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ABSTRACT

The problem of estimating the tempo of audio recordings (the num-
ber of beats per minute, or BPM) has received an increasing amount
of attention in the past few years. Applications include the syn-
chronization of multiple audio tracks for simultaneous playback,
”tempo-synchronous” audio effects, automatic looping of audio
tracks... This article presents techniques for estimating the tempo
and the swing, and locating the beats in audio recordings, under
the assumption that the tempo is constant. The techniques rely on
a preliminary transient detection stage where note onsets/offsets,
percussion hits and other time-localized events are detected. This
first step is followed by a maximum likelihood estimation of the
tempo, swing and downbeat. Suggestions are given to minimize
the computation load of the methods.

1. INTRODUCTION

Estimating the tempo of a musical piece is a complex problem
that has received an increasing amount of attention in the past few
years. The problems consists of estimating the number of beats
per minutes or BPM, at which the music is played, and possibly
to identify exactly when these beats occur. Commercial devices
already exist, that attempt to extract a ”MIDI1 clock” from an au-
dio signal, indicating both the tempo and the actual location of
the beat. The MIDI clock can then be used to synchronize other
devices, such as a drum machine, to the audio source. The sys-
tems commercially available tend to be fairly unsophisticated, as
they seem to rely mostly on the presence of a strong and regular
bass-drum kick at every beat, an assumption that tends to hold with
modern musical genres such as ”techno” or ”drums and bass”. For
music with a less ”pronounced” tempo, such techniques fail miser-
ably and more sophisticated algorithms are needed. As mentioned
above, tempo estimation and beat detection can be used to synchro-
nize MIDI instruments or effects to audio signals. Beat detection
can also help in the usually tedious process of manipulating audio
material in audio editing software: Cut and paste operations are
made considerably easier if ”markers” are positioned at the each
beat or at bar boundaries. Looping a drum track over two bars
becomes trivial once the location of the beats is known. Finally,
tempo estimation can be a very useful tool for music education.
The ability to obtain a precise estimate of the time-evolution of
the tempo from a musical performance (be it recorded or live) can
help a musicologist in his/her analysis, or enable a performer to
fine tune his art.

A very comprehensive bibliography on tempo, beat or rhythm
estimation is given by Scheirer in [1]. In this paper, we investi-
gate the much simpler case where the tempo of the audio track can

1MIDI: Musical Instrument Digital Interface.

be assumed constant. The techniques described in this paper rely
on a preliminary transient analysis stage in which significant tran-
sients (percussion hits, note onsets etc) are detected in the audio
track. The actual tempo, swing and beat estimation stage makes
use of the information obtained in the first stage, and is based on
a maximum likelihood approach, using the transient times, or the
inter-transient elapsed times as observations.

2. ALGORITHM

2.1. Transient analysis

For simplicity, we use a rather loose definition of what transients
are. During the transient analysis stage, we attempt to detect times
at which the energy of the signal in some frequency band increases
sharply. This could be caused for example by a percussion hit, or
by a note onset, or by a rapid spectral change in the signal. Since
percussion hits, and note changes tend to occur on the beat, or on a
subdivision of the beat in a wide variety of musical genres, it is rea-
sonable to assume that the tempo information can still be extracted
from the mere knowledge of transient times and amplitudes. In
fact, an informal test of this hypothesis consists of replacing the
original audio by a series of sharp clicks whose time-locations and
amplitudes correspond to the transients detected in the audio. In-
terestingly, it is still possible for a human to correctly tap his/her
foot to this click track, in spite of the drastic reduction of the infor-
mation available to the listener.
The transient detection algorithm described in this paper relies on
a fairly standard approach similar to that described in [1] (even
though transients are not actually extracted in that paper). The idea
consists of running a short-time Fourier transform on the original
signalx(n),

X(f; ti) =

N�1X
n=0

h(n)x(n+ ti)e
�2j�fn

end expressing the spectral energyjX(f; ti)j in a non-linear scale
(e.g. in dB).h(n) is an analysis window (e.g., a Hanning window),
andti denotes the time at the short-time Fourier transform frame
i. The spectral energy is then summed over a predefined frequency
range, yielding some sort of a time-varying ”energy curve”E(ti).

E(ti) =

Z fmax

fmin

C(jX(f; ti)j)df

Here,C(z) denotes the non-linear compressed scale, and the inte-
gration range is the intervalffmin fmaxg. In actual implementa-
tions, the Fourier transform will most likely be a discrete Fourier
transform and the integral above will become a sum over the DFT

21-24 October 2001, New Paltz, New York 135



bins. In practice, one can useC(z) = log(z) for a dB-like scale,
but problems arise for values ofz close to 0. Another possibil-
ity is to useC(z) =

p
z which compresses the dynamic range

but behaves nicely2 around 0. A rectified first-order difference is
then calculated on the energy curve, resulting in a signal�E(ti)
exhibiting large positive peaks at transient times.

