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Minimum  Prediction  Residual  Principle Applied 
to Speech  Recognition 

Abstract-A computer system is described in which isolated 
words, spoken by a designated talker, are recognized through 
calculation of a minimum  prediction residual. A reference pattern 
for  each  word to  be recognized is stored as a time pattern of linear 
prediction coefficients (LPC). The total log prediction residual of an 
input signal is minimized by optimally registering the reference 
LPC onto the input  autocorrelation coefficients using  the dynamic 
programming  algorithm (DP).  The input signal is recognized as the 
reference word which produces the minimum  prediction residual. 
A sequential  decision procedure is  used to reduce the amount of 
computation in DP. A frequency  normalization  with respect to the 
long-time spectral distribution is  used to reduce effects of variations 
in  the frequency response of telephone connections. 

The  system has been implemented on a DDP-516 computer  for the 
200-word recognition experiment. The recognition rate for a desig- 
nated male talker is 97.3 percent for telephone input, and the recog- 
nition time is about 22 times real time. 

R 
I. INTRODUCTION 

ECENTLY time-domain  speech analysis based on 
linear predictability of signal waveform has been 
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successfully adopted for efficient coding of a  redundant 
speech signal [l], [ 2 ] .  Motivated  by  these successes, 
several efforts have been  made  toward  application of the 
linear predictor coefficients (LPC) for speech recognition 
[3], [4]. But  the  immediate use of LPG as feature  param- 
eters was not so successful as  might  be  expected [SI. The 
lack of success may  be  partly  due to  the fact that  the fea- 
ture space  spanned  by LPG is too  complicated to  introduce 
a simple and effective measure of distance between ele- 
ments  in  the space. 

It may  be  natural  to raise the  question:  what  kind 
of distance  measure  should  be  used  in  the  framework of the 
linear prediction technique? In order to discuss this 
question, let us consider a  more simplified problem; 
given a short segment of signal, what is the  optimal dis- 
tance measure to  test a hypothesis that  the segment  can 
be regarded as one  generated  by a model  having specified 
LPG? The answer to  this  question  might  be extended to 
test a more  complicated  hypothesis;  namely, that some 
input 11-tterance can be  regarded as a word  having  a speci- 
fied pattern of LPG. 

In this paper, an approach  to  this problem will be 
described from a statistical  point of view, and it will be 
shown that  the log likelihood ratio, which is the  best 
criterion  to  test  the hypothesis, is reduced to  the logarithm 
of the  ratio of prediction residuals, and can  be  used as  a 
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powerful distance measure. This result is applied to 
automatic recognition of isolated words,  wherein a sequen- 
tial likelihood ratio  test is adopted to reduce the  amount 
of computation. 

11. DISTANCE  MEASURE FOR AN  ALL-POLE 
MODEL 

An all-pole model of speech signal is as follows. The dis- 
crete-time signal z (n )  ( t  = nT, when T is the  interval 
between  samples)  in  a stationary segment of signal satis- 
fies the  system of difference equations 

z ( n )  + -a(l)z(n - 1) + + a ( p ) z ( n  - p )  = e(n) 

(1) 

where (-a(i) } are  constants  and { e(n) } is a white noise 
or a quasi-periodic signal, with  mean-squared  value s. 
Because p is usually much less than  the period of { e  (n) } , 
{e(%) } can  be  regarded as an uncorrelated signal as  far 
as correlations between q(  < p )  adjacent  samples  are 
concerned. In  this pa,per, { --a (i) 1 or simply {-a(i) } is 
called the  LPC,  and  the mean-squared  value s of { e  (n)  } , 
or power, is called the prediction residual. 

