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Multiple Fundamental Frequency Estimation Based
on Harmonicity and Spectral Smoothness

Anssi P. Klapuri

Abstract—A new method for estimating the fundamental
frequencies of concurrent musical sounds is described. The
method is based on an iterative approach, where the fundamental
frequency of the most prominent sound is estimated, the sound
is subtracted from the mixture, and the process is repeated for
the residual signal. For the estimation stage, an algorithm is pro-
posed which utilizes the frequency relationships of simultaneous
spectral components, without assuming ideal harmonicity. For the
subtraction stage, the spectral smoothness principle is proposed
as an efficient new mechanism in estimating the spectral envelopes
of detected sounds. With these techniques, multiple fundamental
frequency estimation can be performed quite accurately in a
single time frame, without the use of long-term temporal features.
The experimental data comprised recorded samples of 30 musical
instruments from four different sources. Multiple fundamental
frequency estimation was performed for random sound source and
pitch combinations. Error rates for mixtures ranging from one to
six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and
18%, respectively. In musical interval and chord identification
tasks, the algorithm outperformed the average of ten trained
musicians. The method works robustly in noise, and is able to
handle sounds that exhibit inharmonicities. The inharmonicity
factor and spectral envelope of each sound is estimated along with
the fundamental frequency.

Index Terms—Acoustic signal analysis, fundamental frequency
estimation, music, music transcription, pitch perception.

I. INTRODUCTION

PITCH perception plays an important part in human hearing
and understanding of sounds. In an acoustic environment,

human listeners are able to perceive the pitches of several simul-
taneous sounds and make efficient use of the pitch to acousti-
cally separate a sound in a mixture [1]. Computational methods
for multiple fundamental frequency (F0) estimation have re-
ceived less attention, though many algorithms are available for
estimating the F0 in single-voice speech signals [2]–[4]. It is
generally admitted that these algorithms are not appropriate as
such for the multiple-F0 case.

A sound has a certain pitch if it can be reliably matched
by adjusting the frequency of a sine wave of arbitrary ampli-
tude [5]. Pitch is a perceptual attribute of sounds. The corre-
sponding physical term F0 is defined for periodic or nearly pe-
riodic sounds only. For these classes of sounds, F0 is closely
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related to pitch and is defined as the inverse of the period, i.e.,
the time shift for which the time-domain signal shows high cor-
relation with itself. In cases where the fundamental period is
ambigous, a candidate closest to the subjective pitch period is
regarded as the correct F0.

Musical signals are natural candidates for the problem of
multiple-F0 estimation, in the same way as speech signals
are natural candidates for single-F0 estimation. Automatic
transcription of music aims at extracting the pitches, onset
times, and durations of the notes that constitute the piece. The
first multiple-F0 algorithms were designed for the purpose
of transcribing polyphonic music in which several sounds
are playing simultaneously. These attempts date back to
1970s, when Moorer built a system for transcribing duets, i.e.,
two-voice compositions [6]. The work was continued by Chafe
and his collegues [7]. Further advances were made by Maher
[8]. However, the early systems suffered from severe limitations
in regard to the pitch ranges and relationships of simultaneous
sounds, and the polyphony was restricted to two concurrent
sounds. Relaxation of these constraints was attempted by
allowing some more errors to occur in the transcription [9], or
by limitation to one carefully modeled instrument [10], [11].

More recent transcription systems have recruited psychoa-
coustically motivated analysis principles, used sophisticated
processing architectures, and extended the application area to
computational auditory scene analysis in general [12]. Kashino
et al. integrated signal analysis with temporal and musical
predictions by applying a Bayesian probability network [13].
Martin utilized musical rules in transcribing four-voice piano
compositions [14]. Front-end processing in his system was
performed using a log-lag correlogram model of the human
auditory periphery, as described in [15]. Goto was the first
to introduce a system which works reasonably accurately for
real-world complex musical signals by finding the melody and
bass lines in them [16].

Multiple-F0 estimation is closely related to auditory scene
analysis: any algorithm that can find the F0 of a sound and
not get confused by other co-occurring sounds is, in effect,
doing auditory scene analysis [1, p. 240]. Because the human
auditory system is very accurate in performing this task,
imitation of its processing principles has become common and
psychoacoustically inspired systems in general have been rel-
atively successful. Brown and Cooke have built computational
models of the human auditory processes and also addressed the
auditory grouping and streaming of musical sounds according
to common acoustic properties [17]. Godsmark and Brown
proposed a blackboard architecture to integrate evidence from
different auditory organization principles and demonstrated
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that the model could segregate melodic lines from polyphonic
music [18].

The unitary model of pitch perception proposed by Meddis
and Hewitt has had a strong influence on F0 estimation re-
search [19], [20]. Tolonen and Karjalainen have suggested a
simplified version of the unitary pitch model and applied it to
the multiple-F0 estimation of musical sounds [21]. In [22], de
Cheveigné and Kawahara integrated the model with a concur-
rent vowel identification model of Meddis and Hewitt [23] and
developed an approach where F0 estimation is followed by the
cancellation of the detected sound and iterative estimation for
the residual signal. A more straightforward version of this iter-
ative approach was earlier proposed by de Cheveigné in [24].

The periodicity transform method proposed by Sethares
and Staley in [25] bears a close resemblance to that of de
Cheveigne in [24], although the former is purely mathemati-
cally formulated. A more dynamic approach to residue-driven
processing has been taken by Nakatani and Okuno [26].
Their system was designed to segregate continuous streams of
harmonic sounds, such as the voiced sections of two or three
simultaneous speakers. Multiple agents were deployed to trace
harmonic sounds in stereophonic input signals, the sounds were
subtracted from the input signal, and the residual was used to
update the parameters of each sound and to create new agents
when new sounds were detected.

There are two basic problems that a multiple-F0 estimator has
to solve in addition to those that are confronted with in single-F0
estimation. First, the calculated likelihoods (or weights) of dif-
ferent F0 candidates must not be too much affected by the pres-
ence of other, co-occurring sounds. To achieve this, multiple-F0
algorithms typically decompose incoming signals into smaller
elements which are then selectively used to calculate the weight
for each candidate. For example, some methods trace sinusoidal
components and then group them into sound sources according
to their individual attributes, such as harmonic relationships or
synchronous changes in the components [7], [13], [16], [26],
[27]. Other algorithms apply comb filtering in the time domain
to select only the harmonically related components [22], [24],
[25]. Several recent systems have employed auditory models
which break an incoming sound into subchannel signals and per-
form periodicity analysis withing channels [18], [20], [22].

