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Bayesian Regularization and Nonnegative
Deconvolution for Room Impulse

Response Estimation
Yuanqing Lin and Daniel D. Lee

Abstract—This paper proposes Bayesian Regularization And
Nonnegative Deconvolution (BRAND) for accurately and robustly
estimating acoustic room impulse responses for applications such
as time-delay estimation and echo cancellation. Similar to conven-
tional deconvolution methods, BRAND estimates the coefficients of
convolutive finite-impulse-response (FIR) filters using least-square
optimization. However, BRAND exploits the nonnegative, sparse
structure of acoustic room impulse responses with nonnegativity
constraints and -norm sparsity regularization on the filter coef-
ficients. The optimization problem is modeled within the context of
a probabilistic Bayesian framework, and expectation-maximiza-
tion (EM) is used to derive efficient update rules for estimating
the optimal regularization parameters. BRAND is demonstrated
on two representative examples, subsample time-delay estimation
in reverberant environments and acoustic echo cancellation. The
results presented in this paper show the advantages of BRAND
in high temporal resolution and robustness to ambient noise
compared with other conventional techniques.

Index Terms—Bayesian regularization, echo cancellation, non-
negative deconvolution, time-delay estimation.

I. INTRODUCTION

S IGNAL processing algorithms for a wide variety of acoustic
applications, including source localization and echo can-

cellation, fundamentally rely upon estimating room impulse re-
sponses. These algorithms are typically based upon an analysis
of the following linear time-invariant system:

(1)

where a measured signal is given by the convolution of the
acoustic source signal and the room impulse response ,
corrupted by additive noise . In this paper, we describe a
novel algorithm for identifying the system , given a known
source and an observation . Our algorithm is based
upon solving the deconvolution problem

(2)

By incorporating nonnegativity constraints and Bayesian
-norm sparsity regularization on the filter coefficients, we
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show how the estimation of is both highly time-resolved
and robust to noise. We contrast the results of our Bayesian
Regularization And Nonnegative Deconvolution (BRAND)
algorithm with other algorithms based upon cross correlation
or linear deconvolution on two representative acoustic signal
processing problems: subsample time-delay estimation for
source localization and room impulse response estimation for
echo cancellation. In these examples, we demonstrate how
the acoustic room impulse response can be accurately and
robustly estimated using BRAND, and how it differs from other
techniques.

Conventional cross correlation can be viewed as an optimiza-
tion of (2) under the assumption that the room impulse response
is a delta function, namely, . With this as-
sumption, the optimal estimates of and given the source
signal and the measured signal are [1]

(3)

(4)

Equations (3) and (4) show that the optimal estimates are re-
lated to the maximal value of the cross correlation between
and . Because of its computational simplicity, cross correla-
tion has been widely adopted time-delay estimation. However,
the underlying assumption of a delta-function impulse response
causes cross-correlation estimates to degrade in reverberant en-
vironments where multipath reflections are not negligible. Gen-
eralized cross-correlation techniques such as the phase align-
ment transform prewhiten the signals before performing cross
correlation to help alleviate some of these difficulties [1], but
their effectiveness is still limited by the underlying simple delta-
function assumption on the room impulse response.

On the other hand, the least-square optimization of (2)
without any constraints on the impulse response is equivalent to
conventional linear deconvolution [2], [3]. With discrete-time
signals, (2) can be written in matrix form as

(5)

where is an vector,
is an

matrix consisting of time-shifted column vectors
. is a vector of discrete sam-

ples of the impulse response at the time delays .
When the number of measurements is larger than the number
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of time lags , the resulting matrix optimization can be solved
by taking the pseudo-inverse

(6)

This optimal solution can also be approximated in an online
fashion through stochastic gradient descent

(7)

where the source vector , recon-
struction error , and is learning rate. The nor-
malized least-mean-square (NLMS) algorithm [3] used in adap-
tive echo cancellation is related to (7) by adaptively choosing the
learning rate in the following manner:

(8)

where and are dimensionless constants. Sto-
chastic gradient descent algorithms such as NLMS distribute
the estimation of filter coefficients over time and have been
widely adopted in real-time implementations.

