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ABSTRACT

The purposeof a voice conversion(VC) systemis to changethe
perceivedspeaker identityof aspeechsignal.In thispaper, wepro-
posea new algorithmbasedon converting theLPC spectrumand
predictingtheresidualasafunctionof thetargetenvelopeparame-
ters.Weconductlisteningtestsbasedonspeakerdiscriminationof
same/differencepairsto measuretheaccuracy by which the con-
vertedvoicesmatchthedesiredtargetvoices.To establishthelevel
of humanperformanceasa baseline,we first measuretheability
of listenersto discriminatebetweenoriginal speechutterancesun-
derthreeconditions:normal,fundamentalfrequency andduration
normalized,andLPC coded. Additionally, the spectralparame-
terconversionfunctionis testedin isolationby listeningto source,
target,andconvertedspeakersasLPC codedspeech.The results
show thatthespeaker identityof speechwhoseLPC spectrumhas
beenconvertedcanbe recognizedas the target speaker with the
samelevel of performanceasdiscriminatingbetweenLPC coded
speech.However, the level of discriminationof convertedutter-
ancesproducedby the full VC systemis significantlybelow that
of speaker discriminationof naturalspeech.

1. INTRODUCTION

Thegoalof voiceconversion(VC) is to modify a source speaker’s
utteranceto soundasif a target speaker hadspokenit. Its usesin-
cludecustomizationof text-to-speechsystems(e.g., to speakwith
a desiredvoiceor to readout email in thesender’s voice),aswell
asentertainmentandsecurityapplications.To measuretheperfor-
manceof a VC system,theoutputmustbeevaluatedby listening
tests,especiallywhenconsideringnaturalnessandspeaker recog-
nizability (definedasthedegreeby which listenerscanrecognize
the convertedvoice as the target voice or discriminatebetween
them).

Thereare several shortcomingsin the previously published
methodologiesof evaluatingVC systems.Often,distortionmea-
suresor statisticaltestsareused,which by themselvesareinade-
quatefor a signalthatis meantto beheardby a human.Whenlis-
teningtestsareconducted,they aretypically small-scaleandcon-
tain only a few source/target combinations.In addition,it is very
difficult to compareresultsacrossdifferentworks,becauseevery
approachusesa different(oftenproprietary)speechdatabase.
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In this paper, we proposea morerigoroustestingframework,
in which we startwith a corpusespeciallydesignedfor the pur-
posesof VC training. The designand creationof this corpus,
plannedfor public release,is describedin Section2. In Section
3, we establishthedegreeby which listenerscandistinguishdif-
ferent speakers in the corpusundervarious conditions,using a
same/different sentence-pairlistening test. The resultsare used
to definea baselineagainstwhich conversionresultscanbecom-
pared.In Section4, theconversionfunction responsiblefor map-
ping LPC parametersis tested.Using the listeningtestdesignof
the previous section,subjectsareasked to discriminatebetween
converted,source,andtargetvoicesasLPC codedspeech.In Sec-
tion 5, we proposea novel way of constructinga convertedutter-
anceby mappingparametersof a spectralenvelopeandthenpre-
dicting theresidualfrom it. This is in contrastto otherapproaches
which transformtheresidual.We presentthealgorithmandtestit
in our listeningtestframework.

2. SPEAKER DATABASE

The systematictraining andevaluationof a VC systemis facili-
tatedby usinga speechdatabasethat offers recordingsof many
differentpeopleproducingthe samesentences.Our goal was to
designanddevelop a speechdatabasethat containeda “phoneti-
cally rich” setof sentencesproducedby multiple speakers. Addi-
tionally, therecordingprocedurewasdesignedto resultin a natu-
rally goodtime-alignmentbetweenthesamesentencesof different
speakers,whichallowsfocusingonresearchof thesegmentalcues
relatedto speaker identityasopposedto prosodiccues.

To selecttext that would provide coverageover the acousti-
cal space,we rana greedyalgorithmon thelist of sentencesfrom
theTIMIT andHarvarddatabases(a totalof 1170sentences).Our
selectioncriterion maximizedthe numberof occurrencesof rare
phonemes,while includingasmany uniquediphonesaspossible.
Usingthetop50 sentences,eachphonemewasrepresentedon av-
erage41andat least17 times;thenumberof uniquediphoneswas
693.