�E(ti) = E(ti)�E(ti�1)

A fairly simple peak extraction stage follows, in which the most
significant peaks are selected. The peak times and amplitudes are
saved as a series of transient timesti, to be later used in the tempo
and beat detection stage. The result of such an analysis is presented
in Fig. 1 for a percussion track. The detector picks up the most
visible transients but also less ”visible” ones, such as the fourth
one from the left, which corresponds to a high-frequency hit.
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Figure 1:Example of transient detection for a percussion track. The ver-
tical lines on top of the original signal denote the detected transient times.

2.2. Defining beat, tempo and swing

We will use the following (fuzzy) definitions: beats are time-instants
distributed somewhat regularly along the time-axis. Beats are placed
in such a way that most of the musical events (note onsets, tran-
sients) fall on beats or on subdivisions of the beat (e.g. half or
quarter beats). The tempo, measured in BPM (beats per minutes)
counts the number of beats per minute. Our definition of the beat
is not precise enough that tempo can be measure unambiguously:
if a track has a tempo of 60 beats per minute, one could also say
the tempo is 120 beats per minutes if half-beats were counted as
beats (which our definition does not preclude). To avoid this prob-
lem, we will constrain the tempo to lie between, say, 70 and 140.
Swing is a musical attribute that is commonly found in jazz, but
also in rock music. In this paper, swing is defined as a slight delay
of the second and fourth quarter-beats (see Fig.2), measured as a
percent of the quarter-beat duration. Including swing in the tempo
estimation will prove to be important if the audio track has a strong
swing (failing to do so can lead to poor tempo or beat estimations).

2.3. Writing the likelihood

The hypothesis that the tempo is constant over the duration of the
audio track greatly simplifies the estimating task, because only
three parameters must be estimated: the tempo in beats per minute,

2Thanks to Miller Puckette for this trick.

1 beat

Figure 2:Left: one beat is subdivided into four equal quarter-beats. Right:
swing measures the delay in quarter-beats 2 and 4.

the swing in percent and the location of the first beat. To esti-
mate these three parameters, we use a maximum likelihood tech-
nique [2]. First, given a tempoT in beats per minutes, the location
of the first beatb0, the value of the swingS in percent and the
duration of the track, we need to define a probability to observe
a transient at timeti. We do this in a fairly ad-hoc manner. The
tempo, swing and first beat define a series of quarter-beat times
bi at which there is a maximum probability to observe a transient.
Because the tempo is constant, the transient times can be expressed
moduloP (the beat period), see Fig. 3. One could subdivide the
beat into two half-beats, or 8 eighth-beats, but half-beats are too
coarse (many musical events occur on quarter beats for BPMs be-
tween 70 and 140) and eighth-beats are too fine (fewer relevant
musical events occur on eighth-beats). Note that one can also sub-
divide the beat into 3 third-beats, which would be required for cer-
tain time-signatures such as6=8. This choice does not affect the
rest of the discussion. A very simple-minded PDF is given by:
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Figure 3:Simple probability density function for observing a transient at
time t modulo the beat periodP .

pt(t) =
1

4

3X
i=0

G([t]T � bi)

where[t]T representst modulo T,bi represents the four quarter-
beats andG(x) is a zero-mean, symmetrical template PDF (e.g.
gaussian). The dependence on tempoT , swingS and first beat
b0 is through the location of the subbeatsbi. This simple PDF
expresses the fact that transients should occur most likely around
subbeat times. There is a problem, however, because the PDF is
periodic int with a period of one half-beat (if there is swing) or
one quarter beat (if there is no swing), which means we will only
be able to determine the location of the beat up to a half or quarter
beat. To remove this ambiguity, we can arbitrarily introduce an
asymmetry between the four quarter-beats: we can make it more
likely for a transient to occur on the first quarter-beat, a bit less
likely on the third quarter-beat, and even less likely on the second
and fourth quarter-beats. The assumption is that transients will
tend to occur on the first quarter-beat (the ”bottom of the beat” in
musical terms), or on the third one (the ”up-beat”), but will less
often occur on the other quarter-beats. To demonstrate that this
assumption is somewhat founded, we calculated a histogram of
transient locations for a techno audio track of known tempo and
beat location. Fig. 4 shows that our assumption is valid, at least for
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Figure 4:Histogram of transient location relative to the quarter-beats for
a real audio track. Notice the slight swing delaying the second and fourth
quarter-beats.

this track. We will see that the assumption is false for other musical
genres. The modified PDF, given in Fig. 5 can be expressed as

pt(t) =
3X
i=0

piG([t]T � bi)

wherepi expresses the overall probability of a transient falling
around subbeati, with