In the second place, even when a correct F0 has been detected,
the next-highest weights are often assigned to half or twice of
this correct F0 value. Thus, the effect of any detected F0 must
be cancelled from harmonics and subharmonics before deciding
the next most likely F0. Some algorithms perform this by manip-
ulating the calculated F0 weights directly [21]. Other methods
estimate the spectrum of each detected sound and then subtract
it from the mixture in an iterative fashion [24], [25], or process
as a joint estimation and cancellation pursuit [24], [26]. The
latter scheme is similar to the analysis-by-synthesis techniques
in parametric coding, where for example sinusoidal components
are detected, modeled, and subtracted from the input in order to
minimize the residual signal [28].

The aim of this paper is to propose a multiple-F0 analysis
method that operates at the level of a single time frame and is
applicable for sound sources of diverse kinds. Automatic tran-
scription of music is seen as an important application area, im-

plying a wide pitch range, varying tone colors, and a particular
need for robustness in the presence of other harmonic and noisy
sounds.

An overview of the proposed system is illustrated in Fig. 1.
The method operates iteratively by estimating and removing the
most prominent F0 from the mixture signal. The termpredom-
inant-F0 estimationrefers to a crucial stage where the F0 of
the most prominent sound is estimated in the presence of other
harmonic and noisy sounds. To achieve this, the harmonic fre-
quency relationships of simultaneous spectral components are
used to group them to sound sources. An algorithm is proposed
which is able to handle inharmonic sounds. These are sounds
for which the frequencies of the overtone partials (harmonics)
are not in exact integer ratios. In a subsequent stage, the spec-
trum of the detected sound is estimated and subtracted from the
mixture. This stage utilizes the spectral smoothness principle,
which refers to the expectation that the spectral envelopes of
real sounds tend to be slowly varying as a function of frequency.
In other words, the amplitude of a harmonic partial is usually
close to the amplitudes of the nearby partials of the same sound.
The estimation and subtraction steps are then repeated for the
residual signal. A review and discussion of the earlier iterative
approaches to multiple-F0 estimation can be found in [22], [24].
Psychoacoustic evidence in favor of the iterative approach can
be found in [1, p. 240, 244], [5].

The motivation for this work is in practical engineering appli-
cations, although psychoacoustics is seen as an essential base
of the analysis principles. The proposed algorithm is able to
resolve at least a couple of the most prominent F0s, even in
rich polyphonies. Reliable estimation can be carried out in cases
where the signal has been corrupted by high levels of additive
noise or where wide frequency bands are missing. Non-ideal
sounds that exhibit inharmonicities can be handled. The applica-
tions thus facilitated comprise transcription tools for musicians,
transmission and storage of music in a compact form, and new
ways of searching musical information.

The paper is organized as follows. Section II will describe
the different elements of the algorithm presented in Fig. 1.
These include preprocessing, the harmonicity principle used,
the smoothing of detected sounds, and estimation of the number
of concurrent sounds. Section III will describe experimental
results and will compare these with the performance of two
reference methods and human listeners. Finally, Section IV will
summarize the main conclusions and will discuss future work.

II. PROPOSEDMULTIPLE-F0 ESTIMATION METHOD

This section will look at all the necessary elements required
for the multiple-F0 estimation task and as illustrated in Fig. 1. To
begin, Section II-A will describe the preprocessing stage which
is necessary to achieve robustness in additive noise and to handle
sounds with uneven spectral shapes. Next, the main principle be-
hind using harmonic relationships is discussed in Section II-B.
Section II-C will describe the smoothing algorithm which is
needed to subtract each detected sound from the mixture so that
the remaining sounds are not corrupted. The last subsection will
propose a mechanism to control the stopping of the iterative es-
timation and cancellation process.
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Fig. 1. Overview of the proposed multiple-F0 estimation method.

A. Preprocessing

All calculations in the proposed system take place in the fre-
quency domain. A discrete Fourier transform is calculated for
a Hamming-windowed frame of an acoustic input signal, sam-
pled at 44.1 kHz rate and quantized to 16-bit precision. Frame
lengths of 93 ms and 190 ms were used in simulations. These
may seem long from the speech processing point of view, but
are actually not very long for musical chord identification tasks.
In such tasks, the pitch range is wide, mixtures of low sounds
produce very dense sets of frequency partials, and F0 precision
of 3% is required to distinguish adjacent notes (see Appendix).

Preprocessing the spectrum before the actual multiple-F0
analysis is an important factor in the performance of the system.
It provides robustness in additive noise and ensures that sounds
with varying spectral shapes can be handled. The signal model
assumed by the proposed system is

(1)

where is the discrete power spectrum of an incoming
acoustic signal and is the power spectrum of a vibrating
system whose fundamental frequency should be measured. The
factor represents the frequency response of the operating
environment and the body of a musical instrument which fil-
ters the signal of the vibrating source. Elimination of is
often referred to as pre-whitening. The term represents
the power spectrum of additive noise. In music signals, the ad-
ditive interference is mainly due to the transient-like sounds of
drums and percussive instruments.

In principle, additive noise can be suppressed by performing
spectral subtraction in the power spectral domain. The effect
of , in turn, can be suppressed by highpass liftering1 the
log-magnitude spectrum. Confirming the reports of earlier au-
thors, however, two noise-reduction systems in a cascade does
not produce appropriate results [30]. Rather, successful noise
suppression is achieved by applying magnitude warping which
equalizes while allowing the additive noise to be linearly
subtracted from the result. The power spectrum is magni-
tude-warped as

(2)

where

(3)

1The term “liftering” is defined [29].

The frequency indices and correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-F0 estimator. The
exact formula for calculating is not as critical as the general
idea represented by (2). The use of (2) and (3) is based on two
reasonable assumptions. First, the amplitudes of the important
frequency partials in are above the additive noise

. Secondly, it is assumed that a majority of the frequency
components between and correspond to the additive
noise floor, not to the spectral peaks of . In this case,

scales the input spectrum so that the level of additive
noise stays close to unity and the spectral peaks of the
vibrating system are noticeably above unity. It
follows that in (2), additive noise goes through a linear-like
magnitude-warping transform, whereas spectral peaks go
through a logarithmic-like transform.

