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ABSTRACT

The phase-vocoder is a well-known tool for the frequency do-
main processing of speech or audio signals, with applications
such as time compression or expansion, pitch-scale modifi-
cation, noise reduction, etc. In the context of time-scale or
pitch-scale modification, the phase-vocoder is usually consid-
ered to yield high quality results, especially when large modi-
fication factors are used on polyphonic or non-pitched signals.
However, the phase-vocoder is also known for an artifact that
plagues its output, and has been described in the literature
as either ”phasiness”, "reverberation”, or ”loss of presence”.
Recent research has been devoted to understanding and re-
ducing this artifact, and solutions have been proposed which
either significantly improve the quality of the output at the
cost of a very high additional computation time, or are inex-
pensive but only marginally effective. This paper examines
the problem of phasiness in the context of time-scale modi-
fication of signals, and presents two new phase synchroniza-
tion schemes which are shown to both significantly improve
the sound quality, and reduce the computational cost of such
modifications.

1. Introduction

Time-scale and pitch-scale modification of signals has al-
ways been a subject of interest in the audio community. By
contrast with time-domain techniques [1], frequency-domain
techniques, and the phase-vocoder in particular, can process
polyphonic signals, with large modification factors. However,
the phase-vocoder exhibits an artifact that time-domain tech-
niques do not: phasiness. Phasiness or reverberation or ”loss
of presence” relates to the fact that the modified signal of-
ten sounds as if it had been recorded in a small room. In
particular, time-expanded speech sounds like the speaker is
much further from the microphone than it was in the original
sound.

The problem of phasiness has been observed by many au-
thors and a few solutions have been proposed which either
significantly improve the quality of the output at the cost of
a very high additional computation time, or are inexpensive
but only marginally effective. This paper proposes an expla-
nation for the presence of phasiness in time-scaled signals,
and offers new phase calculation techniques that are shown
to significantly reduce the problem. In addition, the new
techniques make it possible to reduce the computational cost
of the phase vocoder by a factor larger than 2.

2. The basic phase-vocoder time scaling
algorithm

Because pitch-scale modifications can be done by combining
time-scaling and sample rate conversion, we will focus on
time-scaling. The reader can refer to [2] or [1] for a detailed
description of the standard phase-vocoder techniques, only a
brief outline will be given here.

2.1. Phase-vocoder time-scaling

Phase-vocoder based time-scaling techniques involve an anal-
ysis stage, a modification stage and a resynthesis stage. Dur-
ing the analysis stage, analysis time-instants ¢ | for successive
values of integer u are set along the original signal, possi-
bly uniformly: ¢i = uR, where R, is the so-called anal-
ysis hop-factor. At each of these analysis time-instants, a
Fourier transform is calculated over a windowed portion of
the original signal, centered around ¢ ., yielding what is usu-
ally called a short-time Fourier transform (STFT) representa-
tion of the signal, denoted X (¢ &, %), where z is the original
signal, Qp = % is the center frequency of the k-th vocoder
”channel” and N is the size of the discrete Fourier transform.
The resynthesis stage involves setting synthesis time-instants
ty, usually uniformly: t% = Rsu where R is the synthe-
sis hop-factor. At each of these synthesis time-instants, a
short-time signals y ,(n) is synthesized, based on synthesis
STFT values Y (t5,Q), and all of these short-time signals
are summed together, after applying an optional synthesis
window, yielding the output signal y(n).

Time-scaling involves using an analysis hop-factor R .
different from the synthesis hop-factor R ; and setting
Y (t2, Q)| = | X (¢4, Q)| so that the amplitude of any given
sinusoid in the output signal at time ¢ § = Rsu will be the
same as in the input signal at time t 5 = Rg,u: the time-
evolution of the amplitudes is modified. To calculate the
phase of Y (ty,Q), the standard phase-vocoder technique
requires phase-unwrapping, a process whereby the phase-
increment between two consecutive frames is used to esti-
mate the instantaneous frequency of a nearby sinusoid in each
channel. The instantaneous frequency @ (tg) is estimated by
first calculating the heterodyned phase increment

ADY = /XY, Q) — LX (AL, Q%) — Ra

then taking its principal determination (between +m) de-
noted A,®} and using the following equation

u 1 u
Wk (ty) = Qk + R—qu’k (1)

Once the instantaneous frequency at time ¢t [ is estimated, the

phase of the time-scaled STFT at time ¢ § is set according to



the following phase-propagation formula

LY (8, Q) = LY (8271, Q) + Rade (L) (2)

Finally the output signal is obtained by synthesizing and
overlap-adding short-time signals corresponding to each
STFT frame. Equation (2) makes sure that the short-time
signals will overlap coherently.