First, a recordingof a template speaker readingthe selected
sentenceswasmade.Then,weinvited5 maleand5 femaleAmer-
ican English speakers, living in the US Pacific Northwestsince
childhoodandbetweenthe agesof 21 and29, as corpus speak-
ers. During a recordingsession,they were asked to listen to a
templatesentence,whosetext wasalsodisplayedon a screen,be-
forebeinginstructedto mimic thetiming andaccentuationpattern
(but not pitch or voicequality) of thatsentenceon their own. The



speechandlaryngographsignalswererecordedat 22 kHz/16bits
in a professionalsound-booth,usinga high-qualityheadsetcon-
densermicrophone.The entiredatabasewasforce-alignedusing
theCSLUSpeechToolkit [1]. Timemarkerswerecreatedfor each
speechutteranceat thebeginningof anew HMM state(up to 3 per
phoneme).The laryngographtrack wasprocessedto yield pitch
mark estimates.Both the time markersandthe pitchmarkswere
verifiedandcorrectedmanuallyfor a high degreeof accuracy. An
analysisof thetime markersshowedthattheaveragesentencedu-
ration differencesbetweenmimicking speakers and the template
speaker werelessthan0.2%.

3. SPEAKER DISCRIMINATION BASELINE

In this section,we measurethedegreeby which listenerscandis-
tinguishdifferentspeakers of the corpus. The level of discrimi-
nationcanbeviewedasa baselineagainstwhich laterVC results
can be compared.Additionally, the databaselendsitself to dis-
coveringtrendsin therelative contributionsof intonation,average
fundamentalfrequency (F0), timing, andspectraldetailto speaker
recognizability. For thesepurposes,we designeda listening test
with thefollowing threeconditions:

1. Natural:Theunprocessed,originalutterance,in whichspea-
ker-specificintonationandtiming characteristicscloselyre-
semblethoseof thetemplatespeaker.

2. F0 anddurationnormalized:ThedurationsandF0 of con-
dition 1 were processedusing PSOLA to yield a generic
durationandF0 evolution. This wasaccomplishedby “av-
eraging”F0 anddurationsof eachsentencefrom speakers
of thesamegender. Pitch, jitter, anddurationinformation
contributing to speaker discriminizationis thus lost. Lis-
tenerscanonly make useof theshort-termspectrumto dis-
criminatespeakers.

3. LPC spectrum:We performeda
�������

orderLPC analysis
on condition 2 and synthesizedutterancesusing only the
LPC spectrum. Listenersmust perform speaker discrim-
ination basedon the simplifying assumptionsof the LPC
model,oneof themostsignificantof whichis thatthephase
spectrumis minimum phase(except for unvoiced sounds
whererandomphasewas substituted). The speechhasa
codedquality.

A same/differenttaskwaschosenfor the listeningtest,similar to
[2]. In thistypeof task,listenersareplayedtwo differentsentences
andareaskedwhetherthey thoughtthesentenceswerespokenby
eitherthesameor by two differentspeakers.Thelistenersselected
werecompletelyunfamiliarwith thespeakers,sinceit is difficult to
measureor control thedegreeof familiarity. Speaker discrimina-
tion by humanshasbeenshown to bemoreaccuratethanspeaker
recognition, whichis subjectto memorylimitations[3], andwhich
canbesignificantlyaffectedby thespecificcompositionof asmall
speaker set [4]. Male and femalevoiceswere testedseparately,
becauseinter-sex confusionsrarelyoccur(for examplesee[5]).

The following wereadditionaldesigncriteria. Balance: the
stimuli werebalancedin regardsto gender, thenumberof “same”
and“dif ferent”pairs,andthenumberof trialspercondition.Con-
sistency: the samespeaker andsentencecombinationswere de-
liveredfor eachlistener. Maximum variability: a speaker never
repeatsthe samesentenceduring the entire test. Minimum bias:
the orderof sentences,andthe orderof presentationof A andB

Condition/ Experiment Males Females

1: natural 84 (81-88) 95 (92-98)
2: F0anddurationnormalized 83 (79-87) 89 (85-92)
3: LPCspectrum 71 (65-76) 88 (84-91)

LPC map 73 (69-77) 87 (83-90)
LPC map+ residualprediction 74 (70-78) 84 (80-87)

Table 1. Resultsof the perceptuallistening tests. Shown is the
percentcorrectdiscriminationof speakersaveragedover listeners
andtrials. The95%confidenceinterval is in parentheses.

within a trial wererandomized.Minimum learning of voices: the
orderof genderpresentationwasswitchedfrom oneto the other
to slow down thelearningof thevoices.Also, theconditionswere
presentedin sequencefrom 3 to 1 to delaythe disclosureof full
voicecharacteristicsasmuchaspossible.

