the best reported machine
error rate of 3.6%.

Machine error rates increase dramatically for the
Resource Management task when a ‘‘null grammar’’
is used where a machine recognizer assigns equal
probability to all words independent of the surround-
ing words. This results in a much more difficult
recognition task with a test perplexity bounded above
by 1,000. The effect of using a null grammar in a
speech recognizer instead of a stronger grammar is
roughly equivalent to the effect of using nonsense
sentences instead of meaningful English sentences
with human listeners. The null grammar recognition
condition uses a recognizer which makes little use of
word sequence information, while nonsense sen-
tences provide human listeners with limited word
sequence information.

Nonsense sentences are semantically meaningless
word sequences created by randomly selecting key-
words and placing them in slots within a sentence
frame. Many different types of nonsense sentences
have been created for speech perception research
Ž .e.g. Lippmann et al., 1981; Miller, 1962 . One set
of nonsense sentence materials which uses a vocabu-
lary size that is similar to that of the Resource
Management task was created by randomly selecting
words from 1,000 phonetically balanced monosyl-
labic words and inserting them in the sentence frame
‘‘The ___ ___ told the ___ ___’’, as described in
Ž .Lippmann et al., 1981 . An example sentence is
‘‘The cuff golf told the hold diÕe’’. An average word
error rate of 2.0% was obtained for the inserted
words using 600 sentences produced by one male
and one female talker and presented to three listen-
ers. These listeners were provided little training,
knew that words in sentences were selected at ran-
dom, used an unrestricted response vocabulary, lis-

Fig. 4. Machine error rates for the Resource Management corpus
Žwith a null grammar and a vocabulary size of 1,000 Huang et al.,

.1991; Pallett, 1991 and human error rates for nonsense sentences
Ž .formed using a 1,000 word vocabulary Lippmann et al., 1981 .

tened to each sentence twice, and were allowed more
than 10 seconds for written responses. Words in
these sentences are produced at a faster rate than in
isolation and with cross-word coarticulation, but with
limited contextual information of the type that is
contained in the grammar models used in machine
recognizers. Humans can still, however, make use of
lexical information and of phonotactic constraints
which characterize normal English speech to aid
recognition. An older study also used nonsense sen-
tences to study the importance of context for speech

Ž .perception Miller, 1962 . Both nonsense and mean-
ingful sentences were created using a small, 25-word
vocabulary. Nonsense sentences such as ‘‘Socks
wrong the has he’’ were creating by reversing the
word order of meaningful sentences such as ‘‘He has
the wrong socks’’. The intelligibility of words in

Žnonsense sentences was high word error rate less
.than 2% at high SNRs and similar to the intelligibil-

ity of words presented in isolation, as long as a 10
second pause was provided between successive sen-
tences to allow sufficient time for an oral response.

Fig. 4 compares error rates obtained using the
best performing null-grammar HMM recognizer on

Žthe Resource Management corpus Huang et al.,
.1991; Pallett, 1991 to human error rates for non-

Ž .sense sentences Lippmann et al, 1981 . Machine
error rates are for the restricted 1,000-word Resource
Management corpus using a highly tuned HMM
recognizer. The 2% human word error rate is almost
an order of magnitude lower than the 17% null
grammar machine word error rate. These results
demonstrate that humans can accurately perceive
wideband speech in a quiet environment with limited
contextual information using primarily low-level
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acoustic-phonetic information. The representative
high-performance HMM recognizer described in
Ž .Huang et al., 1991 , however, has much worse
low-level acoustic modeling and relies heavily on
contextual information and a constraining grammar
to achieve good performance. Its error rate drops to
3.6% when recognition perplexity is reduced to 60

Ž .using word-pair grammar Pallett, 1991 . The rela-
tive contribution to recognition performance pro-
vided by a constraining grammar and lower-level
modeling has not been assessed recently using null
grammars because modern 5,000 to 65,000 word
vocabulary continuous speech recognizers require a
low-perplexity grammar to make machine recogni-
tion computationally tractable.

