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ABSTRACT

A model for multi-pitch and periodicity analysis of complex au-
dio signals is presented that is more efficient and practical than
the Meddis and O’Mard unitary pitch perception model, yet ex-
hibits very similar behavior. In this paper we also demonstrate
how to apply this model to source separation of complex audio
signals such as polyphonic and multi-instrumental music and mix-
tures of simultaneous speakers. Such analysis techniques are im-
portant for automatic transcription of music and structural repres-
entation of audio signals. (See also: http://www.acoustics.hut.fi/
˜ttolonen/icassp99/pitchdet/)

1. INTRODUCTION AND MOTIVATION

Many principles have been proposed for the modeling of human
pitch perception and for practical pitch determination of audio or
speech signals [1, 2]. For regular signals with harmonic structure,
such as clean speech of a single speaker, the problem is solved
quite reliably. When the complexity increases further, e.g., when
harmonic complexes of sounds or voices are mixed in a single sig-
nal channel, the determination of pitches is generally a difficult
problem that has not been solved satisfactorily. The task becomes
even more difficult if the signals have to be separated, i.e., each
source signal or its spectral representation must be taken apart.

The concept of pitch [3] refers to auditory perception and has
a complex relationship to physical properties of a signal. Thus
it is natural to distinguish it from the estimation of fundamental
frequency and to apply methods that simulate human perception.
Many such approaches have been proposed and they generally fol-
low one of two paradigms: place (or frequency) theory and tim-
ing (or periodicity) theory. Neither of these in pure form has
been proven to show full compatibility with human pitch percep-
tion and it is probable that a combination of the two approaches
is needed. Recently it has been demonstrated that a peripheral
auditory model which uses time-domain processing of periodicity
properties shows ability to simulate many known features of pitch
perception which are often considered to be more central [4, 5].
Such models are attractive since auditory processes may be simu-
lated with relatively straightforward DSP algorithms. Additional
features may be readily included using, e.g., frequency domain al-
gorithms, if desired.

The unitary pitch analysis model of Meddis and O’Mard [4]
and its predecessors by Meddis and Hewitt [5] are among the best
known recent models of ‘time-domain’ pitch analysis. The unit-
ary model is shown to exhibit qualitativelygood correspondence

to human perception in many listening tasks such as missing fun-
damental, musical chords, etc. A practical problem with the model
is that, despite of its quite straightforward principle, the overall al-
gorithm is computationally expensive since the analysis is carried
out using a multichannel auditory filterbank.

In this paper we propose a simplified model for pitch analysis
that is computationally much more efficient than the Meddis and
O’Mard model, yet has very similar behavior, as will be demon-
strated below. Additional features will be proposed in order to
allow for further analysis of multi-pitch signals, such as musical
chords and speech mixtures. The application of the model to sound
source separation, useful in computational auditory scene analysis
(CASA) and structural representation of audio signals, is demon-
strated.

2. REDUCED COMPLEXITY MODEL OF AUDITORY
PITCH PERCEPTION

A block diagram of the Meddis-O’Mard unitary pitch perception
model is depicted in Fig. 1. A band-pass filterbank, most often
a gammatone filterbank [6], is used to simulate the frequency se-
lectivity of the peripheral hearing. The signal is split into chan-
nels such as ERB (equivalent rectangular bandwidth) channels and
each channel is half-wave rectified and lowpass filtered (about 1
kHz) in order to simulate the activity of the hair cells. Signal peri-
odicity is next extracted in each channel by computing its autocor-
relation function (ACF) or a similar periodicity measure. Finally,
the ACFs are summed from each channel to yield a summary auto-
correlation (SACF) that shows the overall periodicity properties of
the incoming signal. For more details, see [4, 5].

Meddis and O’Mard have compared the behavior of the unit-
ary pitch perception model with results from psychoacoustical ex-
periments and shown that the model is capable of simulating sev-
eral important or interesting special cases of perception, at least
qualitatively [4]. A problem with the unitary model from a prac-
tical application point of view is that computing of filterbank, such
as 32–120 channels and their autocorrelations, is a heavy although
straightforward task. To reduce this computation has been one of
our motivations in this study.