The averageresultsof 16 listenerswho eachheard120 sen-
tence-pairsaredisplayedin Table1. As expected,theaveragedis-
criminationperformanceincreasedasmoreinformationwasmade
available in the speechsignal. The differencein discrimination
betweenconditions3 and2 is significantfor thesetof malespeak-
ers,andbetween2 and1 for thesetof femalespeakers( ���
	�� 	� ).
The significantincreasein discriminationfor maleswhenadding
informationin theform of thecomplex LPCresidualsuggeststhat
VC systemsmustbedesignedto becapableof producingspectral
detailsnot foundin theLPC spectrum.This issueis addressedin
Section5.

4. LPC SPECTRUM MAPPING

Therearetwo critical partsof a VC algorithm: themodelandits
parametersby which speechis modifiedto changethe perceived
speaker identity, andthefunctionwhich is trainedto predicttarget
parametersfrom sourceparameters.The model and the conver-
sion function have to be matchedcarefully to the taskandavail-
abletrainingdata.Themodelmustbeeffective in producingtarget
speechnaturallyandaccurately;at the sametime the conversion
functionmustbeableto learnthesource/targetparameterrelation-
shipfromthetrainingdata.In thissection,weaimatevaluatingthe
performanceof theconversionfunctionin isolationby listeningto
bothnaturalandconvertedsentencesasLPC-codedspeech.

A numberof VC algorithmsin the literaturehave focusedon
convertingthespectralenveloperepresentedby a typeof LPC pa-
rameter. In oneof the earliestapproaches,parameterswerecon-
vertedusingavectorquantization(VQ) approach[6]. Thediscrete
natureof thismappingwasimproveduponin [7] by usingaGaus-
sianMixture Model (GMM) within theframework of a sinusoidal
synthesizer. In our earlierresearch,we mappedBark-scaledLine
SpectralFrequencies(LSF) by usinga GMM that wasestimated
usingajoint-densityapproach,creatingtheconvertedutteranceby
meansof a residualLPC synthesizer[8].

During featureextraction, we first perform a pitch-synchro-
noussinusoidalanalysisover 2 pitch periods. The discretemag-
nitude spectrumis upsampledand warpedusing the bark scale.
Then,anapplicationof theLevinson-Durbinalgorithmon theau-
tocorrelationsequenceyieldsLPC filter coefficients[9]. It is im-
portantto notethat a certainamountof excitation informationis
presentin the LPC filter. Finally, the LPC filter parametersare
convertedto LSFs,whichhave morefavorableinterpolationprop-
erties. For the purposeof training, the featuresare time-aligned



with the aid of the time marker informationandsilencesare re-
moved. Thefinal database,containingapproximately16,000vec-
torsfor eachspeaker, is split into training(sentences1-40)andtest
(sentences41-50)sets.

The training andconversionproceduresfollow our previous
work closely, pleasesee[8] for details. First, the sourceandtar-
getvectorsarejoinedto form a new vectorspace;a GMM of this
spaceis estimatedby the Expectation-Maximization(EM) algo-
rithm, initialized by a generalizedLloyd algorithm[10]. After the
log-likelihoodstabilizes,a regressionis performedwhich calcu-
latesthe linear transformationcomponentsof the locally linear,
probabilisticconversionfunction.