4.3. North American business news

The initial Wall Street Journal component of the
NAB corpus provided researchers working on large-
vocabulary continuous-speech recognition with a
much more challenging task than the artificial Re-
source Management task. This corpus contains a
larger vocabulary and uses read sentences prompted
using text extracted from a published journal. Al-
though many researchers have evaluated machine
recognizers with this corpus, few studies have been
performed with human listeners. A recent human
listening study used Wall Street Journal sentences

Ž .from one condition Spoke 10 of the 1994 ARPA
continuous speech recognition evaluation where per-
formance was measured in quiet and at three speech-

Ž .to-noise ratios SNRs using a 5,000 word vocabu-
Ž .lary Pallett et al., 1995; Kubala 1995 . Noise was

recorded in an automobile traveling at roughly 60
miles per hour and sentences were recorded with a
high-quality close-talking microphone in a different
quiet environment. Noise was artificially added to
sentences, and segments containing only noise were
provided for training HMM recognizers and develop-
ing new algorithms to adapt recognizers to the noise
environments. Human listening experiments de-

Ž .scribed in Ebel and Picone, 1995 used 12 normal
hearing college-educated adults who could listen re-
peatedly to any one of the 113 test sentences and
entered responses using a common computer text
editor with an unrestricted response vocabulary. Ob-
vious typing errors, spelling errors, and out-of-

Ž .Fig. 5. Performance of humans Ebel and Picone, 1995 and of a
high-performance HMM recognizer with noise compensation
Ž .Gopinath et al., 1995; Pallett et al., 1995 for Wall Street Journal
sentences with additive automobile noise.

vocabulary words were corrected. For example, the
response ‘‘Fanny May’’ was converted to ‘‘Fannie
Mae’’ and the name ‘‘Sheerson Leeman’’ was con-
verted to ‘‘Shearson Lehman’’. A group of at least
three listeners provided responses to the same sen-
tences and a committee response was computed us-
ing a majority vote over these three listeners to
eliminate errors caused by inattention. Although this
procedure halved the error rate, the more conserva-
tive average error rate across listeners is reported
here.

Fig. 5 shows average Spoke 10 word error rates
for humans and machines. The machine error rates
are for an adaptation algorithm described in
Ž .Gopinath et al., 1995 which provides good perfor-
mance and requires only a few seconds of noise-only
adaptation data. This adaptation algorithm was essen-
tial for obtaining good machine performance. Ma-
chine error rates without adaptation exceeded 40% at
SNRs of 10 and 16 dB. Adaptation requires two
passes through each sentence. One pass is used to
determine how HMM spectral features trained in
quiet should be modified to make them similar to
noisy spectral features. A second pass then performs
recognition using the modified features. Human error

Ž .rates from Ebel and Picone, 1995 in Fig. 5 are low
and near 1% for all conditions, even at the lowest
SNR of 10 dB. Machine error rates are roughly ten
times higher than those of humans, and increase at
the lower SNRs. The low error rates reported in this
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study with humans are consistent with past studies
Ž .Kryter, 1960; Williams and Hecker, 1968 where
humans recognized words in sentences with error
rates below 2% in additive speech-shaped noise at
SNRs ranging from 0 dB to 10 dB.

Similar low error rates for humans were found in
a separate study which compared human and ma-
chine performance in quiet using Wall Street Journal

Ž .sentences Van Leeuwen et al., 1995 . Eighty Wall
Street Journal sentences were read by 23 speakers
including both native USA and British speakers.
These sentences were presented in quiet to 20 native
USA and British listeners and to 10 non-native Dutch
listeners. Although listeners were permitted to listen
to sentence segments more than once, this option

Ž .was used infrequently roughly 10% of the time .
Sentences were edited using a spelling checker to
correct obvious typing and spelling errors. Word
error rates were 2.6% for native listeners and 7.4%
for non-native listeners. For comparison, the average
word error rate for three high-performance 20,000-
word recognizers that took part in a recent European
Wall Street Journal evaluation was 12.6% for the

Ž .same sentences Van Leeuwen et al., 1995 . One
additional system developed for use with native USA
speakers was not tested with British speech, but
provided a lower error rate of 5.2% on the 40
sentences spoken by native USA speakers. The aver-
age error rates of machines tested on the full USA
and British sentences were thus roughly five times
greater than human error rates, and the error rate of
one high-performance USA recognizer tested on a
subset of 40 USA sentences was twice that of hu-
mans.