The proposed simplified pitch analysis model isillustrated in
Fig. 2. The middle part of the model (x2 ! x3) corresponds to
the functionality of the Meddis-O’Mard model and the lower part
shows extensions that will be discussed below. The simplicity of
our model is based on the division of the audio frequency range to
only two subchannels. Low frequencies below 1 kHz are analyzed
directly by autocorrelation while high frequencies above 1 kHz
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Figure 1: A block diagram of the unitary multi-channel pitch ana-
lysis model (after [4]).
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Figure 2: A block diagram of the proposed model.

are first (half-wave) rectified and low-pass filtered and then the
autocorrelation is computed. Summary autocorrelation is now the
sum from only two subchannels. This approach, in comparison to
the model of Fig. 1, is based on assumption that at low frequencies
for this particular task the auditory system acts as a simple linear
channel before the periodicity detector as well as that above 1 kHz
it does envelope following and then similar periodicity detection of
the envelope. This two-channel analyzer is naturally much more
efficient computationally than a multi-channel pitch analyzer.

Several details of the model in Fig. 2 are important for proper
functioning. First, prefiltering to simulate the equal loudness curve
sensitivity of the human ear may be included. The second box
in our model is a frequency-warped version of linear prediction
(WLP, order 12 for sample rate offs = 22 kHz), as described in [7],
in order to pre-whiten the signal. This effect may be considered
somewhat similar to the adaptation in hair cell models. The block
‘autocorrelation’ deviates also from its normal definition. In our
model it is computed through the discrete Fourier transform (DFT)
and its inverse (IDFT) ascorr(�) = IDFTfjDFTfx(�)gjkg
where exponentk = 2=3 instead ofk = 2 for normal autocor-
relation and� is the time lag variable. In the frequency domain
this operation shows resemblance to the loudness scaling of mag-
nitude. One more detail of implementation is that actually the two
(second order) 1 kHz low-pass filters in the middle part of Fig. 2
model include a high-pass property, e.g. with a cutoff at 80 Hz, in
order to remove the down-ramp baseline of the correlation function
up from zero time lag. These implementation features have been
selected based on experimentation with various practical signals.

Another important issue in adapting the model to human aud-

itory behavior is to consider the temporal resolution of pitch ana-
lysis. Again, based on experimentation, a Hamming window length
of 46.4 ms (frame size1024 samples forfs = 22 kHz), yield-
ing about 25 ms effective window length, was found practical.
For shorter windows the SACF function shows too many spuri-
ous peaks and for longer windows the response to time-varying
pitches is all too slow. The selected temporal resolution is also
not too far from the JND threshold of pitch percept formation with
short sine bursts. The hop size of SACF computation window in
our model is 10 ms. It is also known that full resolution of pitch
analysis in human perception is only achieved after about 100–150
ms of sine wave onset. This means that for steady state sounds we
can smooth the SACF function over such a time span.

The two last blocks at the bottom of Fig. 2 are post-processing
blocks where the left one takes the SACF function and produces
a list of pitch objects and the right-hand side block does, if de-
sired, separation of the signal components based on pitch estimate
information. These blocks are discussed in more detail below.

3. COMPARISON OF THE MODELS

The performance and validity of the proposed two-channel SACF
model (without pre-filtering and pre-whitening, using running auto-
correlation similar to [5]) in pitch periodicity analysis is evaluated
by a comparison with the multichannel SACF model of Meddis
and Hewitt. AIM software [8] was used to compute the Meddis–
Hewitt SACFs. The test signals were chosen according to [5].

In the “missing fundamental” experiment the test signal con-
sisted of three equal-amplitude sinusoids with frequencies 600,
800, and 1000 Hz. In this case a listener would hear a tone with
a fundamental frequency of 200 Hz. The SACFs computed using
the proposed two-channel and the Meddis–Hewitt model are de-
picted in the top and the bottom plot of Fig. 3, respectively. The
functions have been normalized so that the maximum of each func-
tion equals one. Both SACFs peak at lags of 5, 10, and 15 ms. The
first peak corresponds to a fundamental frequency of 200 Hz. Both
methods are clearly capable of resolving the missing fundamental.
It is interesting to note that while the scales of the SACFs differ,
the curves are almost identical, in this case.

