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ABSTRACT

In this paper linear prediction process is applied to frequency
warped signals. The warping is realized by using orthonormal
FAM! functions. The general formulation of WLP is given and
effective realizations with allpass filters are studied. The
application of auditory WLP to speech coding and speech
recognition has given good results.

1. INTRODUCTION

In the field of speech and audio processing many proposals have
been made to compress the signals according to the human
auditory system. The earliest method of speech coding was the
use of a filterbank with gradually increasing channel bandwidths
[1]. Typically a total compression of ten to one or even more can
be achieved with this method [2, 3]. Many speech recognizers
have adopted the same principle of a nonuniform resolution
preprocessing, e.g., [4]. Perfect reconstruction orthonormal
filterbanks and wavelet-based techniques have been recently
most actively studied [5].

Nonuniform resolution FFT was introduced by Oppenheim,
Johnson and Steiglitz {6, 7]. The main idea of their study was to
use a network of cascaded first order allpass sections for
frequency warping of the signal and then to apply standard FFT
to produce the warped spectra from the preprocessed signal.
Very similar structures were used by Lee [8] to produce
orthonormal bases like Laguerre, Fourier, and Legendre for
frequency domain filter design.

The idea of the warped FFT was then applied to warped
linear prediction (WLP) by Strube [9]. In his study a cascaded
first order allpass network produces the frequency warping
corresponding to the auditory Bark scale. The autocorrelation
function for LP is calculated from the warped signal. The
warping leads to an LP process which gives directly the auditory
scale representation for the signals. This method was later
applied to an ADPCM system [10].

In this paper a new formulation of the WLP is made based on
the class of FAM functions. It is shown that the use of allpass
sections leads to very efficient computation and that the warping
can as well be realized by second or even higher order allpass
sections.

2., FAM CLASS OF ORTHONORMAL FUNCTIONS

The fam function ¢,x,a) is defined by (1), where j = V(-1) and
v'(x) denotes the first derivative of the function v(x) [11, 12].

¢y(x,a)=me}'2nav(x) a

1 FAM denotes the class of Frequency-Amplitude Modulated
complex exponentials. The name fam is used like sine and
cosine when referring to an individual member in the FAM class.

In the continuous (non-discrete) case x, v € R anda € Ror Z.
In the following we assume that the a-domain is discrete (a € Z).
The variable a can be associated to the order of the function.
Generally (1) is also valid when x- and v-domains are discrete.

The inner function v(x) can have many interpretations. It can
be called a generative function because it specifies the central
properties of the actual set. If we use fam functions as a basis in
a linear transform then v(x) defines a new scale on which the
information is mapped. Typically the mapping is nonlinear
causing a scale warping and also a change in the resolution of the
description. Therefore v(x) could also be called a warping
function, or resolution function.

Fam function exists only when v(x) fulfills certain
conditions. Generally speaking it must be well behaved and its
first derivative must exist almost everywere. In many practical
applications, e.g. in signal processing, v(x) must be square-
integrable (in Lebesgue sense). In (1) it is assumed that v(x) is
monotonically increasing (having a positive derivative) over the
range of orthogonality. A more general formula is easily
achieved by taking the absolute value of the derivative of v(x).
Then, functions with nonmonotonic v(x) can also be used to
produce orthonormal sets. Note that when v(x) = x, (1) reduces
to the Fourier kernel.

2.1. Orthonormality
The fam functions are orthonormal when (2) is valid
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The range of orthogonality over x is assumed to be [x, x,].
By noting that v'(x)=dv/dx we can change the integration variable
and show that by proper choice of V'(x) (2) is valid [12]. In the
following ¢(x,a) functions are mainly used to warp the frequency
domain (x = f). v(x) is typically normalized according to Fig. 1.
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Fig. 1. Normalized Hz-to-Bark warping function v(x) (dots)
approximated by a first order allpass filter (A = 0.62 , 0-11 kHz).
2.2. Famlet Class of Orthonormal Functions

Fam functions have up to now found interesting applications in
signal analysis and representation as well as in filter design [14].
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In all these cases the functions are defined in the frequency
domain. Sometimes it is practical to work with their represen-
tations in the time domain, too. These functions which are called
famlets also form an orthonormal class. The name famlet was
chosen to describe them as a type of FAM based, time domain,
compact waveforms having partially similar use as wavelets.
Famlets are defined by:

¥v(t.a)=F"' ¢,(f.a) )

In (3) time domain famlets are produced simply by inverse
Fourier transforming the frequency domain fam functions.
23. Class of FAM and Famlet Transforms
Like many known orthonormal bases FAM basis can also be
used to produce integral transforms. For our present purpose the
FAM transform is formulated in the following way:
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The range of orthogonality is [f;» f)- Note that when v{f) = f
the FAM transform reduces to the Fourier transform. The
Fourier case is one of the infinitely many FAM transforms and
the only one where no warping occurs. Correspondingly we can
define the FAMiet transform.

