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Multiple Fundamental Frequency Estimation Based
on Harmonicity and Spectral Smoothness

Anssi P. Klapuri

Abstract—A new method for estimating the fundamental related to pitch and is defined as the inverse of the period, i.e.,
frequencies of concurrent musical sounds is described. The the time shift for which the time-domain signal shows high cor-
method is based on an iterative approach, where the fundamental (o |ation with itself. In cases where the fundamental period is

frequency of the most prominent sound is estimated, the sound . . Lo . S
is subtracted from the mixture, and the process is repeated for ambigous, a candidate closest to the subjective pitch period is

the residual signal. For the estimation stage, an algorithm is pro- regarded as the correct FO.
posed which utilizes the frequency relationships of simultaneous  Musical signals are natural candidates for the problem of
spectral components, without assuming ideal harmonicity. For the multiple-FO estimation, in the same way as speech signals
subtraction stage, the spectral smoothness principle is proposed 4y natyral candidates for single-FO estimation. Automatic
as an efficient new mechanism in estimating the spectral envelopest it f L t extracting th itch ¢
of detected sounds. With these techniques, multiple fundamental _ranscrlp lon o mUSIC ams at extraciing : € pic e_s, onse
frequency estimation can be performed quite accurate|y in a tlmeS, and durat|0ns Of the notes that constitute the plece. The
single time frame, without the use of long-term temporal features. first multiple-FO algorithms were designed for the purpose
The experimental data comprised recorded samples of 30 musical of transcribing polyphonic music in which several sounds
instruments f_rom_four different sources. Multiple fundamental are playing simultaneously. These attempts date back to
frequency estimation was performed for random sound source and 1970 hen M built tem for t ibing duets. i
pitch combinations. Error rates for mixtures ranging from one to S’_W en oo_re_r Uit a system for ranscrl_ Ing duets, 1.e.,
six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and two-voice compositions [6]. The work was continued by Chafe
18%, respectively. In musical interval and chord identification and his collegues [7]. Further advances were made by Maher
tasks, the algorithm outperformed the average of ten trained [8]. However, the early systems suffered from severe limitations
musicians. The method works robustly in noise, and is able 10 j, vagard to the pitch ranges and relationships of simultaneous
handle sounds that exhibit inharmonicities. The inharmonicity d d th Ivoh tricted to t ¢
factor and spectral envelope of each sound is estimated along with sounds, an e_ polyphony was res r'_C ed 1o two concurren
the fundamental frequency. sounds. Relaxation of these constraints was attempted by
allowing some more errors to occur in the transcription [9], or
by limitation to one carefully modeled instrument [10], [11].
More recent transcription systems have recruited psychoa-
coustically motivated analysis principles, used sophisticated

. INTRODUCTION processing architectures, and extended the application area to

ITCH perception plays an important partin human heari,fd)mpgtational audi_tory scene a.naly.sis in general [12]. Kas_hino
Pand understanding of sounds. In an acoustic environme®t, &l integrated signal analysis with temporal and musical
human listeners are able to perceive the pitches of several sinfigdictions by applying a Bayesian probability network [13].
taneous sounds and make efficient use of the pitch to acouMartin utilized musical rules in transcribing four-voice piano
cally separate a sound in a mixture [1]. Computational metho@@Mpositions [14]. Front-end processing in his system was
for multiple fundamental frequency (FO) estimation have r@erformed using a log-lag correlogram model of the human
ceived less attention, though many algorithms are available f{ditory periphery, as described in [15]. Goto was the first
estimating the FO in single-voice speech signals [2]-[4]. It & introduce a system vyh|ch _works regsopably accurately for
generally admitted that these algorithms are not appropriate'3/-world complex musical signals by finding the melody and
such for the multiple-FO case. bass lines in them [16]. _

A sound has a certain pitch if it can be reliably matched Multiple-FO estimation is closely related to auditory scene
by adjusting the frequency of a sine wave of arbitrary ampfnalysis: any algorithm that can find the FO of a sound and
tude [5]. Pitch is a perceptual attribute of sounds. The corr@0t get confused by other co-occurring sounds is, in effect,
sponding physical term FO is defined for periodic or nearly p€l0ing auditory scene analysis [1, p. 240]. Because the human
riodic sounds only. For these classes of sounds, FO is clos@ifitory system is very accurate in performing this task,

imitation of its processing principles has become common and
psychoacoustically inspired systems in general have been rel-
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that the model could segregate melodic lines from polyphonitying a wide pitch range, varying tone colors, and a particular
music [18]. need for robustness in the presence of other harmonic and noisy
The unitary model of pitch perception proposed by Meddsounds.
and Hewitt has had a strong influence on FO estimation re-An overview of the proposed system is illustrated in Fig. 1.
search [19], [20]. Tolonen and Karjalainen have suggestedrhe method operates iteratively by estimating and removing the
simplified version of the unitary pitch model and applied it tenost prominent FO from the mixture signal. The tgradom-
the multiple-FO estimation of musical sounds [21]. In [22], daant-FO estimatiorrefers to a crucial stage where the FO of
Cheveigné and Kawahara integrated the model with a conctive most prominent sound is estimated in the presence of other
rent vowel identification model of Meddis and Hewitt [23] ancharmonic and noisy sounds. To achieve this, the harmonic fre-
developed an approach where FO estimation is followed by theency relationships of simultaneous spectral components are
cancellation of the detected sound and iterative estimation fmsed to group them to sound sources. An algorithm is proposed
the residual signal. A more straightforward version of this itewhich is able to handle inharmonic sounds. These are sounds
ative approach was earlier proposed by de Cheveigné in [24For which the frequencies of the overtone partials (harmonics)
The periodicity transform method proposed by Setharese notin exact integer ratios. In a subsequent stage, the spec-
and Staley in [25] bears a close resemblance to that of wlem of the detected sound is estimated and subtracted from the
Cheveigne in [24], although the former is purely mathematmixture. This stage utilizes the spectral smoothness principle,
cally formulated. A more dynamic approach to residue-drivemhich refers to the expectation that the spectral envelopes of
processing has been taken by Nakatani and Okuno [2fdal sounds tend to be slowly varying as a function of frequency.
Their system was designed to segregate continuous streammasther words, the amplitude of a harmonic partial is usually
harmonic sounds, such as the voiced sections of two or thidese to the amplitudes of the nearby partials of the same sound.
simultaneous speakers. Multiple agents were deployed to trdt¢ee estimation and subtraction steps are then repeated for the
harmonic sounds in stereophonic input signals, the sounds weagsidual signal. A review and discussion of the earlier iterative
subtracted from the input signal, and the residual was usedajgproaches to multiple-F0 estimation can be found in [22], [24].
update the parameters of each sound and to create new agesyghoacoustic evidence in favor of the iterative approach can
when new sounds were detected. be found in [1, p. 240, 244], [5].
There are two basic problems that a multiple-FO estimator hasThe motivation for this work is in practical engineering appli-
to solve in addition to those that are confronted with in single-Féations, although psychoacoustics is seen as an essential base
estimation. First, the calculated likelihoods (or weights) of difef the analysis principles. The proposed algorithm is able to
ferent FO candidates must not be too much affected by the pressolve at least a couple of the most prominent FOs, even in
ence of other, co-occurring sounds. To achieve this, multiple-F@h polyphonies. Reliable estimation can be carried outin cases
algorithms typically decompose incoming signals into smallevhere the signal has been corrupted by high levels of additive
elements which are then selectively used to calculate the weigbise or where wide frequency bands are missing. Non-ideal
for each candidate. For example, some methods trace sinusosainds that exhibitinharmonicities can be handled. The applica-
components and then group them into sound sources accordings thus facilitated comprise transcription tools for musicians,
to their individual attributes, such as harmonic relationships transmission and storage of music in a compact form, and new
synchronous changes in the components [7], [13], [16], [26liays of searching musical information.
[27]. Other algorithms apply comb filtering in the time domain The paper is organized as follows. Section Il will describe
to select only the harmonically related components [22], [24he different elements of the algorithm presented in Fig. 1.
[25]. Several recent systems have employed auditory mod@lsese include preprocessing, the harmonicity principle used,
which break an incoming sound into subchannel signals and pgre smoothing of detected sounds, and estimation of the number
form periodicity analysis withing channels [18], [20], [22].  of concurrent sounds. Section Il will describe experimental
Inthe second place, even when a correct FO has been deteatesljlts and will compare these with the performance of two
the next-highest weights are often assigned to half or twice efference methods and human listeners. Finally, Section IV will
this correct FO value. Thus, the effect of any detected FO mgsimmarize the main conclusions and will discuss future work.
be cancelled from harmonics and subharmonics before deciding
the next most likely FO. Some algorithms perform this by manip-
ulating the calculated FO weights directly [21]. Other methods
estimate the spectrum of each detected sound and then subtra€his section will look at all the necessary elements required
it from the mixture in an iterative fashion [24], [25], or proces$or the multiple-FO estimation task and as illustrated in Fig. 1. To
as a joint estimation and cancellation pursuit [24], [26]. Thieegin, Section II-A will describe the preprocessing stage which
latter scheme is similar to the analysis-by-synthesis technigugsecessary to achieve robustness in additive noise and to handle
in parametric coding, where for example sinusoidal componesisunds with uneven spectral shapes. Next, the main principle be-
are detected, modeled, and subtracted from the input in ordehtod using harmonic relationships is discussed in Section 11-B.
minimize the residual signal [28]. Section II-C will describe the smoothing algorithm which is
The aim of this paper is to propose a multiple-FO analysieeeded to subtract each detected sound from the mixture so that
method that operates at the level of a single time frame andti& remaining sounds are not corrupted. The last subsection will
applicable for sound sources of diverse kinds. Automatic trapropose a mechanism to control the stopping of the iterative es-
scription of music is seen as an important application area, itimmation and cancellation process.