Because phase propagation errors are at the heart of many of
the sound quality issues in the phase vocoder, it is important
to understand how sinusoidal phases are altered by vocoder-
based time-scale modifications. This is the topic of the next
section.

2.2. Phase problems in phase-vocoder
time-scaling

Phase coherence Because the STFT frames overlap, the
stream of STFT values of a given signal must satisfy strong
consistency conditions, especially with regard to phase.
Phase consistency conditions, or phase-coherence, exist not
only from frame to frame (”horizontal phase-coherence”),
but also within any given frame, between neighboring chan-
nels (”vertical phase-coherence”). If phase-coherence is not
preserved in the series of synthesis STFT Y (¢ g, %), the
synthesis will yield a signal whose STFT will not be close
to Y(tg,Qr), and will most certainly sound phasy. For a
constant-amplitude, constant-frequency sinusoid, the chan-
nels located around the sinusoidal frequency all have identi-
cal analysis phases (or their phases have a + alternation, if
the analysis window is non-zero only for ¢ > 0, as is usually
the case). For a sinusoid with a slowly varying frequency, it is
found that the phases in channels around the instantaneous
frequency are nearly equal, although no analytical formula
could be found.

Output phase vs input phase In this section, we seek
to relate the phase of the modified short-time Fourier trans-
form in channel k to the phase of the corresponding analysis
short-time Fourier transform in the same channel. Assuming
a constant modification factor a = 22, and given an ini-
tial synthesis Fourier transform phase ¢ (0), we can iterate
equation (2) for successive values of u, starting at u = 0, use
equation (1), and after straightforward algebra, get:

LY (ts, k) = (0, k) +

al/X(ty, k) — /X(0,k)] +a iZmiﬂ' (3)

i=1

where m;c is the unwrapping factor at the analysis time-
instant t% (2mim = A,®% — A®L). Two important conclu-
sions can be drawn from this equation: 1) Contrary to popu-
lar belief (!), if an analysis phase is mis-estimated at a given
analysis time-instant, provided that the phase-unwrapping
factor m}c remains correct, this mis-estimation will not gen-
erate any phase drift in subsequent frames, but only have
an effect local to the frame in question. 2) Potential phase-
unwrapping errors manifest themselves by multiples of 2amr
being added to the synthesis phase. If « is an integer, phase-
unwrapping errors are transparent since they always are mul-
tiples of 2m. As a result, integer-factor time-scaling opera-
tions can be performed without phase unwrapping by use of

equation (3) where the factor 3" 2mjm is dropped. Skip-
ping the phase-unwrapping stage significantly reduces the
computation cost of such modifications.

Phase jumps due to channel crossing Let us first as-
sume that the modification factor a is a constant integer,
so phase-unwrapping errors do not influence the modified
signal. If a sinusoidal component in the original signal al-
ways falls in the vicinity of a given vocoder channel, then
LX(tg) = ¢i(ty) + 2lm at all times, where ¢ ;(t) is the si-
nusoid’s instantaneous phase at time ¢. As a result, Equa-
tion (3) now reads:

LY (ts, ) = ¢5(0, k) + ar[¢i(ta) — ¢i(0)] (4)

where the integer number of 27 has been dropped. Equa-
tion (4) shows that depending on the choice of ¢ (0, k), the
synthesized phases in neighboring channels may not be close:
the vertical phase-coherence described in section may be
lost, resulting in potential phasiness. For adjacent phases to
be equal, the initial synthesis phases of the channels around
channel k must be equal:

¢s(0,k) = $:(0,k") Vk, K’ (5)

Now imagine that the instantaneous frequency of the sinusoid
slowly sweeps across several channels, say from channel k& ¢ to
channel ko + 10. Assuming that the sinusoid falls in channel
k at time t 3, equation (3) can be rewritten as:

LY (ts, ) = ¢s(0, k) + e [¢a(ta) — £X(0, Q)] (6)

Compared to equation (4), we now have the additional prob-
lem that /X (0, Q) may take on different values for different
channels k because the channels may be quite distant from
channel k¢ where the sinusoid initially fell and may have been
influenced initially by another sinusoid, so that equation (6)
reveals two potential problems: 1) The phases in adjacent
channels around the sinusoidal channel k£ are not necessarily
equal or close unless 6 ; ~ 6,/ where

Or = ¢5(0, k) — a/X(0,4) (7

2) When the sinusoid’s instantaneous frequency migrates
from channel k to channel k+1, the synthesis phase undergoes

a phase jump equal to 6 , — 0;,. However, when 6 . = C Vk,
with C a channel-independent constant, the synthesis phase
becomes /Y (ty,Qr) = C + a¢i(ty) which is consistent with
the ideal synthesis phase.