The problem in  this section is to  derive a measure of 
distance, or dissimilarity, between a segment of signal 
X = (x( 1) , e .  . , z ( N ) )  and  the model  defined by  (1). 
Here, for mathematical  tractability, we assume that 
{ e ( n )  is a Gaussian  white noise. Then  a  set of parameters 
P = (s,a (1) , . - . ,a(p) ) specifies the conditional joint 
probability  density p (X/P) , and if N>>p, the  logarithm 
of p(X/P) is approximately  given by [SI, [7] 

L(X/P) = - ( N / 2 )  [log 2 ~ s  + (l/s)aVa’] ( 2 )  

where a is a row vector ( l ,a( l ) , - - . ,  -a@)), and 

v = [v(i i - j I)], ( i f  j = 0,1,. * .p> 

is a correlation matrix whose elements are defined by 
N-i  

v ( i )  = ( l /N)  z ( n ) z ( n  + i). (3) 
7Z=l 

Supposing that we have  no knowledge about  the  absolute 
value of s and s is a free parameter  (Case I) ,  it is replaced 
by  its  estimate which  maximizes L (X/P) 

dL(X/P)  /as = 0,  s = ava’ (4) 

thus, from ( a ) ,  we obtain 

L’(X/a) = max L (X/P) 
6 

= - ( N / 2 )  log  aVa‘ + C. (5) 

The  vector i which  maximizes L’(X/a) is determined as a 
solution of the following system of equations: 

P 

v(i - j ) i ( j )  = 0, (i = 1, .  * - , P )  (6) 
i=O 

and  the maximum value is as follows: 

L” ( X )  = max  L’(X/a) 
a 

= - ( N / 2 )  log ivi’ + c. (7) 

L”(X) is the maximum  value of the likelihood function 
when both s and  a  are assumed to be free parameters 
(Case  11).  From (5) and (7), the likelihood ratio for the 
Case I and I1 of free parameters is proportional to  

d @/a) = log (aVa’/iVi’), ( 8 )  

The  quadratic forms aVa‘ and iVri‘ in ( 8 )  are prediction 
residuals, when the  input signal X is operated  by the 
model LPC  a  and  the  estimated  LPC i, respectively. 

If the model defined by  a is close to  the  actual process 
which generates X, then  the i, which is the maximum 
likelihood estimate of a, are close to  the a and  d(X/a) is 
close to zero; if not,  d(X/a) is significantly large. More 
precisely, d(X/a)N will be  asymptotically  a x2 variate 
with p degrees of freedom, if X is a realization of a  model 
having  a  as  the  parameter(nul1  hypothesis) [la]. If the 
d(X/a)N is larger than  the ~ ~ ~ - ~ ( p ) ,  then  the null hy- 
pothesis should be rejected at  a given  probability a of 
false rejection. In  this sense, d(X/a)  can be regarded as 
a distance  measure  between X and  the hypothesized 
model (1) specified by LPG a. 

For small deviation of i from a,  the  distance of (8) can 
be  approximated  by 

d’(X,a) = [(a - i ) V ( a  - i)’]/[iVi‘]. (8’) 

This  measure is apparently different from those which 
might be intuitively  suggested  in  the  space of { a ( i )  } such 
as 

d = (a - i ) W ( a  - i)’. (9) 

The  main difference is in that,  the weighting of the 
quadratic form  in (9) is a constant  matrix W, while that 
of (8’) depends  on the  autocorrelation V of X. This 
dependence of the weighting matrix on V, or equivalently 
on i, is a natural consequence from t’he fact that  the co- 
variance characteristics of estimation  error of a depends 
on  the location of i in  the space of LPC. It is well known 
that  the estimated  covariance matrix of (a - i) is 
proportional  to  the inverse of V/[iVi’] [la]. In  the dis- 
tance measure of (8’), the weighting for the difference 
(a - i) is automatically  adjusted  in  accordance  with the 
probable  error of the  estimated  parameter i. 