P
pi = 1. In addition to this PDF, we

assume that transients times are independent from each other, such
that the probability of observingN transients at timesti is simply
the products ofpt(ti). This assumption is difficult to test in prac-
tice, but is a reasonable one.
The maximum-likelihood estimate of the tempoT , the swingS
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Figure 5:A better probability density function with preference on quarter-
beat 1 (b0) and 3 (b2).

and the beatb0 is simply obtained by maximizing the log-likelihood
Lt(T; S; b0) with respect toT; S and b0, given theN observed
transient timesti:

Lt(T; S; b0) = log

 
N�1Y
i=0

pt(ti)

!
=

N�1X
i=0

log pt(ti) (1)

Unfortunately, this cannot be done analytically, because the de-
pendence ofL on T , S and b0 is too complicated. A number
of non-linear optimization techniques could be used to maximize
Lt(T; S; b0) but the likelihood exhibits a large number of local
maxima, a characteristic that renders non-exhaustive optimization
techniques unreliable. Because the search space is somewhat lim-
ited, we can afford an exhaustive search, provided our unknowns
are discretized appropriately. For that purpose, we will test com-
binations ofT , S and b0 taken from sets of discrete valuesT k,
Sl andbm0 , calculate the corresponding likelihoodLt(T k; Sl; bm0 )
and look for the triplet(k; l; m) that maximizesL. We now inves-
tigate the practical details of the algorithm implementation.

2.4. Practical details

Selecting the pdf:First, we need to selectG(x) which represents
the probability that a transient will occur at timex for a subbeat
positioned at timet = 0 and the weight factorspi. The best so-
lution for that would be do derive the PDF from actual observa-
tions, i.e., transient locations for tracks whose tempo, swing and

beat location are known. This is a chicken/egg problem though,
because determining the tempo, swing and beat location by hand
is not easy, so we revert to an ad-hoc choice, with the possibility
to adjust the PDF once the proper tempo has been estimated. It
was found in practice that the type of PDF did not matter much as
long as it was symmetrical and localized aroundt = 0. A Gaus-
sian distribution is an appropriate choice, but the variance must be
adjusted as a function of the tempoT so the PDF does not ”spill”
into adjacent quarter-beats, but does not become too small too fast
either. A PDF that is too narrow would make it extremely unlikely
for a transient to occur anywhere else than very near a quarter-beat,
potentially giving too much weight to mis-estimated transient lo-
cations. In practice, if�t is the time interval between two quarter-
beats,�2 = 0:05�t is an appropriate value. In addition, we set
p0 = :4, p2 = :3, p1 = p3 = :15.
Discretizing the variables: Values of swing can be discretized in
10% increments from 0 to 40%. If a more accurate estimate of
the swing must be obtained, the coarse estimate can be refined in
a subsequent stage. For a given tempo, the location of the first
beatb0 can be constrained to lie between timet = 0 andt = P
whereP is the beat period. In practice, it is sufficient to divide this
period into 32 evenly spaced test beat locationsbl0 = P l=32. Dis-
cretizing the tempoT is more tricky, because a small delta in the
tempo translates into a large variation of transient locations mod-
ulo P [ti]P for the transients lcoated at the end of the track. Even
though we might only be interested in knowingT with a precision
of �:5BPM, we must search through a much finer grid to make
sure the beats have a chance to align with the true beats in the
track. Specifically, denotingD the duration of the track, there are
approximatelyD=P beats in the track, and if the first beat is fixed,
the last[ti]P will vary by �[ti]P = D�P=P if the beat period
P is varied by�P . To keep�[ti]P smaller than about one eighth

of the beat period requires that�P < P2

8D
or �T < 60

8D
. For a

1mn audio track, this means that the tempo must be searched every
1=8BPM, a very fine grid resulting in an expensive search. In the
next section, we will see how this problem can be mitigated.
Doing the search:Now that the discrete search space is defined,
the likelihoodL is calculated for every possible triplet(T k; Sl; bm0 )
according to Eq. 1, and the triplet that maximizeL yields the maxi-
mum likelihood estimate of the tempo, the swing and the first beat.