Il. PROPOSEDMULTIPLE-FO ESTIMATION METHOD
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The frequency indiceg, and k; correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-FO estimator. The
exact formula for calculating is not as critical as the general

Estimate number o
concurrent sounds
and iterate

acoustic
mixture signal

Nobe Predomi- si’; eoctthr;l Remove idea represented by (2). The use of (2) and (3) is based on two
nant-FO Jordetec te%i detected reasonable assumptions. First, the amplitudes of the important
estimation J sound from | fequency partials ifl (k)S(k) are above the additive noise
soun the mixture

N(k). Secondly, it is assumed that a majority of the frequency

components betweeh, and k; correspond to the additive

store FO noise floor, not to the spectral peaksi@fk)S(k). In this case,

(1/g) scales the input spectrum so that the level of additive

noise N (k) stays close to unity and the spectral peaks of the

vibrating systemH (k)S(k) are noticeably above unity. It

follows that in (2), additive noise goes through a linear-like
All calculations in the proposed system take place in the frﬁ'[agnitude_warping transform, whereas Spectra| peaks go

quency domain. A discrete Fourier transform is calculated fgirough a logarithmic-like transform.

a Hamming-WindOWGd frame of an acoustic input Signal, Sam-The response{{(k) is efﬁcienﬂy flattened by the |Oga-

pled at 44.1 kHz rate and quantized to 16-bit precision. Framghmic-like transform, since subsequent processing takes place

lengths of 93 ms and 190 ms were used in simulations. Thgge&he warped magnitude scale. Additive noise is suppressed

may seem long from the speech processing point of view, iy} applying a specific spectral subtraction k) [34]. A

are actually not very |Ong for musical chord identification taSk$nOV|ng averagé\]( ) OVErY(k) is calculated on a |Ogar|thm|c

In such tasks, the pitch range is wide, mixtures of low soungiequency scale and then linearly subtracted fid(i). More

produce very dense sets of frequency partials, and FO precisig@actly, local averages were calculated at 2/3-octave bands

of 3% is required to distinguish adjacent notes (see Appendixhile constraining the minimum bandwidth to 100 Hz at the
Preprocessing the spectrum before the actual multiple-ffjvest bands. The same bandwidths are used in the subsequent

analysis is an important factor in the performance of the systep calculations and are motivated by the frequency resolution

It provides robustness in additive noise and ensures that sougfithe human auditory system and by practical experiments

with varying spectral shapes can be handled. The signal moglgth generated mixtures of musical sounds and noise. The use

assumed by the proposed system is of the logarithmic frequency scale was clearly advantageous

_ over a linear scale since it balances the amount of spectral fine
X(k) = H(k)S(k) + N (k) @ structure that is used with different FOs.

where X (k) is the discrete power spectrum of an incoming The estimated spectral averag&k) is linearly subtracted

acoustic signal and (k) is the power spectrum of a vibratingfrom Y (k) and resulting negative values are constrained to zero

system whose fundamental frequency should be measured. The R

factor H (k) represents the frequency response of the operating Z(k) = max {07 Y (k) — N(k)} . 4)

environment and the body of a musical instrument which fil-

ters the signal of the vibrating source. Elimination/étk) is The preprocessed spectrufitk) is passed to the multiple-FO

often referred to as pre-whitening. The ten(k) represents estimator.

the power spectrum of additive noise. In music signals, the ad-

ditive interference is mainly due to the transient-like sounds Bt Harmonicity Principle

drums and percussive instruments. In this section, the “Predominant-FO estimation” part of the
In principle, additive noise can be suppressed by performiagyorithm is described. A process is proposed which organizes
spectral subtraction in the power spectral domain. The effegixture spectra by utilizing the harmonic relationships between
of H(k), in turn, can be suppressed by highpass lifteritiee  frequency components, without assuming ideal harmonicity.
log-magnitude spectrum. Confirming the reports of earlier au- Several fundamentally different approaches to FO estima-
thors, however, two noise-reduction SyStemS in a cascade dﬁ@ﬁ have been proposed_ One Category of a|gorithms measures
not produce appropriate results [30]. Rather, successful noj&iodicity in the time-domain signal. These methods are typ-
suppression is achieved by applying magnitude warping whiglly based on calculating the time-domain autocorrelation
equalizes? (k) while allowing the additive noise to be linearlyfunction or the cepstrum representation [32], [33]. As shown
subtracted from the result. The power specti¥iiit) is magni- in [34], this is theoretically equivalent to matching a pattern

Fig. 1. Overview of the proposed multiple-FO estimation method.