Finally, for non-integer modification factors, there is the addi-
tional problem of the phase-unwrapping terms in each chan-
nel. When the sinusoid sweeps from channel & ¢ to channel
ko + 10 between times ¢ O and t2, is it very unlikely that the
unwrapping factors in channel k£ o 4+ 10 will be identical to
those in channel ko at each synthesis time-instant. As a re-
sult, the synthesis phase will show additional jumps a2M
from one channel to the next, thus preventing vertical as well
as horizontal phase-coherence.

Considering the results above, it seems truly amazing that the
phase vocoder should work at alll When a sinusoid sweeps
rapidly across channels, its phase is likely to undergo rapid
shifts from channel to channel, and these shifts are respon-
sible for a large part of the phasiness problem. For integer



modification factors however, making sure that § , = C VEk,
for example by setting ¢ 5(0,k) = a/X(0,Q), guarantees
that all channel-crossing problems are eliminated and yields
very high-quality modified signals.
Below is an example of what can go wrong when a sinu-
soid sweeps across channels. The signal is a sinusoid with a
constant amplitude, whose frequency sweeps from the center
frequency of channel 30, Q 30 = % to the center frequency
of channel 40 in 10240 samples. The FFT size was 1024, the
input hop factor was 128 and the output hop factor was 256,
resulting in a factor-2 time-stretching. The standard phase-
vocoder technique described above was used, and the initial
synthesis phases were set to be equal to the initial analysis
phases ¢s(0,k) = £X(0,Q) which is a standard initializa-
tion choice. The analysis and the synthesis windows were
Hanning windows with a size equal to the FFT size. Fig-
ure 1 shows the amplitude envelope of the resulting signal
in the time-domain. Figure 2 shows the analysis and synthe-
sis phases for successive short-time Fourier transform frames,
measured at the peak of the Fourier transform.

The modified sinusoid is strongly amplitude-modulated,
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Figure 1: Factor-2 time-scaling of a constant amplitude chirp.
Time-domain amplitude-envelope of the modified signal.
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Figure 2: Analysis phase (solid line) and synthesis phase (dot-
ted line) in numbers of 27, showing phase jumps at frames
22, 38 and 53.

a result of the lack of phase-coherence. While the analy-
sis phase shows the characteristic parabolic shape due to a

linearly varying frequency, the synthesis phase exhibits ”dis-

continuities” at frames 38, 53 and to a lesser extent 22. These
phase jumps result from 6 , not being a constant across chan-
nels, and it can be easily verified that phase jumps occur
when the instantaneous frequency of the chirp jumps from

one channel to the next one. Note that since the modification

factor was an integer, phase-unwrapping problems cannot be

blamed in this case. With a proper choice of initial conditions

¢s(0,k) = a£X(0,Q), the time-scaling operation yields the
signal shown in figure 3, where the amplitude modulation
almost completely disappeared.
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Figure 3: Factor-2 time-scaling of a constant amplitude chirp,
”correct” initial phases. Time-domain amplitude-envelope of
the modified signal.

The following section presents some of the solutions that have
been proposed to solve the phasiness problem, along with 2
new phase-synchronization techniques.

3. Old and new strategies for reducing
phasiness

3.1. Magnitude-only reconstruction

The authors in [3] propose to simply discard either the phase
or the magnitude of the series of synthesis STFT, and to use
iterative techniques to estimate values that would make the
series a consistent one. In the context of time-scale modifi-
cation, these techniques do not always significantly reduce
phasiness, and are extremely costly in terms of computa-
tions, which renders them unsuitable for practical applica-
tions. Moreover, the resulting signals often sound “rough”, a
problem mentioned in the original article.

3.2. Loose phase-locking

Puckette in [4] recognized that for a constant-frequency
constant-amplitude sinusoid the synthesis phases around the
maximum of the Fourier transform should exhibit £ alter-
nations and proposed a very simple way to constrain them to
do so. The technique used in conjunction with an alternative
phase-updating procedure turns out to be extremely cheap in
terms of computations, requiring only a few additional mul-
tiplications per channel. Informal listening tests showed that
phasiness is generally reduced to a degree which depends on
the original signal. However, the increase in quality is only
limited. This idea inspired the new techniques presented be-
low.