The response is efficiently flattened by the loga-
rithmic-like transform, since subsequent processing takes place
in the warped magnitude scale. Additive noise is suppressed
by applying a specific spectral subtraction on [34]. A
moving average over is calculated on a logarithmic
frequency scale and then linearly subtracted from . More
exactly, local averages were calculated at 2/3-octave bands
while constraining the minimum bandwidth to 100 Hz at the
lowest bands. The same bandwidths are used in the subsequent
F0 calculations and are motivated by the frequency resolution
of the human auditory system and by practical experiments
with generated mixtures of musical sounds and noise. The use
of the logarithmic frequency scale was clearly advantageous
over a linear scale since it balances the amount of spectral fine
structure that is used with different F0s.

The estimated spectral average is linearly subtracted
from and resulting negative values are constrained to zero

(4)

The preprocessed spectrum is passed to the multiple-F0
estimator.

B. Harmonicity Principle

In this section, the “Predominant-F0 estimation” part of the
algorithm is described. A process is proposed which organizes
mixture spectra by utilizing the harmonic relationships between
frequency components, without assuming ideal harmonicity.

Several fundamentally different approaches to F0 estima-
tion have been proposed. One category of algorithms measures
periodicity in the time-domain signal. These methods are typ-
ically based on calculating the time-domain autocorrelation
function or the cepstrum representation [32], [33]. As shown
in [34], this is theoretically equivalent to matching a pattern
of frequency partials atharmonic positionsof the sound spec-
trum. An explicit way of building upon this idea is to perform
harmonic pattern matching in the frequency domain [35], [36].
Another category of algorithms measures periodicity in the
frequency-domain, observing F0 from theintervals between
the frequency partials of a sound. The spectrum autocorre-
lation method and its variants have been successfully used
in several F0 estimators [37], [38]. An interesting difference
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between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to errors
in F0 halving and the latter to errors in F0 doubling. This
is because the time-domain signal is periodic at half the F0
rate (twice the fundamental time delay) and the spectrum is
periodic at double the F0 rate. A third, psychoacoustically
motivated group of algorithms measures theperiodicity of the
amplitude envelopeof a time-domain signal within several
frequency channels [20], [21], [39].

A major shortcoming of many of the earlier proposed
methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the
harmonic partials are often not in exact integral ratios. For
example for stretched strings the frequencyof an overtone
partial obeys

(5)

where is the fundamental frequency and is the inhar-
monicity factor [40]. Equation (5) means that the partials
cannot be assumed to be found at harmonic spectrum positions,
but are gradually shifted upwards in the spectrum. This is
not of great concern in speech processing, but is important
when analyzing musical sounds at a wide frequency band
[41]. In the rest of this paper, capital letteris used to denote
fundamental frequency, and the lower case letterto denote
simply frequency.

The proposed predominant-F0 estimation method works by
calculating independent F0 estimates at separate frequency
bands and then combining the results to yield a global estimate.
This helps to solve several difficulties, one of which is inhar-
monicity. According to (5), the higher harmonics may deviate
from their expected spectral positions, and even the intervals
between them are not constant. However, we can assume the
spectral intervals to be piecewise constant at narrow-enough
frequency bands. Thus, we utilize spectral intervals in a two
step process which 1) calculates the weights of different
F0s at separate frequency bands and 2) combines the results
in a manner that takes inharmonicity into account. Another
advantage of bandwise processing is that it provides robustness
and flexibility in the case of badly corrupted signals where only
a fragment of the whole frequency range can be used [41]. The
two steps are now described.

1) Bandwise F0 Estimation:The preprocessed spectrum
is analyzed at 18 bands that distribute approximately log-

arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2.
Each band comprises a 2/3-octave region of the spectrum,
constraining, however, the minimum bandwidth to 100 Hz.
Band is subject to weighting with a triangular frequency
response , shown in Fig. 2. The overlap between adjacent
bands is 50%, making the overall response sum to unity at all
except the lowest bands. Response at bandis denoted by

(6)

Non-zero frequency components of are defined for fre-
quency indices, where is the lowest
frequency component at bandand is the number of com-
ponents at the band.

Fig. 2. Magnitude responses of the 18 frequency bands, at which the bandwise
F0 estimation takes place.

In each band, the algorithm calculates a weight vector
across frequency indices. Note, indexcorresponds to the fun-
damental frequency where is the number of
samples in the time-domain analysis frame andis the sam-
pling rate. The resolution of the weight vector is the same as
that of the preprocessed spectrum . The bandwise weights

are calculated by finding a series of each frequency
components at bandthat maximizes the sum

(7)

where

(8)

(9)

Here, is the offset of the series of par-
tials in the sum, is the number of partials in the sum,
and is a normalization factor. A normalization factor is
needed because varies for different values of and . The
form was determined by training with isolated musical
instrument samples in varying noise conditions. The offset
is varied to find the maximum of (7), which is then stored in

. Different offsets have to be tested because the series of
higher harmonic partials may have shifted due to inharmonicity.

The upper panel in Fig. 3 illustrates the calculations for a
single harmonic sound at the band between 1100 Hz
and 1700 Hz. The arrows indicate the series of frequency com-
ponents which maximizes for the true F0.

The values of the offset are restricted to physically realistic
inharmonicities, a subset of . The exact limit is not critical,
therefore (5) with a constant inharmonicity factor can
be used to determine the maximum allowable offset from the
ideal harmonic positions. The harmonic indexin (5) can be
approximated by . It follows that the fun-
damental partial must be exactly in the harmonic spectral
position, whereas the whole set has to be considered for the
highest partials. In other words, the algorithm combines the use
of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
which is assumed to contain only the first harmonic partial of a
sound with fundamental frequency corresponding to index,
inharmonicity is not allowed. Here is set to 1, and (7) reduces
to the special case

(10)
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Fig. 3. Calculation of the bandwise F0 weight vectors according to (7).

It follows that in this case the weights are equal to
between the frequency limits of the band. The algorithm is de-
tailed in Table I.

The lower panel in Fig. 3 shows the entire weight vector
calculated at band for the same signal as in the

upper panel. As can be seen, the preprocessed spectrum
appears as such at the corresponding band of . A twice
narrower copy of is found an octave below, since the F0s
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower F0 candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true F0 (70 Hz) which has been assigned the highest
weight.