Linear deconvolution in (5) makes no assumption about the
characteristics of the acoustic room impulse response. Unfor-
tunately, these algorithms can suffer from both poor temporal
resolution and sensitivity to noise. When the signals are band-
width-limited, the temporal resolution of linear deconvolution
algorithms is limited by the near-degeneracy of the columns of
matrix in (5). In the extreme case when (6) is used to solve for
filter parameters with subsample temporal precision, the ill-con-
ditioning of the matrix can give rise to wildly fluctuating
room impulse response estimates. Thus, any noise present in
the system will be greatly amplified by the deconvolution al-
gorithms. Employing longer data sequences may help to better
condition the estimates for the impulse responses, but this will
also limit the speed of convergence of the estimates. In the fol-
lowing sections, we demonstrate how the BRAND algorithm
can overcome some of these difficulties by utilizing prior knowl-
edge about the structure of the room impulse responses.

In particular, BRAND relies upon a theoretical image model
for room acoustics which predicts room impulse responses are
well described by sparse, nonnegative filter coefficients [4]. Ac-
cordingly, we first introduce nonnegativity constraints on the
filter coefficients in the deconvolution problem:

(9)

Recent work has shown that nonnegativity constraints can help
to regularize solutions for estimation problems such as (9), [5],
[6]. With no noise in measured signals, we show that nonnega-
tive deconvolution is able to precisely resolve the room impulse
response with high temporal resolution.

Second, we exploit the sparse structure of acoustic room
impulse responses to improve noise robustness by intro-
ducing -norm sparsity regularization in the deconvolution
optimization

(10)

where the regularization parameter controls the sparsity of the
resulting estimate by giving preference to solutions with small

-norm [7], [8]. -norm regularization has been previously
used to help regularize the linear deconvolution problem [9]
and nonnegative matrix factorization [10], but the regulariza-
tion parameter was heuristically determined. Since the choice
of regularization parameter may be critical for good estimates,
we formulate the nonnegative deconvolution in (10) within a
probabilistic framework, leading to an expectation-maximiza-
tion (EM) procedure that infers the optimal regularization pa-
rameters. This framework also allows us to efficiently generalize
the uniform regularization in (10). Instead of a single regulariza-
tion parameter, each of the individual filter coefficients can be
associated with an independent regularization parameter

(11)

Independent regularization has been used previously in the
relevance vector machine [11], where independent -norm
regularization was employed to regularize nonlinear regres-
sion problems. We show that the independent prior results in
stronger sparsity regularization than the uniform prior does.

The remainder of the paper is arranged as follows. In
Section II, a Bayesian framework is presented for the -norm
regularized nonnegative deconvolution problem, and iterative
update rules for computing the optimal regularization param-
eters are derived. Two computational procedures for solving
the associated nonnegative quadratic programming problems
are introduced, one based upon a modified simplex method
and the other on parallel multiplicative updates. In Section III,
BRAND with the modified simplex method is applied to
subsample time-delay estimation in a simulated reverberant
environment. Its performance is compared with cross-correla-
tion-based methods as well as linear deconvolution. Different
regularization strategies are also compared to illustrate the
advantages of BRAND for estimating regularization parame-
ters. In Section IV, BRAND with multiplicative update rules is
employed to estimate the room impulse response for echo can-
cellation, and its performance is compared to the other adaptive
filtering algorithms. Finally, we conclude with a discussion of
these results in Section V.

II. BRAND PROBABILISTIC MODEL

In this section, the probabilistic generative model for
BRAND and Bayesian inference is used to derive optimal regu-
larization parameters, leading to estimates of filter coefficients
with appropriate sparseness.

The underlying probabilistic model assumes the measured
signal is generated by convolving the source signal
with a sparse, nonnegative room impulse response. The mea-
surement is corrupted by additive Gaussian noise with zero
mean and covariance so that the conditional likelihood is

(12)
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Each of the filter coefficients in is assumed to have been drawn
from its own independent exponential distribution. This expo-
nential prior only has support in the nonnegative orthant and the
sharpness of the distribution is controlled by the regularization
parameters

(13)

To infer the optimal settings of the regularization parameters
and , we need to maximize the posterior distribution

(14)

Assuming that is relatively flat [12], and are es-
timated by maximizing the marginal likelihood [13]

(15)

where

(16)

Unfortunately, the integral in (15) cannot be directly maxi-
mized. An alternative approach would be to heuristically derive
self-consistent fixed-point equations and to solve those equa-
tions iteratively [11], [12], [14]. In BRAND, the EM procedure
[15] is used to derive iterative update rules for and as

(17)

(18)

where the required expectations are taken over the distribution

(19)

with normalization constant . In
the EM updates, is treated as the observed variable, as the
hidden variables, and both and as the parameters. These
updates ((17) and (18)) have guaranteed convergence properties
and can be intuitively understood as iteratively reestimating the
optimal and from the statistics of the current estimate for

. Unfortunately, the integrals in (17) and (18) are difficult
to compute analytically; thus, we seek an appropriate approx-
imation of with respect to the mode of the distribution,

.