A. Preprocessing

tude-warped as of frequency partials atarmonic position®f the sound spec-
1 trum. An explicit way of building upon this idea is to perform
Y(k)=1In {1 + EX("%‘)} (2)  harmonic pattern matching in the frequency domain [35], [36].
where Another category of algorithms measures periodicity in the
1 y RE frequency-domain, observing FO from tivgervals between
g=|—""— Z X()= (3) the frequency partials of a sound. The spectrum autocorre-
) ki—ko+1 I=ko

lation method and its variants have been successfully used
1The term “liftering” is defined [29]. in several FO estimators [37], [38]. An interesting difference
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.

between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to error _ 11
in FO halving and the latter to errors in FO doubling. This
is because the time-domain signal is periodic at half the FC
rate (twice the fundamental time delay) and the spectrum is
periodic at double the FO rate. A third, psychoacoustically 0
motivated group of algorithms measures geziodicity of the
amplitude envelopef a time-domain signal within several
frequency channels [20], [21], [39]. Fig.2. Magnitude responses of the 18 frequency bands, at which the bandwise
A major shortcoming of many of the earlier proposef0 estimation takes place.
methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the In each band, the algorithm calculates a weight veEidr.)
harmonic partials are often not in exact integral ratios. Facross frequency indices. Note, indexorresponds to the fun-
example for stretched strings the frequerfgyof an overtone damental frequency’ = (n/K)fs whereK is the number of
partial h obeys samples in the time-domain analysis frame gnds the sam-
pling rate. The resolution of the weight vector is the same as
fo=hFy/1+(h?-1)B (5) that of the preprocessed spectrditk:). The bandwise weights

. . . Ly(n) are calculated by finding a series of eactt frequency
Where_F is the fundamenta_l frequency andl is the |nhar-_ components at baridthat maximizes the sum
monicity factor [40]. Equation (5) means that the partials

Gp(k)

200 400 800 1600 3200 6000
Frequency (Hz)

50 100

cannot be assumed to be found at harmonic spectrum positions, J(mn)—1
but are gradually shifted upwards in the spectrum. This is  Ly(n) = max c(m,n) > Zy(ky +m+nj)p (7)
not of great concern in speech processing, but is important me j=0
when analyzing musical sounds at a wide frequency bandhere
[41]. In the rest of this paper, capital lettEris used to denote J(m,n) = ’V(KB - m)l (®)
fundamental frequency, and the lower case lefteo denote ’ n
simply frequency. 0.75
The proposed predominant-FO estimation method works by c(m,n) = [W] + 0.25. 9)

calculating independent FO estimates at separate frequency
bands and then combining the results to yield a global estimdiere.M = {0,1,....k — 1} is the offset of the series of par-
This helps to solve several difficulties, one of which is inhatials in the sum,J(m, n) is the number of partials in the sum,
monicity. According to (5), the higher harmonics may deviat@ndc(m, n) is a normalization factor. A normalization factor is
from their expected spectral positions, and even the intervigeded becausé varies for different values of: andn. The
between them are not constant. However, we can assume f@f1 c(m, n) was determined by training with isolated musical
spectral intervals to be piecewise constant at narrow-enoufftrument samples in varying noise conditions. The offset
frequency bands. Thus, we utilize spectral intervals in a twW® varied to find the maximum of (7), which is then stored in
step process which 1) calculates the weights of differefw (n). Different offsets have to be tested because the series of
FOs at separate frequency bands and 2) combines the redijgger harmonic partials may have shifted due to inharmonicity.
in a manner that takes inharmonicity into account. Another The upper panel in Fig. 3 illustrates the calculations for a
advantage of bandwise processing is that it provides robustnéi§glle harmonic sound at the bahd= 12 between 1100 Hz
and flexibility in the case of badly corrupted signals where onfnd 1700 Hz. The arrows indicate the series of frequency com-
a fragment of the whole frequency range can be used [41]. TR@nents which maximizes;(n) for the true FO.
two steps are now described. The values of the offset are restricted to physically realistic

1) Bandwise FO EstimationThe preprocessed Spectrun{nharmonicities, a subset &ff. The exact limit is not critical,
Z(k) is analyzed at 18 bands that distribute approximately lo§ierefore (5) with a constagt= 0.01 inharmonicity factor can
arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2€ used to determine the maximum allowable offset from the
Each bandh comprises a 2/3-octave region of the spectrurifieal harmonic positions. The harmonic indexn (5) can be
constraining, however, the minimum bandwidth to 100 HAPProximated by, ~ (k, + K, — 1)/n. It follows that the fun-
Band b is subject to weighting with a triangular frequencylamental partial = 1 must be exactly in the harmonic spectral
response; (k), shown in Fig. 2. The overlap between adjace0sition, whereas the whole skf has to be considered for the
bands is 50%, making the overall response sum to unity at highest partials. In other words, the algorithm combines the use

except the lowest bands. Response at leisdienoted by of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
Zy(k) = Gy(k)Z (k). (6) which is assumed to contain only the first harmonic partial of a

sound with fundamental frequency corresponding to index

Non-zero frequency components &§(k) are defined for fre- jnharmonicity is not allowed. Heré is set to 1, and (7) reduces
quency indicesk € [k, k, + Ky — 1] wherek; is the lowest o the special case

frequency component at bahdand K, is the number of com-
ponents at the band. Ly(n) = Zy(n). (10)
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Fig. 3. Calculation of the bandwise FO weight vectors according to (7).

It follows that in this case the weights, (n) are equal tdZ;(n)
between the frequency limits of the band. The algorithm is de-
tailed in Table I.

The lower panel in Fig. 3 shows the entire weight vector
Lq5(n) calculated at banbl = 12 for the same signal as in the
upper panel. As can be seen, the preprocessed speZip(m)
appears as such at the corresponding banthefn). A twice
narrower copy 0¥, (n) is found an octave below, since the FOs
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower FO candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true FO (70 Hz) which has been assigned the highest
weight.

An important property of the presented calculations is that
only the selected frequency samples contribute to the weight
Ly(n), not the overall spectrum. The other co-occurring sounds
affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section 1I-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-FO0 algorithms, as described in Section I.