2.5. Speeding things up

The algorithm above can be fairly expensive, especially for long
tracks where the tempo must be searched on a very fine grid. For
example, for a 4mn track, we end up with about 6 values for the
swing, 32 values for the beat location, and70=(1=8:4) = 2240
values for the tempo. The search requires estimatingL over 430000
times, and the cost increases linearly with the track duration. This
suggests a very simple manner in which the search can be sped up.
Using a small audio segment:Since the tempo is assumed to be
constant, we can run the search on a small portion of the track,
(say 5 to 15 seconds), get a first estimate of the tempo, beat loca-
tion and swing, then refine these values by doing a second search
on the whole track, with a smaller search space centered around
the rough estimates. The first search will be fast because the au-
dio segment is of small duration, and the second will also be fast
because the search range has been considerably restricted. In the
same vein, we can also do a coarser search on the swing and beat
location, then refine in a subsequent stage.
Sampling the likelihood: Rather than calculating the likelihood
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according to Eq. 1 for every transientti, it is possible to precom-
pute a sampled version of it, for each swing value, and store it in a
multidimensional table. Estimating the likelihood is simply done
by a table-lookup, much cheaper than a direct computation.
Using inter-transient times: Another way to speed up the algo-
rithm consists of eliminating one search variable altogether. The
beat positionb0 can be eliminated if we use the time separating
transients rather than the transient times themselves. In other word,
if instead of usingti we useei = ti � ti�1, and come up with a
probability density function for it, this PDF will be independent
from the position of the first beat, and will only be a function of
the tempoT and the swingS, yielding a two-dimensional search
rather than a 3-D one. In the example above where 32 discrete val-
ues ofb0 were used, the search would be 32 times faster. If we have
a PDF for the transient timesti pt(t) and if they are supposed to
be independent, then it is a standard result [3] that the PDFpe(e)
for ei is obtained by the following convolution:

pe(e) = pt(e) ? pt(�e) =
Z
1

�1

pt(�)pt(� � e)d�

Fig.6 presents such a PDF whenei is expressed moduloP , for a
0% and a 30% swing. Strictly speaking, theei are no longer inde-
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Figure 6:PDF forei mod P in the absence of swing (solid line) and for
a 30% swing (dashed line).

pendent from each-other, but we can still force the assumption of
independence, to make the PDF for the set ofei the product of the
individual PDFs. Fig. 7 presents a visualization of the likelihood
as a function of the swing and tempo for a given audio track. The

0% 

5% 

10%

15%

20%

70

100 

130

160

−500

0

500

Tempo (BPM)

Swing

Li
ke

lih
oo

d

Figure 7:3D representation of the likelihood for the set ofei for an actual
audio track.

likelihood is maximized over the tempoT and the swingS, and
the beat locationb0 can be estimated by use of the transient-time
based likelihoodLt (Eq.1). In that final stage, the search could be
restricted tob0 but should ideally include a refinement of the val-
ues ofT andS estimated withLe(T; S). Note that the tempoT
can be discretized much more coarsely than in the previous case,

because a small variation ofT does not translate into a larger vari-
ation of the elapsed time between beats (the likelihood in Fig. 7 is
not very peaky). The resulting search is considerably faster.

3. RESULTS

For tracks whose tempo is actually constant, the results of the
tempo-analysis techniques are surprisingly good. The simple hy-
pothesis of quarter-beat asymmetry (Fig. 5) allows the algorithm
to fairly consistently identify the true location of the beat, for most
modern muscial genres. There are musical styles however that
clearly violate this assumption, e.g. latin music where percussions
tend to occur on the ”up-beat”, for which the algorithms will place
the beat at the wrong (but consistent) location. The algorithms can
also be run with the (cheaper) assumption of a 0% swing, which
will work well on most tracks, but fail on tracks that have a fairly
strong swing or a ”ternary” time-signature (i.e. 3/8, usually treated
as a 33% swing by the algorithm). The failure will usually translate
into a tempo that is 33% slower than the true tempo (see Fig. 8).
Other audio tracks that will trick the tempo detection algorithms

True beats

Estimated beats

Figure 8:Tempo mis-estimation for a 3/8 time-signature. The true beats
(black triangles) occur every three third-beats. Under the quarter-beat hy-
pothesis with no swing, the estimated beats occur every four third-beats,
yielding an erroneous tempo estimate.

are tracks that do not contain transients or sharp attacks. A violin
solo played legato, for example, will be hard to analyze because
the transient detection stage might have a hard time detecting any-
thing.

4. CONCLUSION

The techniques described here work fairly well as long as the tran-
sient detection stage is able to identify salient features in the audio
track, and the constant-tempo assumption is valid. Dealing with
time-varying tempi is much more difficult, because many more
parameters must be estimated. One approach consists of using the
methods described here on small, possibly overlapping portions
of the track (say 4 to 5s) and using the previous estimates in the
calculation of the current one, possibly in a Bayesian framework.

5. REFERENCES

[1] E.D. Scheirer, “Tempo and beat analysis of acoustic musical
signals,”J. Acoust. Soc. Am., vol. 104, no. 1, pp. 588–601, Jan
1998.

[2] S.M. Kay, Fundamentals of Statistical Signal Processing - Es-
timation Theory, Prentice-Hall, Englewood Cliffs, MJ, 1993.

[3] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, 1991.

138   IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2001