A. Estimation of

The integrals in (17) and (18) are dominated by
where the most likely is given by

(20)

This optimization is equivalent to the nonnegative quadratic pro-
gramming problem in (11) with . This can be written
in standard quadratic form

(21)

with , and . These
quadratic terms can be efficiently computed in the frequency
domain [16] when edge effects are not significant, as follows:

(22)

(23)

where is the time-delay set, and are the respec-
tive discrete Fourier transforms of and is the complex
conjugate of , and denotes taking the real component
of a complex number. A frequency domain implementation is
desirable when subsample time resolution is required. In partic-
ular, the approximate form of in (22) has Toeplitz structure,
which further improves the efficiency in computing .

In order to solve the nonnegative quadratic programming
problem in (21), two different but complementary methods
have been recently developed. The first method is based upon
finding a solution that satisfies the Karush–Kuhn–Tucker
(KKT) conditions [17] for (21)

(24)

By introducing additional artificial variables , the KKT
conditions can be transformed into the linear optimization of

subject to the constraints

(25)

The only nonlinear constraints in this optimization are the prod-
ucts . These constraints can be handled in the simplex
method by modifying the simplex variable selection procedure
to ensure that and are never simultaneously in the basic
variable set. With this simple modification, all the artificial vari-
ables can be driven to zero and thus the optimal satisfying
the KKT conditions (24) is found. One beneficial feature of the
modified simplex method is that its convergence is relatively in-
sensitive to the conditioning of , which may be large when
high temporal resolution is desired. Unfortunately, the modified
simplex method cannot generically handle very large scale prob-
lems, such as when the dimensionality of becomes larger
than 1000.

For these high-dimensional problems, we recently developed
an algorithm with parallel, multiplicative updates [18]. These
multiplicative updates have the advantage of guaranteed con-
vergence and no adjustable convergence parameters to tune. We
first decompose the matrix in (21) into its pos-
itive and negative components such that

if
if

if
if

(26)
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In terms of the nonnegative matrices and , the following
is an auxiliary function that upper bounds (21) for all

(27)

Minimizing (27) gives the following iterative rule for updating
the current estimate for

(28)

Equation (28) can be interpreted as an interior point method
which explicitly preserves the nonnegativity constraints on ,
with guaranteed convergence to the optimal . Note that both
matrices and are Toeplitz if is Toeplitz so the ma-
trix-vector products in (28) can be efficiently computed using
fast Fourier transforms (FFTs). Thus, these computations can
be efficiently implemented in real time for even fairly large op-
timization problems.

B. Approximation of

After has been determined, one simple approach for
re-estimating the parameters and in (17) and (18) is to ap-
proximate the distribution in the EM up-
dates. Unfortunately, this simple approximation can cause es-
timates for and to diverge with bad initial estimates. To
overcome these difficulties, we require a better approximation
to properly account for variability in the distribution .

We first note that the solution for the nonnegative
quadratic optimization in (21) naturally partitions its elements
into two distinct subsets and , consisting of components

such that , and components such that
, respectively. The joint distribution is then

approximated by the factorized distribution

(29)

For the components , none of the nonnegativity constraints
are active, so it is reasonable to approximate the distribution

by the unconstrained Gaussian

(30)

This Gaussian distribution has mean and inverse covari-
ance given by the submatrix of .

However, for the other components , since is on
the boundary of the distribution, it is important to consider the
effects of nonnegativity constraints. This distribution is repre-
sented by first considering the Taylor expansion about

(31)

Since the first-order derivative is nonzero at , we use a
variational approximation for , representing it by the ex-
ponential distribution

(32)

The variational parameters are defined by minimizing the
Kullback–Leibler divergence between and

(33)

The integral in (33) can easily be computed and yields the fol-
lowing optimization for

(34)

where . To solve
this minimization problem, we again use an auxiliary function
for (34) that is similar to (27) used for nonnegative quadratic
programming

(35)

where is the decomposition of into its positive
and negative components.