2) Integration of Weights Across Subbandsig. 4 shows
the calculated.,(n) weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the

TABLE |

ALGORITHM FOR CALCULATING THE WEIGHTS L, (n) FOR DIFFERENT FOSAT

BAND b. SEE TEXT FOR THE DEFINITION OF SYMBOLS

# Implementation of the model in Eq. (7)
ng « floor[(F,,;,/ K]
ny—Ky,—1
ly—ky+Ky—1
for n < from njto n; do
mg = round[ceil(k,/n)n] -k,

!
3 -‘}Tﬂ[jx +0.01[(/,/n)? = 11-1]

my < my+9d

if my > my+n—1 then
my« 0
m;«n—1

Ly(n) <0

for m < from mg to m| do
J « floor[(Ky—m~—1)/n]+1
L,,, < (0.75/J+0.25) x

3 0 Zolky+ m+ mj)

if L > L,(n) then

now
Lb(n) < Lnow

end
end
# Range of n that have exactly one harmonic partial
# at frequency band b (inharmonicity not allowed)
he1
ko < floor[(k, + Kp)/(h+1)]
if ky<k, then kj < k,
ky e ky+Ky—1
while k) <k, do

for k « from k;to k; do

n < round(k/h)
if L,(n) <Z,(k) then
Ly(n) < Z,(k)

end

he—h+1

# harmonic h+1 is above the band

ko < ceil[(ky, + Kp)h/(h+1)]

if ky <k, then ky <k,

# harmonic h—1 is below the band

ky « floor[(k,— 1)h/(h—1)]

if k) >k, + K, then k| <k, + K,
end

maximum weight is usually assigned to the true FO, providesbrding to a curve determined by (5). A search over possible
that there is a harmonic partial at that band. The inharmonicimglues ofg3(n) is conducted for each, and the highesL(n)
phenomenon appears in Figs. 4(a) and 4(b) as a rising treaml the corresponding(n) are stored in the output. Squaring

in the fundamental frequency. the bandwise FO weights prior to summing was found to pro-
The bandwise FO weights are combined to yield a global Mde robustness in the presence of strong interference where the
estimate. A straightforward summation across the weight vauitch may be perceptible only at a limited frequency range.
tors does not accumulate them appropriately since the FO estiThe global FO weight€.(n) and inharmonicity factorg(n)
mates at different bands may not match for inharmonic sounds, not need to be calculated for all fundamental frequency in-
as can be seen from Fig. 4. To overcome this, the inharmoniaiticesn. Instead, only a set of fundamental frequency indices
factor is estimated and taken into account. Two different inhafry, no,...,ng} is collected from the bandwise weight vec-
monicity models were implemented, the one given in (5) aridrs L (n). This is possible, and advantageous since if a sound
another mentioned in [40, p. 363]. In simulations, the perfois perceptible at all, it generally has a high weight in at least one
mance difference between the two was negligible. The modelafthe bands. Selecting a couple of maxima from each band pre-
(5) was adopted. serves the correct fundamental frequency among the candidates.
Global weightd.(n) are obtained by summing squared band- The maximum global weighL(n) can be used as such to
wise weightsL;(n) that are selected from different bands acdetermine the true FO. However, an even more robust selec-
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! partials is estimated and linearly subtracted from the mixture

:ml S spectrum.
E 2720 P

I Initial estimates for the frequency and amplitude of each si-

SN T nusoidal partial of a sound are produced by the predominant-FO
"% 1079 A A detection algorithm. Efficient techniques for estimating more
_/\—M\—'—'\f_v/\—/\_—/‘ - .

2 seo_Mj\__/Hﬁ,\_,\__ﬁ_/\_,\_‘ precise values have been proposed e.g. in [42]. A method
S M widely adopted is to apply Hamming windowing and zero
§~ e R S S padding in the time domain, to calculate Fourier spectrum,
& 270—— VNN and to use quadratic interpolation of the spectrum around the
| " . . . .
Q70— partial. The second problem, estimating the spectrum in the
5 87——’“’3 vicinity of the partial is equivalent to translating the magnitude

. . . s s : ; spectrum of the original analysis window at the frequency
o %0 Fu:g')a mg)mligg uf;?c ?g?z) 350 400 of the sinusoidal partial. For Hamming window without zero
(a) quency padding, it was found to be sufficient to perform the subtraction

for five adjacent frequency bins.

4317% 2) The Problem of Coinciding Frequency Partial®©ne

2720 e — A issue that is addressed in the algorithm is the problem of

msﬁf‘—’f coinciding frequency partials. To illustrate this problem,
A A simulations were run using the iterative procedure on randomly

1079 generated FO mixtures. Fig. 5 shows the errors as a function of

A\
680 : the musical intervals that occur in the erroneously transcribed
428 —— NN ’.’; sound mixtures (see Appendix). In most cases, the iterative

I

1

T

approach works rather reliably. However, an important obser-

Center frequency of bands (Hz)

270 vation can be made when the distribution of the errors in Fig. 5
170 is analyzed. The error rate is strongly correlated with certain FO
87 relations. The conclusion to be noted is that a straightforward

0 100 200 300 400 500 600 700 800 estimation and subtraction approz_;tch is Iikely to fail in cases
Fundamental frequency (Hz) where the fundamental frequencies of simultaneous sounds
(b) have simple rational number relations, also calletmonic
relations. These are indicated over the corresponding bars in
Fig. 4. Bandwise-calculated FO weighls(n) for two piano tones, Figure Fig. 5.

(a) with FO 65 Hz and Figure (b) with FO 470 Hz. The vectors are displaced T . .

vertically for clarity. The true pitches of the tones are indicated with dashed C0|nC|d|ng fr_equency _partlals from different S_OUhdS_ C_an

vertical lines. cause the algorithm to fail since many of the partials coincide
in frequency. When the sound detected first is removed, the

coinciding harmonics of remaining sounds are corrupted in

:'r?n amotngl the camdldatesf tchanFtE)e rtr;]a?er:] by ftl;]rthﬁ.r Lnsp;eclt?g subtraction procedure. After several iterations, a remaining
€ spectral smoothness of the oS that have Ihe ighest glq oelljnd can become too corrupted to be correctly analyzed in the

weights. This is the reason why a smoothing module is used.itlgrations that follow.

Fig. 1 before storing the FO. This module will be described in Wh . idal ials with litud q q
detail in Section Ill. For the sake of discussion in Section II-C en two sinusoidal partials with amplituces anda; an

one can assume that the maximum global ségre determines phase differencé coincide in frequency, the amplitude of the
the predominant FO. resulting sinusoid can be calculated as

_ [N
C. Spectral Smoothness Principle as = o1+ aze2]. (11)

1) Iterative Estimation and Separationthe presented If the two amplitudes are roughly equivalent, the partials may
method is capable of making robust predominant-FO detectiagither amplify or cancel each other, depending @nHowever,
in polyphonic signals. Moreover, the inharmonicity factor anid one of the amplitudes is significantly greater than the other,
precise frequencies of each harmonic partial of the detectslis usually the case, approaches the maximum of the two.
sound are produced. A natural strategy for extending theAssuming ideal harmonicity, it is straightforward to prove
presented algorithm to multiple-FO estimation is to remove thleat the harmonic partials of two sounds coincide if and only
partials of the detected sound from the mixture and to apply tliehe fundamental frequencies of the two sounds are in rational
predominant-FO algorithm iteratively to the residual spectruinumber relations. Moreover, if the harmonic indices of the co-