3.3. Peak phase-locking

The new phase-updating technique begins with a coarse peak-
picking stage where vocoder channels are searched for local



maxima. In the simplest implementation, a channel whose
amplitude is larger than its 4 nearest neighbors is said to be a
peak, a criterion which is both simple and cost-effective. For
each peak Qj, and only for the peaks, the synthesis phase
is calculated, according to the standard phase-propagation
equation (2). The series of peaks subdivides the frequency
axis into "regions of influence” located around each peak,
which include channels whose phases will be ”locked” in some
way to that of the peak. In our experiments, the upper limit
of the region around peak 2 , was set to the middle frequency
between that peak and the next one (Q x, +Q,,,)/2. Another
reasonable choice would be the channel of lowest amplitude
between the two peaks.

Identity phase-locking consists of constraining the synthesis
phases around the peak to bear the same relations the analy-
sis phases did. If Q 4, is the center frequency of the dominant
peak, we set:

LY(t:,Qk) = [Y(t:,le) +
ZX(tZ;:Qk) - ZX(tZ;:le) (8)

for all channel k in the peak’s region of influence, as defined

above. This phase-locking mechanism improves significantly

the consistency of the resulting series of STFT, and greatly

reduces the amount of phasiness in the modified signal.

It also has two major computational advantages: Because

phase-unwrapping is only performed on peak channels,

one is always sure that the instantaneous frequency of the

underlying sinusoid is very close to the center frequency of

the channel in question, which means that input overlaps

as small as 50% can be used without generating phase-

unwrapping errors: compared to the standard 75% overlap,

this is a factor 2 speed up! In addition, the new technique

requires trigonometric calculations only for peak channels:
once the synthesis phase of the peak channel has been

determined, one can calculate the rotation 6 required to

rotate X(tg,Q,) into Y (t7,Qy,), then calculate the phasor
Z = €% and obtain the neighboring channels by use of
simple complex algebra: Y (¢ ¥, Q%) = ZX(ty, Q) which can
be easily shown to satisfy the phase-locking equation (8):

neighboring channels only require one complex multiply!

An improvement over the preceding technique consists of ”fol-
lowing” peaks as they move across channels. Before calcu-
lating the new peak phase, the idea is to look for the corre-
sponding peak in the preceding frame, and use its analysis
and synthesis phases in the phase-unwrapping and phase-
propagation equations (1) and (2). The peak in frame u — 1
that corresponds to a peak k o in frame u can be defined as
the dominant peak in the frequency region to which channel
ko belonged in frame u— 1. This technique has the advantage
of ”locking” the peak synthesis phase to its analysis phase,
thus preventing slow phase drifts that exist in the preceding
technique [5]
In addition, a possible phase-locking solution consists of set-
ting
LY (t2,90) = LY (£, 0,) +
BILX (g, ) — LX (g, ;)] (9)

after vertically unwrapping the analysis phases /X (tg, %)
around each peak. 3 is a parameter between 1 and «, which

can be adjusted to further reduce phasiness. When 75% over-
lap is used, 8 = a consistently yields better results than
B = 1, identity phase-locking. For 50% overlap, 8 must be
closer to 1 to avoid undesirable roughness. This phase-locking
option is more costly than identity phase-locking since the
single multiply trick can no longer be used.

3.4. Results and Conclusion

Informal listening tests have shown that the two phase-
locking techniques above dramatically reduce the phasiness
in the modified signal. Compared to the loose phase-locking
of [4], both techniques perform significantly better, with the
latter (equation (9)) consistently yielding better results than
the former (equation (8)). Omn speech signals, the modi-
fied voice has much more presence, and non-voiced segments
sound more natural with the latter than with the former. For
integer modification factors, the standard algorithm without
phase-unwrapping but with proper initial conditions (such
that 6§ = C Vk) yields very high-quality results, which only
the second phase-locking technique can match for non-integer
modification factors. Some residual phasiness can still be
heard in the modified signals, especially for larger modifica-
tion factors (a > 3).

The new phase-synchronization techniques make it possible
to use 50% overlap, a cost reduction of a factor larger than 2
over the standard 75% overlap constraint.

In this paper, we have shown how input and output phases
are related in the standard phase-vocoder time-scaling tech-
niques, and brought into light potential phase problems oc-
curring when sinusoids sweep across adjacent channels. We
have shown the important role played by phase initialization
for modifications by integer factors, and proposed two peak-
synchronization techniques that dramatically reduce phasi-
ness/reverberation in the modified signal, while making it
possible to cut the computational cost by a factor larger
than 2. The residual phasiness or reverberation present in
the output signal, even when phase-synchronization is used,
may have several potential causes. In any case, it seems clear
that unlike what is done in standard techniques, STFT mag-
nitudes should also be modified when time-scaling is per-
formed: a time-scaled sweeping sinewave has a central lobe
whose width varies as a function of the time-scaling factor.
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