The parameters in (32) can then be solved by iterating

(36)

These iterations again have guaranteed convergence to the op-
timal approximate variational distribution .

Using the factorized approximation
, the expectations in (17) and (18) can be analytically

calculated. The mean value of under this distribution is given
by

if
if

(37)

and its covariance is

if
otherwise

(38)

The update rules for and are then given by

(39)

(40)

To summarize, the complete BRAND algorithm for esti-
mating the nonnegative filter coefficients and independent
regularization parameters consists of the following steps.

1) Initialize and , and choose a discrete set of possible
time delays .
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2) Determine by solving the nonnegative quadratic pro-
gramming in (20).

3) Approximate the distribution by
solving the variational equations for using (36).

4) Calculate the mean and covariance for this distribu-
tion.

5) Reestimate regularization parameters and using (39)
and (40).

6) Go back to Step 2) until convergence.
Under this model, a different prior on results in a uniform

regularization as described in (10). This uniform model is asso-
ciated with the distribution

(41)

In this case, the iterative estimates are similar to before except
that (16), (17), and (39) become

(42)

(43)

(44)

respectively, where is the uniform vector
[19].

Since there are fewer parameters to estimate, a uniform reg-
ularization prior is convenient to use at the beginning of the al-
gorithm. Using an independent prior results in stronger sparsity
regularization, but with more parameters to estimate. Thus, in
our implementation of BRAND, a uniform regularization is ini-
tially used in the beginning iterations and then the solution is
optimally refined using independent regularization parameters.

III. BRAND FOR SUBSAMPLE TIME-DELAY ESTIMATION IN

REVERBERANT ENVIRONMENTS

In this section, we demonstrate BRAND for estimating the
time delays present in a simulated reverberant environment. For
the source signal, a short segment of human speech (512 sam-
ples with sampling time 62.5 s) was used. This speech
signal was convolved with a simulated room impulse response
to model the measured signal. The signals are shown in Fig. 1.
With no added noise, we first show how nonnegative deconvo-
lution is able to precisely resolve the time-delay structure of the
room impulse response, and compare its results with cross corre-
lation and linear deconvolution methods. In addition, with added
noise in the measured signal, we show how BRAND is able
to robustly recover the room impulse response even at 10-dB
signal-to-noise ratio (SNR) and demonstrate the differences be-
tween various regularization strategies.

A. Time-Delay Estimation With Zero Ambient Noise

With no noise ( ) added to the measured signal,
Fig. 2 shows the results of estimating the room impulse re-
sponse using several different methods. All the estimates were
performed over a range from to , with discrete
time increments of . Because the speech source signal

Fig. 1. Signals used for the simulation: (a) source signal , (b) source
spectrum, , (c) the simulated measurement

, where 62.5 s is the sample interval and is varying
levels of ambient noise.

Fig. 2. Time-delay estimation of the room impulse response
by (a) cross correlation, (b) phase alignment transform,

(c) linear deconvolution, and (d) nonnegative deconvolution. The vertical dotted
lines in each plot indicate the true positions of the time delays and

, respectively.

has limited bandwidth, the cross correlation in Fig. 2(a) shows
only a broad main lobe, resulting in poor time-delay resolution.
Due to the multipath reflection, the peak of the cross correlation
function estimates neither of the time delays present in the room
impulse response. The phase alignment transform (PHAT) per-
forms better than simple cross correlation, as shown in Fig. 2(b).
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Fig. 3. Estimate of at each iteration of the BRAND algorithm for signals
with varying levels of noise. Uniform regularization was employed for the first
ten iterations, followed by another ten iterations of independent regularization.

PHAT prewhitens the signals before cross correlation [1], but
again since the signals are not ideally white, there are still some
errors in the time-delay estimation. PHAT also significantly de-
grades in performance with the presence of any ambient noise.
Even worse results arise from linear deconvolution as shown in
Fig. 2(c). The ill-conditioning of the source correlation matrix
causes the resulting estimates of the room impulse response to
fluctuate wildly.