Thereare two free parametersin the training procedure,the
numberof mixturecomponents� anda scalar� . The latter rep-
resentsthemagnitudeof a perturbationaddedto thediagonalele-
mentsof thecovariancematricesateachiterativeestimationfor the
purposeof regularization.Thechoiceof theseparametersis prob-
lematic,becauseit is difficult to objectively measurespeechqual-
ity andspeaker accuracy. A spectralmeansquarederror (MSE)
measureon thetestsethada weakrelationshipto thedesiredout-
come. For example,when � was too high, the temporalevolu-
tion of theresultingspectracontainedmany discontinuities,even
thoughtheMSE waslower thancomparedto theresultsproduced
by a lower � . An alternative measureis the signal to noisera-
tio (SNR),wherethe signal is definedasthe convertedsentence,
andtheerrorbetweenit andthetargetsentenceis definedasnoise.
Thisapproachseemedto relatebetterwith thedesiredspeechqual-
ity of the output, as verified by an informal listening test. The
final choiceswere ����� and ����	�� 	�	�	� . The fact that the
optimal numberof componentswasso low (comparedto earlier
work) suggeststhat the mappingperformedbestwhen applying
very broadtransformationsto the sourcevectors,which may in-
dicatethat therewerenot enoughdatato reliably estimatemore
components,and/orthe datawere“noisy” dueto time-alignment
problemsduringtraining.

During the conversionprocess,the sourcespeechfile is ana-
lyzed,its featurestransformedby theconversionfunction,andthe
targetmagnitudespectrumenvelopeis calculatedby evaluatingthe
predictedLPC systemfunction,from which theconvertedspeech
is synthesizedusing a sinusoidaloverlap/addsystem. The LPC
systemphaseis usedduring voicedsegmentsandrandomphase
duringunvoicedsegments.

To evaluatethemappingperformance,we conducteda listen-
ing testsimilar to Section3, exceptwe werenow interestedin the
ability to discriminatebetweenthe convertedspeakers and their
respective sourceandtarget speakers,which werereproducedby
thesameLPCsynthesizerusedduringconversion.In this manner,
listenerscouldonly make useof differing featureinformationfor
discrimination. It shouldbe notedthat this test is very different
from theconventionalABX test,which is basedon forced choice:
listenersareto decidewhethertheconvertedutteranceis closerto
thesourceor to thetargetspeaker. Thelattercasedoesnot imply
thattheconvertedspeaker cannotbedistinguishedfrom thetarget
speaker; thus,thespeaker mayin actualitynotberecognizable.

Resultsfrom 12 listenersof the original listeninggroupcan
be found in Table1. The speaker distinctionperformancecom-
paresfavorably to thatof condition3. This demonstratesthat the
conversionfunctionis effective in producinga changein speaker.
However, somedegradationof thespeechsignaloccurred,notice-
ableasa muffling effect.

5. RESIDUAL PREDICTION

Clearly, signaldetailsbeyond theLPC envelopecontribute to the
naturalnessof speechand may also containvital speaker infor-
mation, apparentin the test results in Section3 for the set of
male speakers. To addressthis, several authorsproposedways
of improving VC beyondchangingtheLPC spectralenvelopeby
alsochangingtheLPC residual.In [11], theauthorsformulateda
codebook-basedtransformationof thesourceexcitationcharacter-
isticsby usinga weightedcombinationof codeword filters,which
werederivedfrom theaveragesourceandtargetcodeword excita-
tion spectra.In [12], theexcitationis modeledby alongdelayneu-
ral netpredictorwhoseparametersaremappedbasedon themax-
imum occurrencein a 2D histogramof vector correspondences.
Thereexist alsoapproachesbasedonestimatingandmodelingthe
glottal source,for examplein [13] thevoicetypeof a speaker can
beconvertedbetweenmodal,breathy, or creaky.

In contrastto transforming an excitation waveform, we pro-
posea methodin which we predict the target residualfrom LPC
parametersduring voicedspeech.The underlyingassumptionof
this approachis thatfor aparticularspeaker andwithin somepho-
netically-similarclassof voicedspeech,the residualsaresimilar
andpredictable. Specifically, the residual’s magnitudespectrum
containserrorsmadeby thespectralenvelopefit (e.g., zerosdur-
ing a nasal),andthephasespectrumcontainsimportantinforma-
tion aboutthe naturalphasedispersionof the signal,asopposed
to the minimum phaseassumptionof the LPC model. Another
way of viewing this approachis asa speechcoderwith a speaker-
dependentexcitationcodebook.