The results of the “musical chord” experiment with the two-
channel and the multichannel models are illustrated in the top and
the bottom plots of Fig. 4, respectively. In this case the test signal
consisted of three harmonic signals with fundamental frequencies
392.0, 523.2, and 659.2 Hz corresponding to tones G4, C5, and
E5, respectively. The G4 tone consisted of four first harmonics,
and the C5, and E5 tones contained three first harmonics each. All
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Figure 3: Comparison of the Meddis–Hewitt multichannel and the
proposed two-channel SACF functions using the “missing funda-
mental” test signal. The two-channel SACF is plotted on the top
and the Meddis–Hewitt SACF on the bottom.
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Figure 4: Comparison of the SACF functions of the two models
using the “musical chord” test signal. The two-channel SACF is
plotted on the top and the Meddis–Hewitt SACF on the bottom.

the harmonic components were of equal amplitude. Both models
exhibit a SACF peak at a lag of 7.7 ms. This corresponds to a fun-
damental frequency of 130 Hz (tone C3) which is the root tone of
the chord. As before, the curveforms of the two summary autocor-
relation functions are similar although the scales differ.

While it is only possible to report these two experiments in this
context, the models behave similarly with a broader range of test
signals. More examples of SACF analysis are available at WWW
address: http://www.acoustics.hut.fi/˜ttolonen/icassp99/pitchdet/.

4. PERIODICITY DETECTION

The peaks in the SACF curve produced asx3 output of the model
in Fig. 2 are relatively good indicators of potential pitch periods in
the signal being analyzed, see Figs. 3 and 4. Such a summary peri-
odicity function contains, however, much redundant and spurious
information that makes it difficult to estimate which peaks are true
pitch peaks. The autocorrelation function generates peaks at all
integer multiples of the fundamental period. Furthermore, in case
of musical chords the root tone, the common periodicity, often ap-
pears very strong though in most cases it should not be considered
as a fundamental period of any source sound. To be more selective,
a peak pruning technique similar to [9] is used in our model.

The technique is the following. The original SACF curve, as
demonstrated above, is first clipped to positive values and then
time-scaled (expanded in time) by a factor of two and subtracted
from the original clipped SACF function, and again the result is
clipped to have positive values only. This removes all repetitive
peaks with double the time lag where the basic peak is higher than
the duplicate. This also removes the near zero time lag part of the
SACF curve. This operation can be repeated for time lag scaling
with factors of three, four, five, etc., as far as desired, in order to
remove higher multiplies ofeach peak. The resulting function is
called here the enhanced summary autocorrelation (ESACF).

An illustrative example of the enhancedSACF analysis is shown
in Fig. 5. It presents the pitch detection results of one analysis
frame that is computed from a signal consisting of three clarinet
tones. The fundamental frequencies of the tones are 147, 185, and
220 Hz. The SACF is depicted on the top and the enhanced SACF
curve on the bottom, showing clear indication of the three funda-
mental periodicities and no other peaks. We have experimented
with different musical chords and source instrument sounds. In
most cases sound combinations of two to three sources are re-
solved quite easily if the amplitude levels of the sources are not
too different. For chords with four or more sources the subsignals
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Figure 5: An example of multipitch detection. A test signal with
three clarinet tones with fundamental frequencies 147, 185, and
220 Hz, and relative rms values of 0.4236, 0.7844, and 1, re-
spectively, was analyzed. Top: two-channel SACF, bottom: two-
channel ESACF after periodicity detection.
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Figure 6: Example of pitch analysis (lag vs. time map) of a signal
consisting of two similar vowels with time-varying pitches.

easily mask each other so that all the sources are not resolved re-
liably. One further idea to improve the pitch resolution with com-
plex mixtures, maybe with relatively different amplitudes, is to
use an iterative algorithm whereby the most prominent sounds are
detected and filtered out (see sound separation) or attenuated prop-
erly and the pitch analysis is repeated for the residual.