An important property of the presented calculations is that
only the selected frequency samples contribute to the weight

, not the overall spectrum. The other co-occurring sounds
affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section II-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-F0 algorithms, as described in Section I.

2) Integration of Weights Across Subbands:Fig. 4 shows
the calculated weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the
maximum weight is usually assigned to the true F0, provided
that there is a harmonic partial at that band. The inharmonicity
phenomenon appears in Figs. 4(a) and 4(b) as a rising trend
in the fundamental frequency.

The bandwise F0 weights are combined to yield a global F0
estimate. A straightforward summation across the weight vec-
tors does not accumulate them appropriately since the F0 esti-
mates at different bands may not match for inharmonic sounds,
as can be seen from Fig. 4. To overcome this, the inharmonicity
factor is estimated and taken into account. Two different inhar-
monicity models were implemented, the one given in (5) and
another mentioned in [40, p. 363]. In simulations, the perfor-
mance difference between the two was negligible. The model in
(5) was adopted.

Global weights are obtained by summing squared band-
wise weights that are selected from different bands ac-

TABLE I
ALGORITHM FOR CALCULATING THE WEIGHTSL (n) FORDIFFERENTF0sAT

BAND b. SEE TEXT FOR THEDEFINITION OF SYMBOLS

cording to a curve determined by (5). A search over possible
values of is conducted for each, and the highest
and the corresponding are stored in the output. Squaring
the bandwise F0 weights prior to summing was found to pro-
vide robustness in the presence of strong interference where the
pitch may be perceptible only at a limited frequency range.

The global F0 weights and inharmonicity factors
do not need to be calculated for all fundamental frequency in-
dices . Instead, only a set of fundamental frequency indices

is collected from the bandwise weight vec-
tors . This is possible, and advantageous since if a sound
is perceptible at all, it generally has a high weight in at least one
of the bands. Selecting a couple of maxima from each band pre-
serves the correct fundamental frequency among the candidates.

The maximum global weight can be used as such to
determine the true F0. However, an even more robust selec-
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Fig. 4. Bandwise-calculated F0 weightsL (n) for two piano tones, Figure
(a) with F0 65 Hz and Figure (b) with F0 470 Hz. The vectors are displaced
vertically for clarity. The true pitches of the tones are indicated with dashed
vertical lines.

tion among the candidates can be made by further inspecting
the spectral smoothness of the F0s that have the highest global
weights. This is the reason why a smoothing module is used in
Fig. 1 before storing the F0. This module will be described in
detail in Section III. For the sake of discussion in Section II-C
one can assume that the maximum global score determines
the predominant F0.

C. Spectral Smoothness Principle

1) Iterative Estimation and Separation:The presented
method is capable of making robust predominant-F0 detections
in polyphonic signals. Moreover, the inharmonicity factor and
precise frequencies of each harmonic partial of the detected
sound are produced. A natural strategy for extending the
presented algorithm to multiple-F0 estimation is to remove the
partials of the detected sound from the mixture and to apply the
predominant-F0 algorithm iteratively to the residual spectrum.

Detected sounds are separated in the frequency domain. Each
sinusoidal partial of a sound is removed from the mixture spec-
trum in two stages. First, good estimates of the frequency and
amplitude of the partials must be obtained. It is assumed that
these parameters remain constant in the analysis frame. Second,
using the found parameters, the spectrum in the vicinity of the

partials is estimated and linearly subtracted from the mixture
spectrum.

Initial estimates for the frequency and amplitude of each si-
nusoidal partial of a sound are produced by the predominant-F0
detection algorithm. Efficient techniques for estimating more
precise values have been proposed e.g. in [42]. A method
widely adopted is to apply Hamming windowing and zero
padding in the time domain, to calculate Fourier spectrum,
and to use quadratic interpolation of the spectrum around the
partial. The second problem, estimating the spectrum in the
vicinity of the partial is equivalent to translating the magnitude
spectrum of the original analysis window at the frequency
of the sinusoidal partial. For Hamming window without zero
padding, it was found to be sufficient to perform the subtraction
for five adjacent frequency bins.

2) The Problem of Coinciding Frequency Partials:One
issue that is addressed in the algorithm is the problem of
coinciding frequency partials. To illustrate this problem,
simulations were run using the iterative procedure on randomly
generated F0 mixtures. Fig. 5 shows the errors as a function of
the musical intervals that occur in the erroneously transcribed
sound mixtures (see Appendix). In most cases, the iterative
approach works rather reliably. However, an important obser-
vation can be made when the distribution of the errors in Fig. 5
is analyzed. The error rate is strongly correlated with certain F0
relations. The conclusion to be noted is that a straightforward
estimation and subtraction approach is likely to fail in cases
where the fundamental frequencies of simultaneous sounds
have simple rational number relations, also calledharmonic
relations. These are indicated over the corresponding bars in
Fig. 5.

Coinciding frequency partials from different sounds can
cause the algorithm to fail since many of the partials coincide
in frequency. When the sound detected first is removed, the
coinciding harmonics of remaining sounds are corrupted in
the subtraction procedure. After several iterations, a remaining
sound can become too corrupted to be correctly analyzed in the
iterations that follow.

When two sinusoidal partials with amplitudesand and
phase difference coincide in frequency, the amplitude of the
resulting sinusoid can be calculated as

(11)

If the two amplitudes are roughly equivalent, the partials may
either amplify or cancel each other, depending on. However,
if one of the amplitudes is significantly greater than the other,
as is usually the case, approaches the maximum of the two.

Assuming ideal harmonicity, it is straightforward to prove
that the harmonic partials of two sounds coincide if and only
if the fundamental frequencies of the two sounds are in rational
number relations. Moreover, if the harmonic indices of the co-
inciding partials are and , then every partial of the first
sound coincides with every partial of the other sound. An
important principle in Western music is to pay attention to the
pitch relationships of simultaneously played notes. Simple har-
monic relationships are favored over dissonant ones in order to
make the sounds blend better. Because harmonic relationships
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Fig. 5. Distribution of the F0 estimation errors as a function of the musical
intervals that occur in the erroneously transcribed sound mixtures.

are so common in music, these “worst cases” must be handled
well in general.