Detected sounds are separated in the frequency domain. Baciding partials are andg, then every'® partial of the first
sinusoidal partial of a sound is removed from the mixture spessund coincides with every'" partial of the other sound. An
trum in two stages. First, good estimates of the frequency aimgbortant principle in Western music is to pay attention to the
amplitude of the partials must be obtained. It is assumed thmtich relationships of simultaneously played notes. Simple har-
these parameters remain constant in the analysis frame. Secomzhic relationships are favored over dissonant ones in order to
using the found parameters, the spectrum in the vicinity of tineake the sounds blend better. Because harmonic relationships
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Fig. 5. Distribution of the FO estimation errors as a function of the musical \l\l 30
intervals that occur in the erroneously transcribed sound mixtures. S
S
are so common in music, these “worst cases” must be handle §o 10
well in general. = A
To solve this problem, the spectra of the detected .sounds mus 00 1000 2000 3000 2000 5000 5000
be smoothed before subtracting them from the mixture. Con- Frequency (Hz)
sider the preprocessed spectriitk) of a two-sound mixture ()

in Fig. 6(a). In the figure, the harmonic partials of the higher-
pitched sound coincide with every third harmonic of the lower- ) o
pitched Sounthigher _ 3Flawer)- As predicted by (11), the Fig. 6. lllustration of the spectral smoothness principle. (a) Preprocessed

R . ) spectrumZ (k) containing two sounds with FOs in the relation 1:3. (b) Two
coinciding partials randomly cancel or amplify each other at th@ferent smoothing operations have been used to estimate the spectral envelope

low frequencies, whereas at the higher frequencies the summedripe lower-pitched sound. The results are indicated with thin and thick
amplitudes approach the maximum of the two, i.e., the spectP§fzontal curves.
envelope of the higher sound.

When the spectrum of the lower-pitched sound is smoothgdrtial, as was previously explained following (11) in this sec-
(the thin slowly decreasing horizontal curve in Fig. 6(b)), the caion. The algorithm applies a multistage filter with the following
inciding partials at the higher frequencies rise above the smoateps [43]. First, the indicgs. ., h—1, h, h+1, h+2, ...} of the
spectrum and thus remain in the residual after subtraction.Harmonic partials around harmorficare collected from an oc-
particular, this solves a very common case where the dense have-wide window. Next, the surrounding partials are classified
monic series of a lower-pitched sound matches the few partifiso groups, where all the harmonics that share a common di-
of a higher-pitched sound. Detecting the higher-pitched sougidor are put in the same group, starting from the smallest prime
firstis less common and in that case, only a minority of the haflactors. Third, weighted mean around harmahis calculated
monics of the lower-pitched sound are deleted. inside groups in the manner described above. In the last step,

It should be noted that simply smoothing the amplitude envihe estimates of different groups are averaged, weighting each
lope (the thin curve in Fig. 6(b)) of a sound before subtractingroup according to its mean distance from harmdnic
it from the mixture does not result in lower error rates. A suc- 3) Recalculation of FO Weights After Smoothinghe de-
cessful smoothing algorithm was found by applying psychogeribed principle of smoothing provides an efficient solution
coustic knowledge. The full motivation for this approach hag another common class of errors. In this class of errors two
been presented in [43] and is beyond the scope of this papefor more fundamental frequencies in specific relationships may

The algorithm first calculates a moving average over the amause the detection of a nonexistent sound, such as the root of a
plitudes of the harmonic partials of a sound. An octave-widausical chord in its absence. For instance, when two harmonic
triangular weighting window is centered at each harmonic pageunds with fundamental frequenci2é and3F are played,
tial », and the weighted meat), of the amplitudes of the par- the spectra of these sounds match every second and every third
tials in the window is calculated. This is the smooth spectruharmonic partial of a nonexisting sound with fundamental fre-
illustrated by a thin horizontal curve in Fig. 6(b). The originauencyF. This frequencyF’ may be erroneously estimated in
amplitude valuez,, is then replaced with the minimum of thethe predominant-FO calculations given the observed partials.
original (ay) anddp,: The problem can be solved by applying smoothing and an

ordered search when selecting among the candidate indjces
ap, — min(ap,dp). (12) calculated by the predominant-F0 algorithm (see the end of Sec-
tion 11-B). First, the candidate; with the highest global weight
These values are illustrated by a thick curve in Fig. 6(bJ.(n;) is taken and its spectrum is smoothed. Then the weight
Performing this straightforward smoothing operation befor& this candidate is recalculated using the smoothed harmonic
subtracting the sound from the mixture reduces the error ratgaplitudes. In the above-described case of a nonexistent sound,
significantly. the irregularity of the spectrum decreases the level of the smooth

A further improvement to the smoothing method can be madpectrum significantly, and the weight remains low. If the recal-

by utilizing the statistical dependency of evei harmonic culated weight drops below the second-highest weight, the next
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candidaten, is processed, and this is continued. The highest re-As long as the value af; stays above a fixed threshold, the
calculated global weight determines the FO. The computatiorsalund detected at iteratians accepted as a valid FO estimate
load of applying smoothing and recalculation to select amoiagd the iteration is continued. In (13) and (14), the SNR-related
the candidates is negligible, since the recalculation procedteems have different roles and thus different signs.
has to consider only one FO and one valuenoih (7).

Ill. RESULTS

D. Estimating the Number of Concurrent Sounds A. Experimental Setup

A mechanism is needed which controls the stopping of the simylations were run to validate the proposed methods. The
iterative FO estimation and sound separation process. This legdsystic database consisted of samples from four different
to the estimation of the number of concurrent sounds, i.e. t§8yrces. The McGill University Master Samples collection [45]
polyphony. The difficulty of the task is comparable to that ofng independent recordings for acoustic guitar were available
finding the FO values themselves. Huron has studied musiciagﬁ’eady during the development phase of the system. In order
ability to identify the number of concurrently sounding voiceg, verify that the results generalize outside these data sets, the
in polyphonic textures [44]. According to his report by foursamples from the University of lowa website [46] and IRCAM
voice polyphonies the test subjects underestimated the nUMBgJdio Online [47] were added to the final evaluation set. There
of voices in more than half of the cases. were altogether 30 different musical instruments, comprising

A statistical-experimental approach was taken to solve theass and reed instruments, strings, flutes, the piano, and the
problem. Random mixtures of one to six concurrent harmonigiitar. These introduce several different sound production
sounds were generated by allotting sounds from McGill Uninechanisms and a variety of spectra. On the average, there
versity Master Samples collection [45]. The mixtures were thefere 1.8 pieces of each of the 30 instruments and 2.5 different
contaminated with pink noise or random drum sounds froplaying styles per instrument. The total number of samples
Roland R-8 mk Il drum machine. Signal-to-noise ratio wagas 2536. These were randomly mixed to generate test cases.
varied between 23 dB and2 dB. The instruments marimba and the vibraphone were excluded

The behavior of the iterative multiple-FO estimation systefigom the data set since their spectrum is quite different from
was investigated using these artificial mixtures with knowghe others and extremely inharmonic. The system admittedly
polyphonies. Based on this investigation it was decided {&nnot handle these sounds reliably.
split the estimation task into two stages. The first stage detectssemirandom sound mixtures were generated according to
if there are any harmonic sounds at all in the input, and thgo different schemesRandom mixturesvere generated by
second estimates the number of concurrent sounds, if the fi§gdt allotting an instrument and then a random note from its
test has indicated that some are present. It was found that {iyle playing range, restricting, however, the pitch over five
best single feature to indicate the presence of harmonic sougdgyves between 65 Hz and 2100 Hz. The desired number of
was the global weighL{,.. of the winning FO candidate atsimultaneous sounds were allotted and then mixed with equal
the first iteration. The best compound feature consistspf. mean-square leveldlusical mixturesvere generated in a sim-
and terms related to the signal-to-noise ratio (SNR) of the inpitidr manner, but favoring different pitch relationships according
signal: to a statistical profile discovered by Krumhansl in classical