Equation (8) can be rewritten  in  the form 

d(X/a) = c + log [(ba)/(ir) 1 (10) 

where (xy) means the  inner  product of two  vectors, 
r = ( v ( i ) / u ( O ) ) ,  (i = O , . . - , p ) ,  c = log (aa),  and b i s a  
vector (1,b (1) , - - ,b ( p )  ) whose elements are defined by 

b ( i )  = 2 a ( j ) - a ( j  + i ) / (aa) .  (11) 

The f b(i)/2}’s  are  the  autocorrelation coefficients asso- 
ciated with the inverse filter of the all-pole model. The 
c is the log power of its impulse response. These modified 

p--i 

j=O 
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parameters b and c are more  convenient to compute 
d(X/a) than  the a themselves. 

111. ISOLATED  WORD  RECOGNITION 

Each isolated word to  be recognized can  be  expressed 
as a time  pattern of LPC,  yhich is called the reference 
pattern.  The process in recognition is t o  find a reference 
pattern which  produces the minimum distance to an input 
utterance. 

Reference  Pattern: The reference pattern R(k) for each 
word is stored  as a matrix of the  form 

R(k)  = [c (m;k) ,b(~~;k) ]  

( m  = 1,. . . ,M(k) , l c  = 1 , s .  * , K )  (12) 

where c(m;k)  and  b(m;k)  are  the modified parameters 
of LPC at  the  mth segment of the  kth reference pattern, 
M ( k )  is the  number of segments in  the reference pattern 
R(k) ,  and K is the  number of words to  be recognized. 
Elements of the  matrix R ( k )  are computed  from  a training 
utterance using (3) ,  (6) ,  and ( 11). 

Recognition: An input  utterrance is expressed as a time 
pattern of autocorrelation coefficients at the first p delays 

r (n) ,  n = l,... ,1v (13) 

where N is the number of segments  in the  input  utterance. 
The distance between the  nth segment of the  input  and 
the  mth segment of a reference pattern R ( k )  i s  

d(n,m;Ic) = c ( m ; k )  

+ log C ( b ( ~ ; ~ c ) r ( n ) ) / ( ~ ( n ) r ( n ) ) l .  (14) 

The value of ( i (n.)r  (n)  ) is obtained  in  the process of 
solving the  linear  equation (6). 

If we assume statistical independence of d(n,m.;k) for 
n = 1, - - - , A T ,  it is reasonable to  sum  up d(n,m ;k) over the 
entire  input  utterance to give the  total distance between 
the  input  and  the reference pattern. Of course, m must  be 
determined  as a funct'ion of n 

772 = t U  (72) . (15) 

This  function 'LO (n) , which maps  the  input  time axis onto 
the reference time axis, is called the time-warping func- 
tion.  This function should  satisfy some boundary condi- 
tions as well as some continuity conditions.' For  brevity 
in  the following  discussion, it is assumed that ~ ( n )  is 
subject t,o the following conditions. 

Boundary  Conditions ; 

w(l) = 1, u : ( N )  = M ( k ) .  (16) 

Continuity  Conditions : 

w ( n  + 1) - t.(n) = 0, 1, 2 ( w ( n )  # w ( n  - 1)) 

= 1, 2 (1.(n) = w(n - 1)). 

(17) 
l.'ig. 1 shows the domain of possible (n,m) coordinates 
and an example of w (n) . The  continuity conditions imply 

BOUNDARY  CONDITIONS 

w ( f ) = l ,  w l N ) = M ( k )  

CONTINUITY  CONDITIONS 

w ( n  t 1 )  - w a n )  = 0 ,1 ,2  ( w ( n l + w   ( n - 1 )  
= 1,2 ( w ( n )  = w (n-1) 

m 

M ( k )  

IO 

5 

1 
0 n 

'1 5 10 15 t4 

Fig. 1. An example o f  time-warping function. The paralielogram 
shows the possible domain of (n,,rn) coordinates. 

that the  ratio of instantaneous  speed of the  input  ut- 
terance  to  that of the reference is bounded  between 1/2 
and  2 at every  point.  Let  us  denote  the  minimum  value 
of the  sum of d(n,m;k) for all possible  choices of the t h e -  
warping  function by 

N 

D ( k )  = min 2 d(n , tu(n) ;k) .  (18) 

D ( k )  is a distance between the  input  utterance  and a 
hypothesized word k .  A decision can  be  made  on  the basis 
of the minimum distance among D ( k )  ,k = 19, - ,K .  