To solve this problem, the spectra of the detected sounds must
be smoothed before subtracting them from the mixture. Con-
sider the preprocessed spectrum of a two-sound mixture
in Fig. 6(a). In the figure, the harmonic partials of the higher-
pitched sound coincide with every third harmonic of the lower-
pitched sound . As predicted by (11), the
coinciding partials randomly cancel or amplify each other at the
low frequencies, whereas at the higher frequencies the summary
amplitudes approach the maximum of the two, i.e., the spectral
envelope of the higher sound.

When the spectrum of the lower-pitched sound is smoothed
(the thin slowly decreasing horizontal curve in Fig. 6(b)), the co-
inciding partials at the higher frequencies rise above the smooth
spectrum and thus remain in the residual after subtraction. In
particular, this solves a very common case where the dense har-
monic series of a lower-pitched sound matches the few partials
of a higher-pitched sound. Detecting the higher-pitched sound
first is less common and in that case, only a minority of the har-
monics of the lower-pitched sound are deleted.

It should be noted that simply smoothing the amplitude enve-
lope (the thin curve in Fig. 6(b)) of a sound before subtracting
it from the mixture does not result in lower error rates. A suc-
cessful smoothing algorithm was found by applying psychoa-
coustic knowledge. The full motivation for this approach has
been presented in [43] and is beyond the scope of this paper.

The algorithm first calculates a moving average over the am-
plitudes of the harmonic partials of a sound. An octave-wide
triangular weighting window is centered at each harmonic par-
tial , and the weighted mean of the amplitudes of the par-
tials in the window is calculated. This is the smooth spectrum
illustrated by a thin horizontal curve in Fig. 6(b). The original
amplitude value is then replaced with the minimum of the
original and :

(12)

These values are illustrated by a thick curve in Fig. 6(b).
Performing this straightforward smoothing operation before
subtracting the sound from the mixture reduces the error rates
significantly.

A further improvement to the smoothing method can be made
by utilizing the statistical dependency of every harmonic

Fig. 6. Illustration of the spectral smoothness principle. (a) Preprocessed
spectrumZ(k) containing two sounds with F0s in the relation 1:3. (b) Two
different smoothing operations have been used to estimate the spectral envelope
of the lower-pitched sound. The results are indicated with thin and thick
horizontal curves.

partial, as was previously explained following (11) in this sec-
tion. The algorithm applies a multistage filter with the following
steps [43]. First, the indices of the
harmonic partials around harmonicare collected from an oc-
tave-wide window. Next, the surrounding partials are classified
into groups, where all the harmonics that share a common di-
visor are put in the same group, starting from the smallest prime
factors. Third, weighted mean around harmonicis calculated
inside groups in the manner described above. In the last step,
the estimates of different groups are averaged, weighting each
group according to its mean distance from harmonic.

3) Recalculation of F0 Weights After Smoothing:The de-
scribed principle of smoothing provides an efficient solution
to another common class of errors. In this class of errors two
or more fundamental frequencies in specific relationships may
cause the detection of a nonexistent sound, such as the root of a
musical chord in its absence. For instance, when two harmonic
sounds with fundamental frequencies and are played,
the spectra of these sounds match every second and every third
harmonic partial of a nonexisting sound with fundamental fre-
quency . This frequency may be erroneously estimated in
the predominant-F0 calculations given the observed partials.

The problem can be solved by applying smoothing and an
ordered search when selecting among the candidate indices
calculated by the predominant-F0 algorithm (see the end of Sec-
tion II-B). First, the candidate with the highest global weight

is taken and its spectrum is smoothed. Then the weight
of this candidate is recalculated using the smoothed harmonic
amplitudes. In the above-described case of a nonexistent sound,
the irregularity of the spectrum decreases the level of the smooth
spectrum significantly, and the weight remains low. If the recal-
culated weight drops below the second-highest weight, the next
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candidate is processed, and this is continued. The highest re-
calculated global weight determines the F0. The computational
load of applying smoothing and recalculation to select among
the candidates is negligible, since the recalculation procedure
has to consider only one F0 and one value ofin (7).

D. Estimating the Number of Concurrent Sounds

A mechanism is needed which controls the stopping of the
iterative F0 estimation and sound separation process. This leads
to the estimation of the number of concurrent sounds, i.e. the
polyphony. The difficulty of the task is comparable to that of
finding the F0 values themselves. Huron has studied musicians’
ability to identify the number of concurrently sounding voices
in polyphonic textures [44]. According to his report by four-
voice polyphonies the test subjects underestimated the number
of voices in more than half of the cases.

A statistical-experimental approach was taken to solve the
problem. Random mixtures of one to six concurrent harmonic
sounds were generated by allotting sounds from McGill Uni-
versity Master Samples collection [45]. The mixtures were then
contaminated with pink noise or random drum sounds from
Roland R-8 mk II drum machine. Signal-to-noise ratio was
varied between 23 dB and2 dB.

The behavior of the iterative multiple-F0 estimation system
was investigated using these artificial mixtures with known
polyphonies. Based on this investigation it was decided to
split the estimation task into two stages. The first stage detects
if there are any harmonic sounds at all in the input, and the
second estimates the number of concurrent sounds, if the first
test has indicated that some are present. It was found that the
best single feature to indicate the presence of harmonic sounds
was the global weight of the winning F0 candidate at
the first iteration. The best compound feature consists of
and terms related to the signal-to-noise ratio (SNR) of the input
signal:

(13)
Here is the discrete power spectrum of the input signal
and is the power spectrum of the estimated noise,
obtained by applying inverse transform of (2) on . Fre-
quency indices and are the same as in (3). A signal is
determined to contain harmonic sounds whenis greater than
a fixed threshold.

If an analysis frame has been determined to contain harmonic
sounds, another model is used to estimate the number of sounds.
The maximum global weight at iteration was again the
best single feature for controlling the iteration stopping. How-
ever, the weight values are affected by the SNR getting
smaller in noise. The bias can be explicitly corrected, resulting
in the measure

(14)

As long as the value of stays above a fixed threshold, the
sound detected at iterationis accepted as a valid F0 estimate
and the iteration is continued. In (13) and (14), the SNR-related
terms have different roles and thus different signs.