The results of these two studies demonstrate that
error rates of humans are much lower than those of
machines in quiet, and that error rates of current
recognizers increase substantially at noise levels
which have little effect on human listeners. Results
also demonstrate that noise adaptation algorithms
can dramatically improve recognition performance
when noise spectra and SNRs are stationary and
known during training. Even with noise adaptation,
however, the 12.8% machine error rate shown in Fig.
5 at an SNR of 10 dB is more than an order of
magnitude greater than the 1% human error rate.
Two previous studies with isolated digits instead of
sentences also found that human error rates are low

in quiet and do not degrade at low SNRs. One study
with four listeners found that the digit error rate was

Ž .almost perfect less than 0.5% errors both in quiet
Ž .and at an SNR of y3 dB Pols, 1982 . A second

study with two listeners found that the human digit
error rate was less than 1% both in quiet and at an

Ž .SNR of 0 dB Varga and Steeneken, 1993 . This
second study evaluated the performance of talker
independent digit recognizers both with and without
noise adaptation. All machine recognizers provided
error rates of roughly 2% in quiet. At an SNR of
0 dB, error rates increased to almost 100% without
noise adaptation and to 40% with the best noise
adaptation algorithm.

The complete NAB corpus contains materials from
many business publications and includes open-
vocabulary test conditions where the recognition vo-

Ž .cabulary is unlimited Kubala, 1995; Stern, 1996 .
Large vocabulary HMM speech recognizers were

Žrecently compared to humans in one condition Hub-
.3 of the 1995 ARPA continuous speech recognition

evaluation. Speech was recorded using four different
microphones in a slightly reverberant office environ-
ment with background acoustic noise which resulted
in SNRs of roughly 20 dB. Speech materials were
recorded using the same close-talking microphone
used for the Resource Management and Wall Street
Journal evaluations, with two high-quality cardioid
studio microphones, and with a low-cost omni-direc-
tional electret microphone. Human error rates were

Žmeasured with 15 listeners as described in Desh-
.mukh et al., 1996 using procedures similar to those

Ž .used in Ebel and Picone, 1995 . Spellings of sur-
names and proper nouns were corrected and error
rates were obtained from individual listeners and
also using a majority vote from a committee of three
listeners. Averaged over all microphone conditions,
human error rates were 1.9% for individual listeners
and 0.5% for the committee. The difference in this
study between committee and individual error rates
is twice as large as the difference found during the

Ž .Spoke-10 evaluations Ebel and Picone, 1995 . This
suggests that these Hub-3 materials are more diffi-
cult and that the committee results are more repre-
sentative of the lowest human error rates that can be
obtained by highly motivated listeners. Committee
results are thus used for this corpus when comparing
human and machine performance.
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Ž .Fig. 6. Performance of human committee Deshmukh et al., 1996
and of a high-performance HMM recognizer with channel adapta-

Ž .tion Woodland et al., 1996 with multiple microphones for the
NAB corpus.

Fig. 6 shows human committee error rates from
Ž .Deshmukh et al., 1996 and machine error rates for
the 65,000 word HMM recognizer that obtained the

Ž .best results for this task Woodland, et al. 1996 .
Human error rates are below 1.0% for all conditions.
These error rates increase from roughly 0.4% with
the three higher-quality microphones to 0.8% with
the low-cost omni-directional electret microphone.
Machine error rates increase from 6.6% with the
close talking microphone to roughly 24% with the
electret microphone. This increase occurs despite
extensive adaptation algorithms which were used to
compensate for microphone variability. Machine er-
ror rates under all conditions are again more than an
order of magnitude greater than human error rates.
Error rates degrade for both humans and machines
with the omni-electret microphone. Under this more
difficult condition, human error rates remain below
1.0% while machine error rates rise to roughly 24%.

4.4. Switchboard continuous speech recognition

Credit Card and other Switchboard telephone con-
versations have been used to evaluate the perfor-
mance of large-vocabulary continuous-speech recog-
nizers with spontaneous speech. Human performance
on these materials can be estimated by evaluating the
accuracy of transcriptions created by individual tran-
scribers. Transcriptions were created by court re-
porters and temporary employees, and include non-

speech sounds such as coughs, laughs and breath
Ž .noise LDC, 1995 . The accuracy of over 14,000

transcribed words was carefully validated by lin-
guists and speech scientists using repeated listening
to both sides of each conversation, examinations of
the waveform, and group-vote consensus decisions
for difficult utterances which were faint, spoken
rapidly, or partly masked by simultaneous speech
from the opposite talker. The average transcription
error rate, counting insertions, deletions and substitu-

Ž .tions, was 4% Martin, 1996 . Speech recognition
error rates on this corpus were initially high and near