Fys)=[ " s v,y di=s,(a) ®

Note that the famlet transform of the signal s(f) is equal to
the FAM transform of its spectrum S(f). The new signal sy(a)
represented in the a-domain (transform domain) is the frequency
warped version of the original signal s(z).

2.4. Continuous vs. Discrete Cases

Up to this point we have discussed continuous functions,
integral transforms, and related operators. In the following we
change the notation slightly in order to work with the
corresponding discrete versions. This means, e.g., that integral
operators are changed to matrix operators. Also, signals and
their spectra are now represented in the indexed, discrete
domains.
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2.5. Completeness and Unitarity

One fundamental difference between the continuous and
discrete cases must be kept in the mind. When x-domain is
continuous from -oo to +oo the FAM sets are complete {12]. Any
function in this domain can be represented with increasingly high
accuracy with the fam functions just by adding new terms in the
expansion. This is not the case when we deal with limited ranges
in discrete domains, e.g., s(n) n € [0, N-1] or Sk) ke [-K, ..., 0,
«y K-1]. In these cases the FAM sets are not complete, or, the
range of completeness is only a fraction of the range of
orthogonality. We may also say that the completeness is
frequency dependent. There is only one complete discrete set of
fam functions and it is the discrete Fourier basis. All other
nonlinear or warped bases are not complete. This follows from
the fact that warping makes the derivative of the v function
larger than 1 in some frequency range (see Fig. 1) which leads to
earlier folding of the discrete ¢ functions when their order (a)
increases. The discrete fam set - when defined over a limited
range - will always include less members than the corresponding
discrete (uniform and linear) Fourier basis. This also means that
the transform matrices are not square matrices and the
transformation leads to information compression. Original

information given on a uniform scale is compressed when
mapped on a nonuniform scale and the new representation is not
a complete description of the original one. In auditory types of
processing the compression leads to frequency resolution
reduction at higher frequencies (Fig. 1).

It must also be noted that in the discrete case when the FAM
transform is defined over a limited range it is not a unitary
operator as is the case when an infinite range is used. Unitary
operators have two important features: they preserve inner
products, that is <Ug, Uh> = <g, h>, where g, h € 2, the Hilbert
space of square summable functions, and U denotes a unitary
operator. Secondly, they map orthonormal bases to orthonormal
bases. These properties guarantee that Parseval’s theorem is
valid under these operators. More clearly: the energy of a signal
measured on any of these domains equals (<s(n),s(n)> =
<8(k),S(k)> = <s(a),s(a)>). When discrete, limited range FAM
or famlet transforms are used Parseval’s theorem is not valid.
However, our numerical simulations show that the inner product
is approximately preserved when the transform domain is scaled
according to the number of fam functions used and when the
weight (dv/dx) is ignored.

3. WARPED SPECTRUM AND WARPED SIGNAL

FAM and famlet transforms can be used to produce new spectral
representations with variable (frequency dependent) spectral
resolution [13]. These transforms have been utilized, e.g., to
produce auditory spectra and spectrograms in which the linear
frequency scale is mapped (warped) to a psychoacoustic
frequency scale like Bark or ERB-rate (Fig. 1). The method is
shortly as follows: first define the warping function from Hz to
Bark (or ERB-rate), i.e., V; = V(fg) = v(k), where f, denotes a
discrete frequency point and k the corresponding index in the
linear frequency scale (Hz). Then construct the set (1) of
orthonormal fam functions. This set of functions produces the
FAM transform matrix ®,, which is then used to map the Fourier
spectrum S(k) of the signal s(n) to the frequency warped signal
s(a). Finally, use the Fourier transform to produce the auditory
spectrum (spectrum on the new, warped v-scale). This procedure
is formally given by (7), where F denotes the Fourier transform
and ® the FAM transform.

S(v;)=F®,S8(k)=Fs,(a) jkacZ Q)

According to (5) the warped signal s(a) can be also produced
by the famlet transform which maps the original signal s(n) to the
a-domain s(@). When this is Fourier transformed as above we get
the same warped spectrum S(v) as in (7). When the order of the
famlet and Fourier transforms is changed and the Fourier
operator works on the famlet transform matrix instead of the
warped signal an orthogonal filterbank is produced which has a
nonuniform frequency resolution according to the warping v(fi)
[13].