III. RESULTS

A. Experimental Setup

Simulations were run to validate the proposed methods. The
acoustic database consisted of samples from four different
sources. The McGill University Master Samples collection [45]
and independent recordings for acoustic guitar were available
already during the development phase of the system. In order
to verify that the results generalize outside these data sets, the
samples from the University of Iowa website [46] and IRCAM
Studio Online [47] were added to the final evaluation set. There
were altogether 30 different musical instruments, comprising
brass and reed instruments, strings, flutes, the piano, and the
guitar. These introduce several different sound production
mechanisms and a variety of spectra. On the average, there
were 1.8 pieces of each of the 30 instruments and 2.5 different
playing styles per instrument. The total number of samples
was 2536. These were randomly mixed to generate test cases.
The instruments marimba and the vibraphone were excluded
from the data set since their spectrum is quite different from
the others and extremely inharmonic. The system admittedly
cannot handle these sounds reliably.

Semirandom sound mixtures were generated according to
two different schemes.Random mixtureswere generated by
first allotting an instrument and then a random note from its
whole playing range, restricting, however, the pitch over five
octaves between 65 Hz and 2100 Hz. The desired number of
simultaneous sounds were allotted and then mixed with equal
mean-square levels.Musical mixtureswere generated in a sim-
ilar manner, but favoring different pitch relationships according
to a statistical profile discovered by Krumhansl in classical
Western music [48, p. 68]. In brief, octave relationships are
the most frequent, followed by consonant musical intervals,
and the smallest probability of occurrence is given to dissonant
intervals. In general, musical mixtures are more difficult to
resolve (see Section II-C2).

Acoustic input was fed to the multiple-F0 algorithm that es-
timated F0s in a single time frame. Unless otherwise stated, the
number of F0s to extract, i.e., the polyphony, was given along
with the mixture signal. It was found to be more informative to
first evaluate the multiple-F0 estimator without the polyphony
estimator, because these two are separable tasks and because the
reference methods do not implement polyphony estimation. The
configuration and parameters of the system were fixed unless
otherwise stated. A correct F0 estimate was defined to deviate
less than half a semitone (3%) from the true value, making
it “round” to a correct note on a Western musical scale. Errors
smaller than this are not significant from the point of view of
music transcription.

B. Reference Methods

To put the results in perspective, two reference methods were
used as a baseline in simulations. The first method,YIN, is a
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state-of-the-artmonophonicF0 estimator for speech and music
signals [49]. Naturally, the method can be used as a baseline in
single-F0 analysis only. The algorithm has been designed to be
reliable for individual analysis frames and has been thoroughly
tested and compared with other methods in [49]. The original
implementation by the authors was employed and parameters
were left intact except the “absolute threshold” which was fine-
tuned to value 0.15 to improve the performance.

The other reference method, referred to asTK, is a mul-
tiple-F0 estimator proposed by Tolonen and Karjalainen in
[21]. The implementation was carefully prepared based on the
reference, and the original code by the authors was used in
the warped linear prediction part of the algorithm. Thorough
testing was carried out to verify the implementation. Original
parameters given in [21] were applied. As reported by the
authors, the method cannot handle “spectral pitch,” i.e., F0s
above 1 kHz. It was further found out here that the method is
best at detecting F0s in the three-octave range between 65 Hz
and 520 Hz. Thus, in the simulations that follow, the mixtures
given to theTK method were restricted to contain F0s below
either 520 Hz or 1 kHz. The bound is specified for each case in
the simulation results to follow.

C. Experimental Results

In the first experiment, different F0 estimators are compared.
For this experiment, a predominant-F0 estimate (firstly detected
F0) was defined to be correct if it matches the correct F0 ofany
of the component sounds. That is, only a single match among all
possible F0s is required in this error measure. The error rate was
calculated as the amount of predominant-F0 errors divided by
the number of random sound mixtures (1000), not by the number
of reference notes (e.g. 6000 in the six-note mixtures). F0 esti-
mation was performed in a single 190 ms time frame 100 ms
after the onset of the sounds. Fig. 7 shows the error rates for the
predominant-F0 estimation in different polyphonies. Results are
given for the proposed system and for the two reference systems.

For the proposed system, the error rates are generally below
10%, getting close only in six-note polyphonies. Surprisingly,
increasing the number of concurrent sounds from one to two
appears to help lower the error rate of detecting at least one F0
correctly. However, this is due to the fact that the acoustic data-
base contains a small percentage of irregular sounds for which
the simple model in (7) does not work. Among these are e.g.
high flute tones and high plucked string tones. Two-sound mix-
tures are more likely to contain at least one clear sound with no
anomalities, which then appears as the predominant F0.

TheYIN method achieves 4.1% error rate for isolated notes.
Since the method is not intended for multiple-F0 estimation, it is
not fair to make comparison for polyphonic signals. Like other
single-F0 estimators, the algorithm converges to 70% error rate
already in three-note mixtures. TheTKmethod is not quite as re-
liable for single-pitch signals, but works robustly in polyphony.
If the method is given F0s only below 520 Hz, the predomi-
nant-F0 detection accuracy comes close to the proposed system
in higher polyphonies. This is partly due to the relatively higher
random guess rate.

In the second experiment, the performance of multiple-F0 es-
timation is explored in more detail. For multiple-F0 estimation,

Fig. 7. Error rates for detecting any of the potential F0s in a sound as a function
of the predominant-F0 estimation algorithm and the polyphony.

a more appropriate error measure is anote error rate (NER)
metric. The NER is defined as the sum of the F0s in error di-
vided by the number of F0s in the reference transcription. The
errors are of three types:

a) Substitution errors. These are defined as errors in which a
given F0 is detected but the estimated value differs more
than 3% from the reference.

b) Deletion errors have occurred if the number of detected
F0s is smaller than the number of F0s in the reference.

c) Insertion errors have occurred if the number of detected
F0s exceeds that in the reference.

Substitution and deletion errors together can be counted from
the number of F0s in the reference that are not correctly es-
timated. Insertion errors can be counted from the number of
excessive estimates.

Results for multiple-F0 estimation in different polyphonies
are shown in Fig. 8. Here the number of concurrent sounds to
extract was given for each mixture signal, i.e., the polyphony
was known. Thus insertion and deletion errors do not occur.
Random and musical sound mixtures were generated according
to the described schemes, and the estimator was then requested
to find a given number of F0s in a single 190 ms time frame 100
ms after the onset of the sounds.