Ž .67% as reported in Young et al., 1994 for an HMM
recognizer that provided state-of-the-art performance
on the Wall Street Journal segment of the NAB
corpus. More recent work has reduced these high
rates to roughly 40% by using more training data and
employing advanced adaptation and speech modeling

Ž .techniques e.g. Liu et al., 1996; Peskin et al., 1996 .
Fig. 7 presents word error rates for an HMM

Ž .recognizer described in Liu et al., 1996 and for
human transcribers on the spontaneous speech
Switchboard corpus. The 43% error rate of the HMM
recognizer is extremely high compared to the much
lower machine rates obtained with the Resource
Management and Wall Street Journal corpora using
read speech. This increase in error rate is caused by
many factors including the talking style, weak gram-
mar used for conversations, and the limited band-
width provided by telephone channels. Recognition
experiments performed by Mitch Weintraub and re-

Ž .ported in Culhane, 1996 explored the importance of
some of these factors. In one experiment, talkers
engaged in spontaneous Switchboard-like conversa-
tions and then read transcriptions of these conversa-
tions. The machine recognition error rate was 52.6%

Fig. 7. Word error rates for humans and a high-performance
HMM recognizer on phrases extracted from spontaneous tele-

Žphone conversations in the Switchboard speech corpus Liu et al.,
.1996; Martin, 1996 .
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for spontaneous speech and 28.8% for read versions
of the same materials. This result demonstrates that
the speaking style used with spontaneous speech is
one of the primary reasons that error rates are high
on the Switchboard corpus. Results with the Switch-
board corpus thus demonstrate that error rates for
machines can increase dramatically for spontaneous
speech conditions where human performance re-
mains high. Once again, the 4% error rate of humans
is more than an order of magnitude less than the
43% error rate of a high-performance HMM recog-
nizer.

4.5. Switchboard wordspotting

Machine wordspotters have been used to detect
occurrences of 20 keywords in the Credit Card com-
ponent of the Switchboard speech corpus. Evaluation
of human wordspotting performance on the Credit
Card corpus would involve listening to hours of
spontaneous conversations searching for 20 key-
words. This is too demanding for most listeners, and
was replaced by a simpler discrimination task as

Ž .described in Chang and Lippmann, 1996 . Two
listeners focused on one keyword at a time and were
randomly presented speech segments containing ei-
ther a true keyword occurrence or a false alarm.
After listening to a segment, subjects made a binary
decision which indicated whether a specified key-
word was contained in the segment. False alarms
were generated by a high-performance hybrid
HMMrneural-network wordspotter described in
Ž .Chang and Lippmann, 1996 which provides the
best performance reported for a whole-word
wordspotter on this corpus. Two listening conditions
were used to evaluate the importance of context. In a
‘‘no context’’ condition, listeners were presented
false alarms and keyword occurrences with 100 msec
of extra speech both before and after each segment.
This small amount of extra context was necessary to
keep from chopping off the beginnings and end of
keywords and almost never allowed users to hear
adjacent words. In the ‘‘2 second context’’ condi-
tion, all sounds beginning 2 seconds before and
ending 2 seconds after each utterance were pre-
sented. This context typically included most of the
phrase containing each utterance. The resulting hu-
man judgements were used to compute new average

Fig. 8. Average miss rate for 20 keywords in the Credit Card
component of the Switchboard corpus for a high-performance

Žwhole-word wordspotter and human listeners Chang and Lipp-
.mann, 1996 . The dotted line is the lowest miss rate possible when

humans accept all correct keywords and reject all high-scoring
false alarms.

detection and miss rates for each word by eliminat-
ing all utterances judged to be non-keywords. The
highest human detection rate that can be achieved in
this experiment is not 100% because humans did not
listen to all wordspotter false alarms and thus could
not eliminate all false alarms. The highest detection
accuracy is 92.8% and the lowest miss rate is thus
7.2%.

Fig. 8 shows that human judgements reduce the
average miss rate for keywords from 31.1% for the
wordspotter to 12.8% for humans with no contextual
information and 7.4% for humans with 2 seconds of
contextual information. Without context, human
judgements reduced the miss rate by roughly 18
percentage points. This substantial improvement in
performance demonstrates that humans can make
fine phonetic distinctions between similar sounding
words without relying on surrounding semantic, syn-
tactic or acoustic context. In these experiments, most
false alarms were caused by words with strong vowel
sounds that are similar to vowels in the keywords.
For example the words ‘‘car ’’ and ‘‘ far ’’ often
caused false alarms for the keyword ‘‘card’’, and the
word ‘‘me’’ caused false alarms for the keyword
‘‘Õisa’’. The ability of listeners to perceive differ-
ences between consonants in these similar sounding
words was high, but not perfect, without surrounding
contextual information.