For further processing the enhanced SACF function can be
represented as discrete pitch objects in the form of a pitch list.
For each analysis frame the potential pitch periodicities are ex-
tracted as objects that code the time lag (fundamental period) of
the pitch, the prominence (such as the peak value of the ESACF
function), and possibly a measure of confidence of the pitch object
if proper criteria are available. Such pitch lists from consecutive
analysis frames constitute temporal trajectory information of the
multi-pitch behavior of a multiple source signal that can be util-
ized in further sound separation or auditory scene analysis.

Two other examples of pitch detection are shown in Figs. 6
and 7. Figure 6 illustrates the temporal evolutution of the en-
hanced SACF function in the analysis of a mixture signal contain-
ing two simultaneus vowel pitch glides. Both vowels are Finnish
/a/ sounds mixed from the same speaker, one gliding in pitch from
low to high and the second one from high to low pitch. The pitch
analysis information is shown as a spectrogram-like presentation
which clearly indicates the fundamental periodicity trajectories.
Some spurious peaks appear at low level but no systematic high
level phantom trajectories are found in this relatively easy case
where the two vowels have about the same amplitude.

The third example, an analysis of a two-vowel mixture, is il-
lustrated in Fig. 7 and discussed in the context of sound separation.
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Figure 7: Result of pitch estimation on a signal consisting of vow-
els /a/ (129 Hz) and /i/ (156 Hz).

5. SOUND SOURCE SEPARATION

The discrete pitch objects may be used to derive separate rep-
resentations for harmonic sound sources. The pitch-lag locations
provide estimates of the fundamental period, and the prominence
values may be used to decide in which order the harmonic signals
are segregated if an iterative algorithm is used.

In this study, we applied a comb-notch filtering method to sep-
arate two Finnish vowels /a/ and /i/ from a mixed voice signal. The
length of the analyzed segment was 93 ms (2048 samples at 22 kHz
sampling rate). The ESACF illustrated in Fig. 7 provided the pitch
objects of the two vowel sounds. The peak locations in the ES-
ACF were used as fundamental period estimates, and the separated
sound signalssa(n) andsi(n) were obtained by filtering the mixed
signal with transfer functionsHi(z) andHa(z), respectively. The
two digital filters were designed to remove the pitch periodicities
and they were implemented asH(z) = (1� z�PIHf(z))

2; where
PI is the integral part of the pitch period in samples andHf(z) is a
fractional delay filter [10] which implements the non-integral part
of the pitch period. A second-order Lagrange filter was used for
Hf(z).

Linear prediction (LP) spectra (order 24 at 22 kHz) of the
separated signalssa(n) andsi(n) were computed to illustate the
separation results. For comparison, the LP spectra of the ori-
ginal vowel signals were also computed before they were mixed.
Fig. 8 shows the results. The original (solid line) and the estim-
ated (dashed line) LPs are depicted on the top for the /a/ sound
and on the bottom for the /i/ sound. The example demonstrates
that although a simple digital filter was used in the separation, the
estimated LPs resemble the originals quite well. The performance
may be improved by elaborating the design of separation filters
more carefully.

6. DISCUSSION

The experiments above with the proposed model represent realistic
yet relatively simple cases where multi-pitch analysis and sound
separation was found successful. It is easy, however, to find more
complex mixtures of harmonic sounds where the analysis model
as such does not resolve subsignals. The problem itself can be ar-
bitrarily difficult since even the human auditory system has severe
limitations in separating complex sound mixtures.

One limitation where the present model does not compete with
human perception is when the relative amplitude levels of subsig-
nals differ substantially. Iterative removal or attenuation of subsig-
nals, starting from the most prominent one, is one possible strategy
to improve the resolution. Another task for further study is to com-
pare the model more carefully with the performance of human
hearing in various aspects including temporal resolution of pitch
detection. Sound separation and computational auditory scene ana-
lysis pose numerous open questions that have so far been studied
very little.
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Figure 8: Separation of LP spectra from a mixture of two vowels.
Top: original and reconstructed LP spectra of vowel /a/ with fun-
damental frequency of 129 Hz. Bottom: original and reconstructed
LP spectra of vowel /i/ with fundamental frequency of 156 Hz.
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