During trainingof theresidualpredictionmodule,a LPC cep-
strumrepresentationof all availablevoicedsegmentsfrom thetrain-
ing setis clusteredby a GMM with 32mixturecomponents.Each
cepstralvectorhasa residualcomplex spectrumassociatedwith
it; the residualmagnitudespectrumis calculatedby subtracting
theLPC log-magnitudeenvelopefrom theoriginal log-magnitude
spectrum,whereastheresidualphasewasgivenby thedifference
betweenthe LPC systemphaseandthe original phasespectrum.
To make the codewords pitch-independent,the original residual
vectorswereupsampledtoacommonlengthusinganearest-neigh-
bor interpolationscheme.

For eachclass,theresidualcodeword is calculatedasfollows:
The magnitudespectrumis calculatedby a weightedmeanof all
magnitudevectors,correspondingto thenormalizedprobabilityof
belongingto that class;the phasespectrumis set to the centroid
phase.In thedecodingstage,theposteriorlikelihoodof anincom-
ing cepstralvector is calculatedandusedas weightsin predict-
ing the residualmagnitudeby a weightedmeanschemefrom the
residualcodewords.Theresidualphasebelongingto theclasswith
maximumlikelihoodis chosenasthe predictedphase.After this
stage,thephasesareunwrappedin timeandsmoothedby a8-point
FIR filter to reduceaudibleartifactsdueto suddenchangesin the
residualphase.Finally, theresidualspectrumis addedto theLPC
spectralenvelope(seeFigure1).

Theresidualpredictionmodulewastestedbysynthesizingsen-
tencesfrom their original spectralparametersonly andwasfound
to produceanoutputnearlyindistinguishablefrom theoriginal in
informal listeningtests.

We integratedthe modulewith the spectralmappingsystem
andalsoaddeda laststagein which themeanandvarianceof the
sourceF0is modifiedto matchthatof thetargetF0. Thegenerated
conversionsentenceswerecomparedto theoriginal speechwave



Fig. 1.

VoiceconversionalgorithmbasedonconvertingtheLPCspectrumandpredictingtheresidualfrom thetargetLPCparameters.

filesof thesourceandtargetspeaker in a listeningtestin thesame
formatasdescribedearlier.

Theresultsof the listeningtestin Table1 show that the level
of discriminationis significantlybelow thatof thebaselinefor nat-
ural speechutteranceswithin thespeaker database.At first it may
seemsurprisingthat the level of discriminationdroppedslightly
ascomparedto theprevious experiment.While it is true that the
convertedutterancescontainmore speaker information than be-
fore, they arealsocomparedagainstnaturalwaveforms,which in
turn alsocontainmany morespeaker identity cues.Theneteffect
is that the taskhadbecomemoredifficult. Theseresultscanbe
consideredasa performanceindicatorof the“real world” taskof
mimicking anotherhumanwith precision.

6. CONCLUSION

We have proposeda new VC algorithm basedon predictingthe
LPC target residualfrom the target spectralenvelopeinsteadof
transformingthesourceresidual.To evaluatethelevel of accuracy
by whichthealgorithmcanconvertvoicessuchthatthey areindis-
tinguishablefrom the targetvoice,a listeningtestwasperformed
andtheresultscomparedwith theappropriatebaseline.Thelisten-
ing testwasbasedonasame/differentsentence-pairmethodology,
usingcombinationsof 5 maleand5 femalespeakers. In another
listeningtest,the conversionfunction implementingthe transfor-
mationof LPC parameterswastestedin isolationby listeningto
source,target,andconvertedvoicesasLPC codedspeech.

Theresultsshow thata GMM cansuccessfullytransformthe
spectralenvelopeof asourcespeaker to berecognizedasthespec-
tral envelopeof a target speaker. Whencomparingconvertedut-
teranceswith naturalwavefiles,discriminationis still significantly
lower than amongnaturalsamples. Additionally, the quality of
convertedspeechis degraded.We speculatethat improvementsto
thespeechqualitycanbemadein makingchangesto themannerin
which thespectralmappingis trainedto preventproblemsthatoc-
cur whenthe time-alignmentis lessthanperfect.Anotherareaof
researchis theoptimalselectionof mixturecomponentsandLPC
orderin theresidualpredictionmodule,aswell asa morereliable
wayof extractingresidualphasecodewords.

A selectionof theaudiofilesusedin thispaperareavailableat
http://cslu.cse.ogi.edu/tts.
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