Western music [48, p. 68]. In brief, octave relationships are
ki1 ki the most frequent, followed by consonant musical intervals,
Z X(l)] —1In [Z N(pow)(l)] . and the smallest probability of occurrence is given to dissonant
I=ko I=ko (13) intervals. In general, musical mixtures are more difficult to

Here X (k) is the di fthe i ; r?solve (see Section 1I-C2).
ere X (k) is the discrete power spectrum of the input signal »¢stic input was fed to the multiple-FO algorithm that es-
and N,ow) (k) is the power spectrum of the estimated nois

) o F . fimated FOs in a single time frame. Unless otherwise stated, the
obtained by applying inverse transform of (2) 8i(k). Fre- nymper of FOs to extract, i.e., the polyphony, was given along
quency indicesiy andk, are the same as in (3). A signal iyjith the mixture signal. It was found to be more informative to
determined to contain harmonic sounds wheiis greater than frst evaluate the multiple-FO estimator without the polyphony
a fixed threshold. _ . estimator, because these two are separable tasks and because the
Ifan analysis frame has been determined to contain harmopigarence methods do notimplement polyphony estimation. The
sounds, another model |s_useg)to estimate the number of soupggfiguration and parameters of the system were fixed unless
The maximum global weighk .. at iteration: was again the therwise stated. A correct FO estimate was defined to deviate
best single feature for controlling the iteration stopping. HoWass than half a semitone-B%) from the true value, making
ever, the weight values are affected by the SBR... getting it “round” to a correct note on a Western musical scale. Errors
smaller in noise. The bias can be explicitly corrected, resultiRgnajler than this are not significant from the point of view of

vo = 4In[Limaz] + In

in the measure music transcription.
k k
. ! ~ - B. Reference Methods
v = 1.81n (LS;)GI) ~n | S XD+ [ 3 Npow ()] - _ _
Pt = To put the results in perspective, two reference methods were

(14) used as a baseline in simulations. The first methddl, is a
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[ Proposed
TK / 1kHz
TK /520Hz

state-of-the-annonophonid=0 estimator for speech and music .
signals [49]. Naturally, the method can be used as a baseline in 00
single-FO0 analysis only. The algorithm has been designed to be % 15
reliable for individual analysis frames and has been thoroughly 510
tested and compared with other methods in [49]. The original & s} _
implementation by the authors was employed and parameters g : -
were left intact except the “absolute threshold” which was fine- 1 2 3 Pol4 5 6
. yphony

tuned to value 0.15 to improve the performance.

The other reference method, referred toTd§ is a mul- Fig. 7. Error rates for detecting any of the potential FOs in a sound as a function
tiple-FO estimator proposed by Tolonen and Karjalainen i1y the predominant-FO estimation algorithm and the polyphony.
[21]. The implementation was carefully prepared based on the
reference, and the original code by the authors was usedaifmore appropriate error measure isa@e error rate (NER)
the warped linear prediction part of the algorithm. Thoroughetric. The NER is defined as the sum of the FOs in error di-
testing was carried out to verify the implementation. Originafided by the number of FOs in the reference transcription. The
parameters given in [21] were applied. As reported by ttesrors are of three types:
authors, the method cannot handle “spectral pitch,” i.e., FOsa) Substitution errors. These are defined as errors in which a
above 1 kHz. It was further found out here that the method is  given FO is detected but the estimated value differs more
best at detecting FOs in the three-octave range between 65 Hz than+3% from the reference.
and 520 Hz. Thus, in the simulations that follow, the mixtures b) Deletion errors have occurred if the number of detected
given to theTK method were restricted to contain FOs below FOs is smaller than the number of FOs in the reference.
either 520 Hz or 1 kHz. The bound is specified for each case inc) Insertion errors have occurred if the number of detected
the simulation results to follow. FOs exceeds that in the reference.

Substitution and deletion errors together can be counted from
the number of FOs in the reference that are not correctly es-
In the first experiment, different FO estimators are comparetitnated. Insertion errors can be counted from the number of
For this experiment, a predominant-FO estimate (firstly detectegcessive estimates.
FO) was defined to be correct if it matches the correct Fangf Results for multiple-FO estimation in different polyphonies
of the component sounds. That is, only a single match amongadé shown in Fig. 8. Here the number of concurrent sounds to
possible FOs is required in this error measure. The error rate veasract was given for each mixture signal, i.e., the polyphony
calculated as the amount of predominant-FO errors divided tmas known. Thus insertion and deletion errors do not occur.
the number of random sound mixtures (1000), not by the numbRandom and musical sound mixtures were generated according
of reference notes (e.g. 6000 in the six-note mixtures). FO egb-the described schemes, and the estimator was then requested
mation was performed in a single 190 ms time frame 100 nmsfind a given number of FOs in a single 190 ms time frame 100
after the onset of the sounds. Fig. 7 shows the error rates for the after the onset of the sounds.
predominant-FO estimation in different polyphonies. Results areln Fig. 8, the bars represent the overall NER’s as a function of
given for the proposed system and for the two reference systethg polyphony. As can be seen, the NER for random four-sound

For the proposed system, the error rates are generally belpglyphonies is 9.9% on the average. The different shades of
10%, getting close only in six-note polyphonies. Surprisinglgray in each bar indicate the error cumulation in the iteration,
increasing the number of concurrent sounds from one to tworors which occurred in the first iteration at the bottom, and
appears to help lower the error rate of detecting at least oneét®ors of the last iteration at the top. As a general impression,
correctly. However, this is due to the fact that the acoustic dathe system works reliably and exhibits graceful degradation in
base contains a small percentage of irregular sounds for whiohreasing polyphony. Results for musical mixtures are slightly
the simple model in (7) does not work. Among these are eworse than for random mixtures (see Section [I-C2), but the
high flute tones and high plucked string tones. Two-sound migifference is not great. This indicates that the spectral smoothing
tures are more likely to contain at least one clear sound with pdnciple works well in resolving harmonically related pitch
anomalities, which then appears as the predominant FO.  combinations.

The YIN method achieves 4.1% error rate for isolated notes. Analysis of the error cumulation reveals that the errors which
Since the method is not intended for multiple-FO estimation, it@ccurred in the last iteration account for approximately half of
not fair to make comparison for polyphonic signals. Like othehe errors in all polyphonies, and the probability of error in-
single-FO estimators, the algorithm converges to 70% error rateases rapidly in the course of iteration. Besides indicating that
already in three-note mixtures. Th& method is not quite as re- the subtraction process does not work perfectly, the conducted
liable for single-pitch signals, but works robustly in polyphonylistening tests suggest that this is a feature of the problem it-
If the method is given FOs only below 520 Hz, the predomself, rather than only a symptom of the algorithms used. In most
nant-FO detection accuracy comes close to the proposed systaixtures, there is a sound or two that are very difficult to per-
in higher polyphonies. This is partly due to the relatively highereive because their spectrum is virtually hidden under the other
random guess rate. sounds.