In Fig. 8, the bars represent the overall NER’s as a function of
the polyphony. As can be seen, the NER for random four-sound
polyphonies is 9.9% on the average. The different shades of
gray in each bar indicate the error cumulation in the iteration,
errors which occurred in the first iteration at the bottom, and
errors of the last iteration at the top. As a general impression,
the system works reliably and exhibits graceful degradation in
increasing polyphony. Results for musical mixtures are slightly
worse than for random mixtures (see Section II-C2), but the
difference is not great. This indicates that the spectral smoothing
principle works well in resolving harmonically related pitch
combinations.

Analysis of the error cumulation reveals that the errors which
occurred in the last iteration account for approximately half of
the errors in all polyphonies, and the probability of error in-
creases rapidly in the course of iteration. Besides indicating that
the subtraction process does not work perfectly, the conducted
listening tests suggest that this is a feature of the problem it-
self, rather than only a symptom of the algorithms used. In most
mixtures, there is a sound or two that are very difficult to per-
ceive because their spectrum is virtually hidden under the other
sounds.

For the reference methodTK, note error rates for mixtures
ranging from one to six sounds were 22%, 31%, 39%, 45%,
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Fig. 8. Note error rates for multiple-F0 estimation using the proposed
algorithm when the polyphony was known. Bars represent the overall error
rates, and the different shades of gray the error cumulation in iteration.

49%, and 53%, respectively, when F0s were resticted to range
65 Hz–1 kHz. For the three-octave range between 65 Hz and 520
Hz, the corresponding error rates were 7.5%, 17%, 26%, 34%,
38%, and 43%. Given the complexity of the problem, even these
error rates are rather low.

Table II gives the error rates for different system configura-
tions. Different processing elements were disabled one-by-one
in order to evaluate their importance. In each case, the system
was kept otherwise fixed. In the first test, the mechanisms that
accommodate inharmonicity were disabled. One mechanism is
in bandwise F0-weight calculations, and in this case the offset

in (7) was constrained to a value which corresponds to an
ideal harmonicity. Another mechanism is in the integration
phase. Here the inharmonicity factor was constrained to zero,
leading to a straightforward summing across squared weight
vectors. The resulting performance degradation is mostly due
to the bandwise calculations.

In the second test, the spectral smoothing algorithm was
switched between the one presented in Section II-C2 and
a version which leaves the harmonic series intact. The
smoothing operation made a significant improvement to mul-
tiple-F0 estimation accuracy in all polyphonies, except for the
single-note case where it did not have a noticeable effect on the
performance.

In all the results presented above, the polyphony of the sig-
nals was known. Fig. 9 shows the statistical error rate of the
overall multiple-F0 estimation system when the polyphony is
estimated in the analysis frame, as described in Section II-D. Re-
sults are shown for two different polyphony estimation thresh-
olds (i.e., thresholds for in (14) which were 0.65 and 1.1 for
the left and right panels, respectively). Depending on the appli-
cation, either overestimating or underestimating the number of
concurrent sounds may be more harmful. In a music transcrip-
tion system, for example, extraneous notes in the output are very
disturbing. However, if the frame-level F0 estimates are further
processed at a higher level, it is usually advantageous to produce
too many rather than too few note candidates.

In general, the proposed polyphony estimation method
operates robustly. However, when the estimation threshold is
tuned to avoid extraneous detections in monophonic signals,
the polyphony is underestimated in higher polyphonies. On the
other hand, when underestimations are avoided, many of the

TABLE II
ERROR RATES FORDIFFERENT SYSTEM CONFIGURATIONS WHEN THE

POLYPHONY OF THESIGNALS WAS KNOWN

Fig. 9. Error rates for the two different polyphony estimations strategies.

extraneous F0s appear in monophonic signals. This is likely
to be characteristic of the problem itself (see Huron’s report
[44] mentioned in Section II-D). One or two sounds in rich
polyphonies are usually very difficult to distinguish.

Table III shows the influence of shortening the analysis frame.
The significant difference between 190 ms and 93 ms frame
sizes is partly caused by the fact that the applied technique
was sometimes not able to resolve the F0 with the required

3% accuracy. Also, irregularities in the sounds themselves,
such as vibrato, are more difficult to handle in short frames.
However, when the time frame was shortened from 190 ms
to 93 ms, the error rate of the reference methodTK increased
only by approximately 5% for both 1000 Hz and 520 Hz
F0 limits and in all polyphonies. Thus, the error rates ofTK
were essentially the same as those presented around Fig. 8.
While the performance is still clearly worse than that of the
proposed method (polyphony was known), an obvious drawback
of the proposed method is that its accuracy depends on the
length of the analysis frame. A basic reason for this is that
the linear frequency resolution of spectral methods does not
suffice at the low end, whereas the frequency resolution of
autocorrelation-based methods is proportional to the inverse of
frequency, being closer to the logarithmic frequency resolution
of musical scales and human hearing. Despite these differences,
reliable multiple-F0 estimation in general seems to require
longer time frames than single-F0 estimation.

Fig. 10 shows the NER’s in different types and levels of
additive noise when the polyphony was known. Pink noise was
generated in the band between 50 Hz and 10 kHz. Percussion
instrument interference was generated by randomizing drum
samples from a Roland R-8 mk II drum machine. The test set
comprised 33 bass drum, 41 snare, 17 hi-hat, and 10 cymbal
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TABLE III
ERRORRATES FORDIFFERENTANALYSIS FRAME LENGTHS

Fig. 10. Error rates in additive pink noise (left panel) and with interfering
percussive sounds (right panel). For both noise types, error rates for a clean
signal and for noisy signals with SNR’s 10 dB, 5 dB, and 0 dB are given.
Polyphony was known.

sounds. The signal-to-noise ratio was adjusted within the anal-
ysis frame, and the ratio was defined between the noise and the
sumof the harmonic sounds. Thus, the SNR from the point of
view of individual sounds is much worse in higher polyphonies.
A 190 ms frame was applied.

D. Comparison With Human Performance

Listening tests were conducted to measure the human pitch
identification ability, particularly the ability of trained musi-
cians to transcribe polyphonic sound mixtures. Detailed anal-
ysis of the results is beyond the scope of this article. Only a
summary of the main findings can be reviewed here.