Listeners made almost no errors when asked to
determine whether a speech segment contained a
specified keyword when they were provided 2 sec-
onds of context before and after each extracted key-
word. The average human judgement error rate was

Ž .only 0.3% 8 out of 2314 judgements with 2 sec-
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onds of context. This is indicated in Fig. 8 on the
right by the small difference between the 7.4% miss
rate obtained using human judgements and the low-
est possible miss rate of 7.2% shown by the dotted
line.

The results for this discrimination task are similar
to results obtained from an older study which ex-
plored the intelligibility of speech fragments ex-

Žtracted from continuous speech Pollack and Pickett,
.1963 . This study found that speech intelligibility for

words in segments extracted from spontaneous speech
Ž .is high error rate roughly 5% when the total dura-

tion of a segment is 2 seconds. Conversations on the
subject of ‘‘college life’’ were surreptitiously
recorded from four female student employees in a
quiet environment, and fluent 2-second segments
with no non-phonemic silences were extracted from
these conversations. Ten to twelve segments were
obtained for each talker containing from 4 to 15
successive words each. An example of one segment
is ‘‘second or third but then I’d like to teach’’.
Segments were played to crews of 22 to 29 listeners
who were first presented only the first word in
segment, then the first two words, then additional
successive words until all words in a segment were
presented. The average error rate decreased from
roughly 45% for segments of 0.3 second duration, to
15% at 1 second duration, to 5% at 2 seconds

Žduration. Results from this study and from Chang
.and Lippmann, 1996 suggest that 2 seconds of

speech provides sufficient context to compensate for
differences in talkers, talking rate, channel character-
istics, and linguistic context and also to provide
coarticulatory acoustic information that may be
spread across adjacent words.

5. Summary and discussion

Dramatic advances have recently been made in
speech recognition technology. Large-vocabulary
talker-independent recognizers provide error rates
that are less than 10% for read sentences recorded in
a quiet environment. Machine performance, how-
ever, deteriorates dramatically under degraded condi-
tions. For example, error rates increase to roughly
40% for spontaneous speech and to 23% with chan-
nel variability and noise. Human error rates remain

below 5% in quiet and under similar degraded condi-
tions. Comparisons using many speech corpora
demonstrate that human word error rates are often
more than an order of magnitude lower than those of
current recognizers in both quiet and degraded envi-
ronments. In general, the superiority of human per-
formance increases in noise, and for more difficult
speech material such as spontaneous speech. Al-
though current speech recognition technology is well
suited to many practical commercial applications,
these results suggest that there is much room for
improvement.

Comparisons between human and machine error
rates suggest the need for more fundamental research
to improve machine recognition performance. This
research could focus on four areas where past studies
demonstrate the most dramatic differences between
human and machine performance. First, results ob-
tained with limited context suggest that human lis-
teners perform more accurate low-level acoustic-
phonetic modeling than machines. We can accurately
recognize isolated digit sequences and spoken letters,
we can recognize short segments extracted from
spontaneous conversations, and we can accurately
recognize words in nonsense sentences that provide
little contextual information. These results suggest
that one important direction for future research with
machine recognizers is to improve low-level acoustic
phonetic analysis.

Second, human recognition results obtained with
channel variability and noise demonstrate that we
can easily recognize speech with normally occurring
degradations. Past studies have also demonstrated
that we can understand speech with no training when
highly unnatural distortions are applied, such as ex-

Žtreme waveform clipping Licklider and Pollack,
. Ž .1948 , severe band-reject filtering Lippmann, 1996 ,

and extremely erratic linear frequency responses
Ž .Kryter, 1960 . Machine recognition performance,
however, often degrades dramatically with channel
variability and noise. Machine recognizers typically
provide best performance with degraded speech only
when they are trained using degraded speech materi-

Ž .als e.g. Lippmann and Martin, 1987 or when inter-
nal parameters are adapted to mimic this type of

Ž .training e.g. Gopinath et al., 1995 . These results
suggest that a second important direction for future
machine recognition research is to develop improved
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channel and noise adaptation algorithms which adapt
rapidly to time varying noise and channel character-
istics. These algorithms should maintain high recog-
nition accuracy but require little a priori information
concerning noise and channel characteristics.