The dramatic effect of nonnegativity constraints in regu-
larizing the deconvolution problem is displayed in Fig. 2(d).
Nonnegative deconvolution is able to precisely resolve the
room impulse response, including the multipath time delays
and amplitudes of the filter coefficients. In this example, the
modified simplex algorithm was used to efficiently compute the
estimated filter coefficients, resulting in rapid convergence.

In the above example, the true time delays were in the initial
discrete set from to in increments of .
A more general scheme is to start with a relatively coarse
time-delay set and adaptively refine the time delays around the
nonzero filter coefficients until the desired temporal resolution
is achieved.

B. Time-Delay Estimation With Ambient Noise

Here, we show the robustness of the BRAND algorithm to
varying levels of additive noise in the measured signal. In addi-
tion to the coefficients of the room impulse response, the reg-
ularization parameters ( and ) are iteratively estimated by
(39) (or (44) for uniform regularization) and (40) as described
in the previous section.

The same source signal and measured signal as
shown in Fig. 1 were used in these simulations. The measured
signal was corrupted with varying levels of added ambient
noise, and Fig. 3 illustrates that BRAND is able to quickly and
consistently estimate the true noise level even with bad ini-
tial estimates. The associated nonnegative deconvolutions were
solved using the modified simplex method.

Fig. 4 illustrates the need for the BRAND algorithm to infer
the optimal setting of the regularization parameters. When
the measured signal is contaminated with 10 dB ambient

Fig. 4. Nonnegative deconvolution results under different -norm
regularizations, when the measured signal is contaminated by 10 dB
noise: (a) zero regularization; (b) manually set overregularization; (c) uniform
Bayesian regularization; and (d) independent Bayesian regularization.

Gaussian white noise, different regularization strategies can
lead to different filter estimates. With no regularization, the
added noise causes the deconvolution solution to exhibit several
small spurious peaks. However, manually setting too large of
a regularization causes the time-delay estimates to deviate
from the true room impulse response structure. The uniform
Bayesian regularization strategy is much better with regards to
estimating the true sparse structure of the filter, but the absolute
magnitudes of the filter coefficients are underestimated. In
contrast, the independent Bayesian regularization in BRAND
leads to an almost perfect reconstruction of the room impulse
response with the appropriate sparse structure.

IV. BRAND FOR ADAPTIVE ECHO CANCELLATION

In this section, we demonstrate the utility of BRAND for
echo cancellation. In acoustic echo cancellation, adaptive al-
gorithms are typically used to estimate the transfer function
between a speaker and a microphone present in a room. The
adaptive filter estimates the combination of the speaker and mi-
crophone characteristics along with the room impulse response.
To apply BRAND to this problem, we assume that the speaker
and microphone characteristics are already known, and only the
possibly changing room impulse response needs to be estimated.

For optimal echo cancellation performance, the estimated
room impulse responses need to be quite long in duration
(on the order of 10–100 ms). Thus, we illustrate the applica-
tion of BRAND for estimating long room impulse responses
using parallel, multiplicative update rules rather than the
modified simplex algorithm to solve the nonnegative de-
convolution with many filter coefficients. We compare the
performance of BRAND with the conventional NLMS and
batch least-mean-square (LMS) algorithms, and contrast the
different algorithms in terms of accuracy and convergence in
the presence of varying levels of noise.
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Fig. 5. Source signal for echo cancellation: (a) time domain and
(b) spectrum .

TABLE I
ROOM PARAMETERS USED TO CALCULATE THE

ACOUSTIC ROOM IMPULSE RESPONSE

For these echo cancellation simulations, a short segment of
8192 samples of human speech with sampling rate 16 kHz was
used as the source signal as shown in Fig. 5. An acoustic room
impulse response was calculated using the theoretical image
model of a room with the parameters shown in Table I [4]. The
resulting room impulse response is represented by 1024
discrete time samples and plotted in Fig. 6.