Test stimuli consisted of computer-generated mixtures of si-
multaneously onsetting sounds that were reproduced using sam-
pled Steinway grand piano sounds from the McGill University
Master Samples collection [45]. The number of co-occurring
sounds varied from two to five. The interval between the highest
and the lowest pitch in each individual mixture was never wider
than 16 semitones in order to make the task feasible for the sub-
jects that did not have “absolute pitch”, i.e., the rare ability of
being able to name the pitch of a sound without a reference
tone. Mixtures were generated from three pitch ranges (i.e., reg-
isters): low (33 Hz–130 Hz), middle (130 Hz–520 Hz), and high
(520 Hz–2100 Hz). In total, the test comprised 200 stimuli.

The task was to write down the musical intervals, i.e., pitch re-
lations, of the presented sound mixtures. Absolute pitch values
were not asked for and the number of sounds in each mixture
was given. Thus, the test resembles the musical interval and
chord identification tests that are a part of the basic musical
training in Western countries.

Fig. 11. Chord error rates of the human listeners (curves) and of the proposed
algorithm (bars) for different stimulus categories. The lowest curve represents
the two most skilled subjects, the middle curve the average of all subjects, and
the highest curve the two clearly weakest subjects. The labels of the simulus
categories consist of a number which signifies the polyphony, and of a letter
which tells the pitch range used.

A total of ten subjects participated in the test. All of them were
trained musicians in the sense of having taken several years of
ear training2 in music. Seven subjects were students of musi-
cology at university level. Two were more advanced musicians,
possessing absolute pitch and exceptional pitch identification
abilities. One subject was an amateur musician of similar mu-
sical ability as the seven students.

Fig. 11 shows the results of the listening test. Chord error rates
(CER) are plotted for different stimulus categories. CER is the
percentage of sound mixtures where one or more pitch identi-
fication errors occurred. The labels of the categories consist of
a number which signifies the polyphony, and of a letter which
tells the pitch range used. Letter “m” refers to the middle, “h” to
the high, and “l” to the low register. Performance curves are av-
eraged over three different groups. The lowest curve represents
the two most skilled subjects, the middle curve the average of all
subjects, and the highest curve the two clearly weakest subjects.

The CER’s cannot be directly compared to the NER’s given
in Fig. 8. The CER metric is more demanding, accepting only
sound mixtures where all pitches are correctly identified. It had
to be adopted to unambiguously process the musicians’ answers,
which were given as pitch intervals.

For the sake of comparison, the stimuli and performance
criteria used in the listening test were used to evaluate the
proposed computational model. Five hundred instances were
generated from each category included in Fig. 11, using the
same software that randomized samples for the listening test.
These were fed to the described multiple-F0 system. The CER
metric was used as a performance measure.

The results are illustrated with bars in Fig. 11. As a general
impression, only the two most skilled subjects perform better
than the computational model. However, performance differ-
ences in high and low registers are quite revealing. The devised
algorithm is able to resolve combinations of low sounds that
are beyond the ability of human listeners. This seems to be due
to the good frequency resolution applied. On the other hand,

2The aim of ear training in music is to develop the faculty of discriminating
sounds, recognizing musical intervals, and playing music by ear, i.e., without
the aid of written music.
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human listeners perform relatively well in the high register. This
is likely to be due to an efficient use of the temporal features,
onset asynchrony and different decay rates, of high piano tones.
These were not available in the single time frame given to the
multiple-F0 algorithm.

IV. CONCLUSIONS

The paper shows that multiple-F0 estimation can be per-
formed reasonably well using only spectral cues, harmonicity
and spectral smoothness, without the need for additional
long-term temporal features. For a variety of musical sounds,
a prior knowledge of the type of sound sources involved is
not necessary, although adaptation of internal source (e.g.
instrument) models would presumably further enhance the
performance.

The primary problem in multiple-F0 estimation appears to
be in associating partials correctly with their individual sources
of production. The harmonicity principle must be applied in
a manner that is flexible enough to accommodate a realistic
amount of inharmonicity in sound production, and yet con-
straining enough to prevent erroneous groupings. Contrasted
with the complexity needed in handling inharmonicity, the
harmonic summation model used to calculating F0 weights
from the amplitudes of the grouped partials is very simple, as
embodied in (8) and (9).

A spectral smoothing approach was proposed as an effi-
cient new mechanism in multiple-F0 estimation and spectral
organization. The introduction of this principle corrected ap-
proximately half of the errors occurring in a system which was
otherwise identical but did not use the smoothness principle.

An attractive property of the iterative estimation and separa-
tion approach is that at least a couple of the most prominent F0s
can be detected even in very rich polyphonies. The probability
of error increases rapidly in the course of the iteration, but on the
basis of the listening tests it was suggested that this is at least in
part due to the inherent characteristics of the problem itself. The
last iteration, i.e., estimation of the F0 of the sound detected last,
accounts for approximately half of the errors in all polyphonies.

The main drawback of the presented method is that it re-
quires a relatively long analysis frame in order to operate re-
liably for low-pitched sounds. This is largely due to the fact that
the processing takes place in the frequency domain where suffi-
ciently fine frequency resolution is required for harmonic series
of low-pitched sounds.

The described method has been applied to the automatic tran-
scription of continuous music on CD recordings. Some demon-
stration signals are provided at [50]. Contrary to the musical
chord identification task, however, the accuracy is not compa-
rable to that of trained musicians. There are several possibilities
that can be explored as areas of future development. Integra-
tion across multiple time frames can be used to improve perfor-
mance. While independent multiple-F0 estimation in each time
frame is important for feature extraction, it does not account for
the real experience represented in a human listener. Analogous
to the case of speech recognition in which models of words and
language are used to improve performance, use of higher-level
features in music are also expected to improve music estimation
and transcription tasks.

TABLE IV
SOME BASIC MUSICAL INTERVALS

APPENDIX

Western music typically uses awell-temperedmusical scale.
That is, the notes are arranged on a logarithmic scale where the
fundamental frequency of a note is .

The notes on a standard piano keyboard range from
up to . The termsemitonerefers to the interval between
two adjacent notes and is used to measure other musical inter-
vals. The F0 relation of two notes that are one semitone apart is

.
Although the well-tempered scale is logarithmic, it can

surprisingly accurately generate F0s that are in rational number
relations. Table IV lists some basic musical intervals and the
corresponding ideal rational number relations. Intervals which
approximate simple rational number relationships are called
harmonic, or, consonantintervals, as opposed todissonant
intervals.
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