4. FAM TRANSFORM BY ALLPASS FILTERS

Up to now we have described a general theory and methodology
for frequency scale warping with fam functions. Almost any
type of warping can be treated within this general framework.
However, from the implementation point of view there is
presently no means to realize these processes in a highly efficient
way. Many arithmetic operations in the form of FFT and FIR
computation are needed. It is easy to see that if we limit the
warping functions to those cases where the complex exponential
part of fam can be realized by allpass filters, it is possible to
replace the expensive FIR type of processing by a more efficient
recursive IIR process.
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4.1. Warping with First Order Allpass Sections

The fam functions defined in the frequency domain are now
presented in the form

oy (f.a)=V () /2™ VD = M@) 8(2)}* (8)

where M(z) denotes the magnitude weighting function for the
allpass filters. M(z) is assumed to have zero phase. This is not a
necessity because the fam set (8) is orthonormal even if
sqrt{M(z)] has a nonzero phase, i.e., the set can be multiplied by
some phase warping function without affecting its
orthonormality. The complex exponential of fam is now
modeled by an allpass filter 6(z).

By starting from the orthogonalization of the impulse
responses of cascaded identical first order allpass sections the
frequency domain weighting function M(z) can be derived. The
process leads to fam functions of the form

¢ vl(z.a):,/Ml(z) [&:)]° A<l
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In (9) M(z) is purely zero phase because it has symmetrical
poles with respect to the unit circle: one pole in the unit circle (A
< 1) and one symmetrically outside the unit circle. Additionally
it has a phase compensating pole at the origin which finally
changes this filter from linear phase to zero phase. Now, by
solving the phase characteristics of the first order allpass filter
and comparing its derivative to M;(z) it can be shown that (9)
equals the fam functions in (1), i.e., V'(f) = M; (z).

The pole locations of M;(z) mean that the function is
unstable. However, according to the fam theory we can now
introduce a phase to the weighting function by moving the pole
inside the unit circle and neglecting the pole at the origin. This
leads to a new orthonormal basis (10), which corresponds to the
classical discrete version of z-transformed Laguerre functions.
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We have shown that unitary warping of spectra can be
performed by using cascaded first order allpass filters to form an
orthonormal basis in the frequency domain. The warped signal
appears at the output taps of this allpass chain. The signal can be
warped and S(k) formed by using this orthonormal base. If we
use M(z) as the weight then S(k) is produced directly with the
allpass sections without any weighting function.

4.2, Warping with Second Order Allpass Sections

The use of first order allpass sections allows the largest warping
to take place only close to the DC point or at the folding
frequency. If the point is desired to be located elsewhere on the
frequency axis we have to replace A with a complex number and
compute with complex valued signals. Another possibility is to
use second order allpass sections. These filters produce an
average delay of two samples which leads to folding. This can
be avoided by computing the chain with two times higher
sampling frequency and by inserting zeroes between the samples
of the input sequence. Another way is to choose a new filter
structure where one delay element is compensated by a delay in
the parallel branch. This is the case in the Saramiki-Renfors
filter [15].

One aspect in the WLP is the realization of the synthesis
filter. Allpass sections are delayless and can not be used as such
in the recursive synthesis structure [9]. However, according to

(10)

Steigliz [16] both the first and the second order allpass sections
can be modified to form a stable, recursive, synthesis filter.

5. WARPED LINEAR PREDICTION

Linear prediction (LP) is a process which, based on the statistics
of the signal s(n) to be predicted, gives optimized coefficients
(vector o) for a FIR type predictor P(z) of order p [17]. The
optimization is based on the minimization of the average squared
prediction error (squared difference between the actual and the
predicted value). When the predictor knows p samples from the
history of the signal it produces a predicted value for the coming,
new sample. This is made as a linear combination of p past
samples weighted by the predictor tap coefficients. The LP
process can be formulated in many different ways.
Autocorrelation, covariance, and lattice formulations are the
most commonly used.

Autocorrelation method of the LP can be seen as a process or
nonlinear operator which produces predictor coefficients from
the autocorrelation function R(m) of the signal s(n). The warped
linear prediction (WLP) is now defined by:

a, =L, R, (b) beael

T aan)
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Note that the warped autocorrelation function (WAC) and the
correlation lag b are now defined in the a-domain. The main
problem which remains is: how to produce the WAC.

6. WARPED AUTOCORRELATION

The set of equations (12) summarizes different methods to
compute the warped autocorrelation function (WAC).