In the second experiment, the performance of multiple-FO es-For the reference methdiK, note error rates for mixtures
timation is explored in more detail. For multiple-F0O estimatiorranging from one to six sounds were 22%, 31%, 39%, 45%,

C. Experimental Results
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Random mixtures Musical mixtures TABLE I
ERROR RATES FORDIFFERENT SYSTEM CONFIGURATIONS WHEN THE
POLYPHONY OF THE SIGNALS WAS KNOWN
20 201
i5 " Polyphony
3 107 & ' System configuration
S S ystemn configin . y
] g 101
Lﬁ 10 § Complete system 1.8% 9.9 %
e 5 Inharmonicity not allowed 6.2 % 17 %
|| ] No smoothing 22% 20%
1 2 3 4 5 6 1 2 3 4 5 6
Polyphony Polyphony

: . I _ Avoid deletions: v=0.65 Avoid insertions: vi=1.1
Fig. 8. Note error rates for multiple-FO estimation using the proposed :

algorithm when the polyphony was known. Bars represent the overall errol
rates, and the different shades of gray the error cumulation in iteration.

I substitutions B subshtuhons :

deletions

35 insertions |
49%, and 53%, respectively, when FOs were resticted to rang\, |

65 Hz—1 kHz. For the three-octave range between 65 Hz and 5 25w
Hz, the corresponding error rates were 7.5%, 17%, 26%, 3 40/2 %g S
38%, and 43%. Given the complexity of the problem, eventhesi 10
error rates are rather low. g
Table Il gives the error rates for different system configura- 1 2 3 4 5 6 1 2 3 4 5 6
tions. Different processing elements were disabled one-by-on Polyphony Polyphony
in order to evaluate their importance. In each case, the system
was kept otherwise fixed. In the first test, the mechanisms thatlg 9. Error rates for the two different polyphony estimations strategies.
accommodate inharmonicity were disabled. One mechanism is
in bandwise FO-weight calculations, and in this case the offsettraneous FOs appear in monophonic signals. This is likely
m in (7) was constrained to a value which corresponds to &m be characteristic of the problem itself (see Huron's report
ideal harmonicity. Another mechanism is in the integratio#4] mentioned in Section 1I-D). One or two sounds in rich
phase. Here the inharmonicity factor was constrained to zepmlyphonies are usually very difficult to distinguish.
leading to a straightforward summing across squared weighfTable Il shows the influence of shortening the analysis frame.
vectors. The resulting performance degradation is mostly dlike significant difference between 190 ms and 93 ms frame
to the bandwise calculations. sizes is partly caused by the fact that the applied technique
In the second test, the spectral smoothing algorithm wass sometimes not able to resolve the FO with the required
switched between the one presented in Section 1I-C2 amB% accuracy. Also, irregularities in the sounds themselves,
a version which leaves the harmonic series intact. Tlsech as vibrato, are more difficult to handle in short frames.
smoothing operation made a significant improvement to muttowever, when the time frame was shortened from 190 ms
tiple-FO estimation accuracy in all polyphonies, except for the 93 ms, the error rate of the reference meth&dincreased
single-note case where it did not have a noticeable effect on tivdy by approximately 5% for both 1000 Hz and 520 Hz
performance. FO limits and in all polyphonies. Thus, the error ratesTéf
In all the results presented above, the polyphony of the sigere essentially the same as those presented around Fig. 8.
nals was known. Fig. 9 shows the statistical error rate of thghile the performance is still clearly worse than that of the
overall multiple-FO estimation system when the polyphony @roposed method (polyphony was known), an obvious drawback
estimated in the analysis frame, as described in Section II-D. Ré-the proposed method is that its accuracy depends on the
sults are shown for two different polyphony estimation thresltength of the analysis frame. A basic reason for this is that
olds (i.e., thresholds far; in (14) which were 0.65 and 1.1 for the linear frequency resolution of spectral methods does not
the left and right panels, respectively). Depending on the apidffice at the low end, whereas the frequency resolution of
cation, either overestimating or underestimating the numberaiftocorrelation-based methods is proportional to the inverse of
concurrent sounds may be more harmful. In a music transcripequency, being closer to the logarithmic frequency resolution
tion system, for example, extraneous notes in the output are vefynusical scales and human hearing. Despite these differences,
disturbing. However, if the frame-level FO estimates are furthegliable multiple-FO estimation in general seems to require
processed at a higher level, it is usually advantageous to prodiaeger time frames than single-FO estimation.
too many rather than too few note candidates. Fig. 10 shows the NER’s in different types and levels of
In general, the proposed polyphony estimation methaudiditive noise when the polyphony was known. Pink noise was
operates robustly. However, when the estimation thresholdgienerated in the band between 50 Hz and 10 kHz. Percussion
tuned to avoid extraneous detections in monophonic signdfsstrument interference was generated by randomizing drum
the polyphony is underestimated in higher polyphonies. On teamples from a Roland R-8 mk Il drum machine. The test set
other hand, when underestimations are avoided, many of twmprised 33 bass drum, 41 snare, 17 hi-hat, and 10 cymbal

[ insertions
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TABLE Il 100
ERRORRATES FORDIFFERENTANALYSIS FRAME LENGTHS
80F * — all 10 subjects
Actual polyphony 0 — two weakest
Pol.yph(?ny Fr'flme il S 60 X — two most skilled
estimation size 1 2 3 4 5 6 ;, bars — proposed
Polyphony 190ms 1.8 39 63 99 14 18 O 40 algorithm
known  93ms 42 87 16 22 29 34 "
Estimate,avoid 190ms 11 14 16 18 22 32
deletions  93ms 14 19 23 30 38 46 0
2m 2h 2I 3m 3h 31 4m 4h 5m
Stimulus category
Pink noise Drum sounds
40 Fig. 11. Chord error rates of the human listeners (curves) and of the proposed
35 B SNRee | o o[ 25/ I8 SNR | e algorithm (bars) for different stimulus categories. The lowest curve represents
B 1048 g il Bl 1048 the two most skilled subjects, the middle curve the average of all subjects, and
Vigmse | . 20\ 508 the highest curve the two clearly weakest subjects. The labels of the simulus
:\o\ ® =1 0dB categories consist of a number which signifies the polyphony, and of a letter
E’ — ; 15/= which tells the pitch range used.
= 2 0
5l Atotal of ten subjects participated in the test. All of them were
i1 1 1 1 15 E E B I trained musicians in the sense of having taken several years of
1 23 4 5 8§ 0 1 2 3 4 5 ¢ ear training in music. Seven subjects were students of musi-
Polyphony Polyphony cology at university level. Two were more advanced musicians,

possessing absolute pitch and exceptional pitch identification

Fig. 10. Error rates in additive pink noise (left panel) and with interferingbilities. One subject was an amateur musician of similar mu-

percussive sounds (right panel). For both noise types, error rates for a cl o
signal and for noisy signals with SNR’s 10 dB, 5 dB, and O dB are gives?gal ability as the seven StUdents_" .
Polyphony was known. Fig. 11 shows the results of the listening test. Chord error rates