Iw(n)) n=l 

IV. DYNAMIC  PROGRAMMING  AND 
SEQUENTIAL  DECISION 

The distance D ( k )  in. (18)  can be  efficiently computed 
using the  algorithm of dynamic  programming (DP) [S> 
[lo]. Let us introduce  the  partial  distance measure,  in 
which theboundary conditions are w(1) = 1 and w(n) = m, 
and  the  continuity conditions are  the same as the above, 
denoted by 

n 

D(n,m ; k )  = min d( j ,2u( j )  ;k)m (191 
( w ( j ) l  i=1 

Then  there follows the recurrence relation; 

D ( n  + ljn2;k) = d(n + 1,m;k) + min (D(n,m;k) 

* 9 (n,yn) , 
D(n,?n - 1;k) ,D(n,m - 2 ; k ) )  (20 )  

where 

g(n,m) = l (w(n)  # w ( n  - I ) ) ,  
= CD, (to(??\ = (n 1)). (21) 

In  the recurrence relation  (20), it is assumed that 
d(n,nz;Ic) outside the allowable domain  in the (n,.m) co- 
ordinates, shown in Fig. 1, is infinitely large. D(lc) is 
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found at  the last  stage  in  this recurrence  formula, that is, 

As shown in  the recurrence  relation, a t  every  lattice 
point, cl(n,rn;k) must  be  calculat'ed;  t>herefore  the  amount 
of computation to  obtain D ( k )  is  approximately  propor- 
tional to  the number of lattice  points, which is nearly 

D ( k )  = D(l\T,Ai14(k);k). 

6, = (2N - M ( k )  + 1) (2df (k j  - N + 1)/3. ( 2 2 )  

For example; if N = 40, M ( k )  = 40, K = 200, the  total 
number of lattice  points  to  be examined in recognizing 
one word is  nearly 112 000, and  the processing time is 
49 s, if one lattice  point is processed in 420 p s ,  as is the 
case described later. 

One method  to reduce the  computation  time  might 
be  the procedure of sequential decisions. Now, let  us 
define D ( n ; k )  by 

D ( 7 ~ ; k )  = n i n  D(n,m;k) .  ( 2 3 )  
m 

D ( n ; k )  is the minimum  distance  between the first n 
segments of the  input  and a reference pattern R (IC) . If 
a reference pattern R(k*) coincides with  the  input,  it is 
expect,ed that D(n;lc*) takes lower values for all  stages 
n. Therefore, if D ( n ; k )  is sufficiently large  compared  with 
probable excursion of D ( r ~ ; k * ) ,  the reference pattern  can 
be immediately  rejected at   an early  stage  without examin- 
ing further segments. If not,  the next  stage  is  examined. 

The threshold  for  rejection  should  be as low as possible 
under  the  constraint  that  the  probability of false rejec- 
tion is sufficiently small.  Although it is desirable to  get a 
threshold T ( n )  which meets  this  requirement  theoret- 
ically, it is difficult to find it in practice.l But, if  we notice 
that  the final. decision is  made  on  the basis of the  relative 
values of D (IC j , T ( n )  might be determined  depending on 
the  actual realization of D (n;lc) . The  method  used in  the 
experiment is as follows. 