The speech source signal was convolved with the room im-
pulse response to calculate 8192 samples of a signal . This
signal was then corrupted with additive noise before BRAND
and NLMS was applied. In order to perform a fair comparison
between the two algorithms, we attempted to roughly match
their computational complexity. For this simulation, the signal
data length was , and the unknown filter length was

. An iteration of BRAND consisted of two multi-
plicative updates in solving the nonnegative quadratic program-
ming problem for , and a re-estimation of the regularization
parameters (or for uniform regularization) and . In each
of these computations, the Toeplitz structure of the matrices was
utilized to reduce memory storage and computational require-
ments. As a result, each of the iterations required on the order
of multiplications and additions. The sparse structure
of the filter coefficients in also helped to speed the com-
putations, and the matrix covariance computation in (40) was
approximated. On the other hand, NLMS is quite efficient in
needing multiplications for each stochastic iteration. The
number of iterations needed for convergence in the two algo-
rithms were scaled to reflect the same amount of computation
in the simulations.

Fig. 6. Room impulse response derived from image model with parameters
shown in Table I. The first 1024 samples were used in the simulation.

Fig. 7. Normalized misalignment of NLMS (dashed line), batch LMS
(dashed–dotted line), and BRAND (dotted line) with varying levels of added
noise: (a) no noise; (b) 40 dB; (c) 20 dB; and (d) 0 dB. The horizontal axes
indicate the number of iterations for BRAND (lower axis) and NLMS (upper
axis). Batch LMS led to zero misalignment when the signal had no noise.

We performed BRAND with uniform regularization for sev-
eral hundred iterations, followed by independent regularization.
Since NLMS is an online algorithm, the signals were repeatedly
input to the algorithm to monitor convergence. Fig. 7 shows the
performance of the algorithms when the signals are contami-
nated with varying levels of noise. The normalized misalign-
ment measure

(45)

was used to evaluate the error of the estimated room impulse re-
sponse from the true impulse response . The resulting mis-
alignment using batch LMS is also presented in the figure, indi-
cating the performance limit of the NLMS algorithm.

At low noise conditions, Fig. 7(a) and (b) shows that the rel-
ative convergence of the two algorithms is quite comparable
when computational complexity is taken into account. However,
when the ambient noise level is larger than 20 dB, BRAND is
clearly more robust than NLMS in estimating the room impulse
response. In particular, at 0 dB SNR, BRAND is still able to esti-
mate filter coefficients with only 13 dB normalized misalign-
ment, whereas batch LMS yielded a limit of dB normalized
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Fig. 8. BRAND estimation of the ambient noise level at each iteration. The
letters in decibels indicate the true noise level.

misalignment and NLMS actually computed completely inac-
curate estimates.

Not only is BRAND able to estimate the filter coefficients,
but it also estimates the level of ambient noise. Fig. 8 shows the
rapid convergence of the estimates in inferring the amount of
added noise. Only when the noise level is quite small, BRAND
slightly overestimates the noise variance due to incomplete con-
vergence of the algorithm. Thus, BRAND is able to accurately
estimate the ambient noise level when it becomes significant.
These noise level estimates could easily serve as an integral
double-talk detector in an echo cancellation application.

V. DISCUSSION

By incorporating nonnegativity constraints and Bayesian
-norm sparsity regularization, BRAND is able to pre-

cisely and robustly estimate room impulse responses for both
time-delay estimation and echo cancellation even in the pres-
ence of a significant amount of ambient noise. Furthermore,
the estimated in BRAND is very useful for indicating the
noise level of the signal. Depending upon the number of filter
coefficients that are estimated, BRAND also exhibits good
temporal resolution in its estimates.

We used simulations to enable quantitative tests of accuracy
and convergence to a known room impulse response. A practical
implementation would require accurate characterizations of the
experimental speakers, microphones, as well as room acoustics
in order to test the validity of the underlying theoretical assump-
tions of BRAND. How well the estimated nonnegative, sparse
filter structure models true experimental room conditions re-
mains to be seen. Nevertheless, we believe that incorporating
knowledge about the physics of room acoustics in estimating
their impulse responses is extremely valuable in noisy situa-
tions. Other types of constraints on room impulse response char-
acteristics could be incorporated into BRAND by simply mod-
ifying some of the priors in the probabilistic model.

BRAND can also be extended to help solve the blind decon-
volution problem. Preliminary work indicates that by alternating
BRAND with a source estimation algorithm, both the sparse,
nonnegative room impulse responses as well as unknown source
signal can be simultaneously estimated from a set of convoluted
observations [20]. Thus, besides time-delay estimation and echo
cancellation applications, BRAND may have potential uses in
other acoustic signal processing domains.
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