(CER) are plotted for different stimulus categories. CER is the

sounds. The signal-to-noise ratio was adjusted within the anBfrcentage of sound mixtures where one or more pitch identi-
ysis frame, and the ratio was defined between the noise and figation errors occurred. The labels of the categories consist of
sumof the harmonic sounds. Thus, the SNR from the point & number which signifies the polyphony, and of a letter which
view of individual sounds is much worse in higher polyphonie&€lls the pitch range used. Letter “m” refers to the middle, “h” to

A 190 ms frame was applied. the high, and “I" to the low register. Performance curves are av-
eraged over three different groups. The lowest curve represents
D. Comparison With Human Performance the two most skilled subjects, the middle curve the average of all

Listening tests were conducted to measure the human pitPI€Cts, and the highest curve the two clearly weakest subjects.
identification ability, particularly the ability of trained musi-. The CER's cannot be directly compared to the NER's given

cians to transcribe polyphonic sound mixtures. Detailed andi-F19- 8. The CER metric is more demanding, accepting only

ysis of the results is beyond the scope of this article. Onlysé)und mixtures where all pitches are correctly identified. It had

summary of the main findings can be reviewed here to be adopted to unambiguously process the musicians’ answers,
Test stimuli consisted of computer-generated mixtures of ¥Nch V\;]ere g:;/en ?S pitch mtervalﬁ. imull and perf
multaneously onsetting sounds that were reproduced using sa -or the sa € of comparison, the stimuli and performance
pled Steinway grand piano sounds from the McGill Universit riteriaused in the. listening test were used t.o evaluate the
Master Samples collection [45]. The number of co-occurri oposed computational model._ Five h“’?dreq mstance_s were
sounds varied from two to five. The interval between the high ?nerated from each category included in Fig. 11, using the

and the lowest pitch in each individual mixture was never wid§AMe software that randomized samples for the listening test.

than 16 semitones in order to make the task feasible for the suf€Se were fed to the described multiple-FO system. The CER

jects that did not have “absolute pitch”, i.e., the rare ability dJpetric was used as a performance measure.

being able to name the pitch of a sound without a referen,ceThe results are illustrated with bars in Fig. 11. As a general

tone. Mixtures were generated from three pitch ranges (i.e., r pression, only the two most skilled subjects perform better

isters): low (33 Hz—130 Hz), middle (130 Hz-520 Hz), and hig an the qomputational model. Howeyer, perfgrmance diffgr-
(520 Hz—2100 Hz). In total, the test comprised 200 stimuli. ences in high and low registers are quite revealing. The devised

The task was to write down the musical intervals, i.e., pitch ré‘lgor'thm is able to resolve combinations of low sounds that

lations, of the presented sound mixtures. Absolute pitch valu@s beyond the ability of h“maﬂ Iisteners. This seems to be due
were not asked for and the number of sounds in each mixtL'iPethe good frequency resolution applied. On the other hand,

was given. Thus, the test resembles the musical interval an ) L . N
he aim of ear training in music is to develop the faculty of discriminating

Ch‘?ffj id_emiﬁcation tests Fhat are a part of the basic mUSi%Lnds, recognizing musical intervals, and playing music by ear, i.e., without
training in Western countries. the aid of written music.
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human listeners perform relatively well in the high register. This
is likely to be due to an efficient use of the temporal features,
onset asynchrony and different decay rates, of high piano tones.
These were not available in the single time frame given to the
multiple-FO algorithm.

IV. CONCLUSIONS

The paper shows that multiple-FO estimation can be per-
formed reasonably well using only spectral cues, harmonicity
and spectral smoothness, without the need for additional
long-term temporal features. For a variety of musical sounds,
a prior knowledge of the type of sound sources involved is
not necessary, although adaptation of internal source (e.g.
instrument) models would presumably further enhance the
performance.
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TABLE IV
SOME BASIC MUSICAL INTERVALS

Interval name (sen?iltzoenes) FO relation
octave 12 2:1
perfect fifth 7 3:2
perfect fourth 5 4:3
major third 4 5:4
minor third 3 6:5
major second 2 9:8

APPENDIX

The primary problem in multiple-FO estimation appears to Western music typically usesveell-temperednusical scale.
be in associating partials correctly with their individual sourceBhat is, the notes are arranged on a logarithmic scale where the
of production. The harmonicity principle must be applied ifindamental frequenckj, of a notek is £, = 440 x 2(k/12) Hy,
a manner that is flexible enough to accommodate a realisticThe notes on a standard piano keyboard range frem—48
amount of inharmonicity in sound production, and yet cor#p tok = 39. The termsemitoneefers to the interval between
straining enough to prevent erroneous groupings. Contrastag adjacent notes and is used to measure other musical inter-
with the complexity needed in handling inharmonicity, th&als. The FO relation of two notes that are one semitone apart is
harmonic summation model used to calculating FO weighfg.,1/F) = 2(/'?) ~ 1.06.
from the amplitudes of the grouped partials is very simple, asAlthough the well-tempered scale is logarithmic, it can

embodied in (8) and (9).

surprisingly accurately generate FOs that are in rational number

A spectral smoothing approach was proposed as an effiations. Table IV lists some basic musical intervals and the
cient new mechanism in multiple-FO estimation and spectr@rresponding ideal rational number relations. Intervals which
organization. The introduction of this principle corrected ampproximate simple rational number relationships are called
proximately half of the errors occurring in a system which wasarmonic or, consonantintervals, as opposed tdissonant
otherwise identical but did not use the smoothness principlatervals.

An attractive property of the iterative estimation and separa-
tion approach is that at least a couple of the most prominent FOs
can be detected even in very rich polyphonies. The probability

) S . : 1]
of errorincreases rapidly in the course of the iteration, but on the[
basis of the listening tests it was suggested that this is at least ifp)
part due to the inherent characteristics of the problem itself. The
lastiteration, i.e., estimation of the FO of the sound detected last,
accounts for approximately half of the errors in all polyphonies. [3]

The main drawback of the presented method is that it re-
quires a relatively long analysis frame in order to operate re-
liably for low-pitched sounds. This is largely due to the fact that
the processing takes place in the frequency domain where suffif]
ciently fine frequency resolution is required for harmonic series 6]
of low-pitched sounds.

The described method has been applied to the automatic trarf7]
scription of continuous music on CD recordings. Some demon-
stration signals are provided at [50]. Contrary to the musical 8
chord identification task, however, the accuracy is not compa-
rable to that of trained musicians. There are several possibilitieg®]
that can be explored as areas of future development. Integrf:!L-0
tion across multiple time frames can be used to improve perfor-
mance. While independent multiple-FO estimation in each timél1i]
frame is important for feature extraction, it does not account folel
the real experience represented in a human listener. Analogous
to the case of speech recognition in which models of words ang3]
language are used to improve performance, use of higher-level
features in music are also expected to improve music estimation
and transcription tasks.
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