The rejection  threshold  is  assumed to be of the form 

T(72) = #('?I) + .&!f (24) 

where M is a constant decision margin  and S ( n )  is the 
variable part of T ( n )  and is updated at  every  stage  in 
the DP. Initially S(n )  is so selected that  it is not less than 
D (n;k*) for all cases when k* coincides with  the  input 
word. Beginning with T L  = 1, D ( n ; k )  is sequentially com- 
puted. If D ( n ; k )  is less than T ( n )  at   the  stage n, S ( n )  is 
replaced by D (7z;k) t o  give a new threshold which will be 
used to compute D ( n ; k  + 1) . If a reference which is simi- 
lar  to  the  input is  found, the threshold T ( n j  is set' to  a 
lower value.  Thereafter only references similar to  the 
input  are examined in  detail and  other references will be 
rejected at earlier stages. In  the final decision only refer- 
ence patterns which arrived at  the  last stage A7 are candi- 

tions of the model and the statistical  independence of  d(n,m;k*) 
1 If the reference pattern fZ(k*) is the  true one and  the assump- 

for IZ = 1,2,. . e j  A' hold, the  optimal T(n)  is given by r~-,*(pn), 
where CY is the Probability of false  rejection. 

dates for the recognized  word. If no reference arrives at 
the  last stage, the  input is rejected as  an  inadequate  input. 

V. EXPERIMENTAL  PROCEDURE  AND  RESULTS 

The recognition scheme  described earlier has been  imple- 
mented  on  a  DDP-516  computer for a 200-word recogni- 
tion experiment.  The flow chart of the system is shown in 
Fig. 2 . .  The 200 words are  Japanese geographical names 
and were pronounced by a  male  speaker. The mean dura- 
tion of the reference utterances is 600 ms, and  the  mean 
number of syllables is 3.5. 

Speech Input: The experimental  arrangement for the 
isolated word recognition is shown in  Fig. 3. Each  ut- 
terance is inputted  to  the  computer using a  conventional 
telephone  set dialed through  the Bell Laboratories PBX. 
The  telephone set is placed beside the computer console 
and  the noise level around it is about 68 dB  (A). After 
passing through a lowpass filter whose 6 dB cutoff fre- 
quency is 3.0 kHz,  the speech is  sampled at  6.667 kHz 
and  temporarily  stored  in disc memory. Each  utterance 
is  made  within  a fixed time  interval of 1.2 s after listening t o  
the  start signal or manually pressing an initiating  switch. 

Autocovelation  Analysis:  Hamming window of 200 sam- 
ples (30 ms) is applied to t'he digitized signal. The window 
is advanced  in  steps of 100  samples (15  ms)  to  get  the 
next  segment. The  instantaneous power within each  win- 
dow is computed, and if it exceeds the noise level, the 
first  eight coefficients are computed.  The speech signal 
duration is detected  automatically  by examining the 
power  envelope from the forward and backward and 
neglecting low-level noise. 

Normalization of Lonq-Time  Spectrum: The gross 
spectral  distribution of the  input signal may be greatly 
affected by physical factors,  such  as  transducer  and line 
response, as well as  by  human  factors, such as  stress  and 
physical condition.  These  factors  may  have serious ef- 
fects on the  stability of the  system using LPC. Therefore, 
we have  applied  a  normalization  technique of input 
spectral  distribution  in  the following way. The first two 
autocorrelation coefficients are averaged over the  ut- 
terance  interval  after weighting by the instantaneous 
power level. For every  utterance, a second-order inverse 
filter is designed by solving a  two-variable  linear  equation. 
This filter is used t o  normalize the gross spectral  distribu- 
tion of the  utterance.  This is done by convolving the 
original autocorrelation coefficients and  the autocorrela- 
t.ion coefficients of the impulse  response of the second 
order  inverse filter. The first six  normalized autocorrela- 
tion coefficients are used to make both  the reference pat- 
terns  to recognize unknown inputs. 