Third, the extremely high error rates obtained
with machines for spontaneous speech suggest that
much further work should explore the differences
between spontaneous and read speech and develop
recognition approaches that provide good perfor-
mance for this more difficult material.

Finally, the excellent human performance ob-
tained when short 2–4 second segments of speech

Žare extracted from spontaneous speech e.g. Chang
.and Lippmann, 1996; Pollack and Pickett, 1963

suggest that further work is required on language
modeling and on algorithms which can rapidly adapt
to talker, channel and talker-style variability using
only short speech segments. Two additional experi-
ments with humans also suggest that rapid talker
adaptation and improved grammar models are feasi-
ble. The first is an innovative experiment performed
by Kakehi in Japan who demonstrated that human

Ž .performance the syllable error rate degrades only
slightly after changing talker, and that this small
degradation is eliminated after hearing only three

Ž .syllables Kakehi, 1992 . Four subjects listened in
noise to 100-item lists formed from 100 common
Japanese monosyllables containing 26 consonants
and 5 vowels and produced by each of 100 different
talkers. In one condition, all syllables in a list were
produced by one talker, and listeners thus could
adapt to this talker. In a second condition, the talker
was varied at random for each syllable in a list and
listeners were thus prevented from adapting to each
talker. Syllable error rates increased slightly by 6
percentage points from roughly 24% to 30% when
users could not adapt separately to each talker. Addi-
tional experiments measured the error rates of sylla-
bles immediately after a talker change with from 1 to
5 sequential presentations of syllables from a new
talker. Results from these experiments demonstrate
that only three syllables are required to adapt to a
new talker and produce performance similar to that
provided by a single-talker list. A second informal
experiment explored the language modeling capabili-
ties of humans using an interactive computer game
called the ‘‘Shannon Game’’ where humans guess

Žthe next word in grammatical sentences Jelinek,
.1985 . Human guesses were compared to trigram

language models used in high-performance recogniz-
ers. It was found that humans beat the trigram model
by factors of 3 or more in perplexity. This suggests
that it should be possible to improve recognition
accuracy substantially on continuous-speech tasks by
producing language models with perplexities that are
1r3 those of current trigram grammars.

In addition to weaknesses in the above four areas,
current machine recognizers still lack two fundamen-
tal capabilities that are essential for effective
human-like performance. Modern recognizers cannot
identify and learn new words and they cannot distin-
guish non-speech environmental sounds from accept-
able speech input. Even human children can distin-
guish environmental sounds from speech and are
able to distinguish new from known words. It is
estimated that a high school graduate knows more
than 160,000 words, counting roots, derivatives and

Ž .compounds e.g. Miller, 1991 . Achieving this vo-
cabulary requires learning roughly 10 new words a
day. Few machine recognizers have the capability of
distinguishing known from unknown words, and even
fewer can automatically learn the meanings of new
words. Machine recognizers also cannot currently be
used in normal environments without a close-talking
or directional microphone or without using a push-
to-talk switch because desired speech inputs cannot
be separated from other environmental sounds. Com-
mon transient and intermittent environmental sounds
may be interpreted by many modern high-perfor-
mance recognizers as well-formed sentences. Some
preliminary work has been performed in these two

Žareas e.g. Gorin et al., 1994; Brown and Cooke,
.1994 but few objective evaluations have been per-

formed, and algorithms are still in the early develop-
mental stage.

Many researchers are already exploring ap-
proaches to improve acoustic-phonetic modeling, to
lower error rates in noise and with channel variabil-
ity, to improve performance with spontaneous speech,
to improve language modeling, and to provide more

Žrapid talker, noise and channel adaptation e.g.
.Young, 1996; Bourlard et al., 1996 . The studies on

human perception described in this paper provide
baseline error rates to evaluate these new algorithms
and an existence proof that accurate speech recogni-
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tion is possible with degraded speech and sponta-
neous speaking styles. Further studies comparing
human and machine performance will be required to
update baseline human results on new tasks and to
monitor improvements in speech recognition tech-
nology. Further human studies should also be de-
signed to provide hints concerning the algorithms
used by biological computation to provide high per-
formance when inputs include both speech and non-
speech sounds and with the types of talker and
acoustic variability encountered in everyday environ-
ments.
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