@) R, (B)=Zs,(a)s,(a+b)
(i) R, (b)=0,[P(k)]

Giii) Ry (5)="Y¥ ,[R(m)]

@) R, (b)=2s(n)s,(b,n)

(12)

The first "direct form" is computationally expensive because
the whole frame of the warped signal has to be derived first. In
the second method the power spectrum of the unwarped signal is
first computed and then FAM transformed to WAC. This
method is clearly more efficient than the first one. However, an
FFT and an absolute value squared process is needed as well as a
real valued FAM transform. The third method has about the
same complexity as the second one. Now the conventional
autocorrelation function (AC) is first derived and then famlet
transformed. Because the famlets are relatively long functions of
time we need several times more points in the AC than there are
in the WAC (see also Strube [9]).

A new method is given by (iv). It leads to a running
computation where s(n) = s(0,n) is the unwarped signal at the
input of the allpass chain and s(b,n) the warped component
picked up at the bth output tap of the chain. This method leads to
very efficient recursive computation and it can be proven that
when a frame of limited length is processed this WAC is exactly
the same as given by the method (ii). The recursion in the allpass
sections does not make any harm because the length of the
sequence s(n) is limited by the analysis frame.

WLP utilizes auditory spectra in a similar way with PLP by
Hermansky [4]. However, one notable difference is that in PLP
the loudness scaling of the power spectrum can be handled
whereas in WLP only linear transforms are used.

I-351



7. APPLICATIONS OF WLP

One of the most natural applications of frequency domain
warping is the modeling of the auditory system [19]. Here we
show how WLP can succesfully and efficiently be applied to
Bark-scaled representation and coding of speech and audio
signals.

The Bark scale is a commonly used mapping to describe the
frequency resolution of the human auditory system. Less
resolution is needed for high frequencies because the critical
bandwidth for resolving signal components is broader for higher
frequencies. Fig. 1 shows the Bark curve and its approximation
by first order allpass warping (A=0.62) for a signal bandwidth of
11 kHz. A remarkable reduction in linear prediction filter order
can be achieved theoretically by WLP over normal LP: approxi-
mately 8 to 1 for full audio bandwidth, about 3.4 to 1 for a 7 kHz
bandwidth, and about 2.1 to 1 for a speech bandwidth of 3.4 kHz.

We have carried out preliminary experiments in using WLP
for audio coding with multipulse excitation and also studied the
applicability of the method to wideband speech coding. Fig. 2
shows the spectral flamess of the prediction error signal of WLP
and normal LP as a function of filter order for vowel /e/
measured over the frequency range 0-3 kHz [17]. In this case the
WLP of order 9 gives the same flatness as the conventional LP of
order 20. The coding of the residual or excitation signal remains
the same as in normal LP.

0.14 WLP

20 P 25

Fig. 2. Spectral flamess in the range 0-3 kHz of the residual
signal as a function of filter order in normal and warped linear
prediction of vowel /e/.

Another application experiment was to use WLP as a pre-
processor to speech recognition. Running warped autocorrelation
(formula 12 iv) with a 25 ms Hamming prewindowing was
computed by the first-order allpass method (A=0.62, sampling
rate of 22.05 kHz) and the result of WLP was represented by
lattice filter coefficients (reflection coefficients). A set of such
coefficient vectors collected over a time frame was used as the
input to a neural network classifier.

A multi-layer perceptron neural net was trained by back-
propagation to act as a diphone detector to find and coarse
classify Finnish stop-vowel diphones {18]. In a reference system
we used the output of our standard preprocessor, an auditory
spectrum vector [19] of 24 elements (24 Barks). The size of the
Bark-warped WLP vector was 9 elements. A time frame (like in
Time-Delay Neural Nets) of 7 vectors was collected over a time
interval of 120 ms in both cases so that the network input
dimensions were 7 x 24 for auditory spectrum and 7 x 9 for WLP
coefficients. The neural nets had one hidden layer of 4 to 20
hidden nodes; this number was not found critical. The output of
the net was used to detect the position of stop-vowel diphones in
isolated word speech signals. The training material consisted of

about 5000 diphones and a test set containing 620 diphones
including 114 stop-vowel units was used in the experiment.

The reference system (auditory spectrum input) resulted in a
1.3 to 2.2 % error rate (average 1.7 %) and the corresponding
error rate for the WLP input was 1.6 to 2.1 % (average 1.9 %).
(Error rate = percentage of deleted and inserted stop-vowels). As
a conclusion the WLP preprocessor performed almost as welll as
the auditory spectrum in spite of a radical reduction (2.6 to 1) in
data size. The computation of WLP is also several times faster
that that of the auditory spectrum.
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