M a k i n g  a Reference  Pattern: The reference pattern for 
each word is generated  by  the method described in Section 
111. In  this experiment p is 6, A i ) ,  the average  number 
of reference segments  is about 40 (600 ms) , and K ,  the 
number of words, is 200. The memory  cppacity for storing 
all the reference patterns is ( p  + 1) M ( k )  K = 56 000 
words, and each computer word consists of 16 bits. 

- 



ITAKURA:  MINIMIJM  PREDICTION  RESIDUAL  PRINCIPLE 71 

START terance, which is 22 times  real  time.  The recognition rate 
is 97.3 percent and  the rejection rate is 1.65 percent, when 
the designated talker  inputs 2000 test  utterances  over  an 

’ A-D CONVERSION 

4 
DETECT time  span  of  three weeks. 

SPEECH  INTERVAL 

4 * DIGITIZED 
PRE-PROCESSING AUTOCORRELATION 1 -%.E.! VI. DISCUSSION 

The  main  objective of this  study is not  to develop a 
particular  isolated  word  recognition  system, but is focused 
to assess experimentally the effectiveness of the proposed 
distance  measure and  the sequential decision  scheme based 
on the distance.  For this reason, the word  recognition 
system is a straightforward  realization of the proposed 
method  without  any  ad hoc modification. Some param- 
eters,  such  as  intensity, voicing and pitch patterns,  are 
intentionally  not  used,  although they  must be crucial in 

patterns of LPC.  Despite existence of some room for im- 
provement,  the experimental  results  may give a promising 

and  vocabulary size. But it must be admitted  that  the 
recognition rate is strongly influenced by  a  particular 
choice of rwcabulary set. For example, if the vocabulary 

NORMALIZE 

discriminating some words which have  very similar - PROCEDURE FLOW --- SELECT THE 
DATA FLOW MINIMUM 

END impression, considering the  quality of the  input signal 

Fig. 2. Flow  chart of isolated word  recognition. 

NOISE 68 dB  (A)  6.667 KHz set is the English alphabet  and digit 
SPEECH 4 

DDP-516 IA,B7...,Y,Z,1,2,...,9,0}, 
16 Rw 

DISC 

FPP 

+ - L P F  +RESULT the recognition rate was  88.6 percent for ’720 test  ut- 
a terances  by the  same speaker  under the  same conditions  as 

in V.  All digit input  are correctly recognized, although 

Major misclassifications are listed in  Table I. This  result 
shows that  the  majority of confusions occur between 
pairs in  which the vowel part  is identical and  the  dif- 
ference of the  consonant  part is relatively small and it is 

duration. 

comparable  vocabulary size [SI, [ll], the recognition 
SIGNAL  SIGNAL REJECTION rate of this  method is nearly  same  or  slightly better, 

Fig. 3. Experimental  arrangement of on-line isolated word recog- despite, in  this experiment, a conventional  telephone  set 
nition. in a noisy environment is used as a speech input terminal. 

The complexity of recognition algorithm seems to be of 
Recognition  and  Result: The recognition procedure  has  the  same  order,  judging  from  the processing time per 

CONTROL  SIGNAL L “H” is incorrectly recognized as “8” twice out of 20 trials. 

I 
I 
I 
I 

nnn i -u 
START  STOP  ALARM FOR 

A I D  CONVERSION masked by  the vowel part which  is predominant  in 

SPEECH As compared  with  other word recognition  methods of 

been  described in Sections I11 and  IV.  The  major process-  word  using computers of similar  speed. 
ing in this phase is to compute the distarrce d(.rt,~e;k’) 
defined by  (14),  and it is  programmed using assembly VII. CONCLUSION 
language. The  base of the logarithm is set to 2, and 
log 2(1/2 5- < 1) is approximated  by 2(2 - 1) .  The  A new measure of distance for an all-pole model of 
computation  time  for  the basic recurrence  formula (20) speech has  been  derived  on  the basis of the likelihood ratio 
at every  lattice  point is 420 GS including the  computation criteria and is applied to  automatic recognition of isolated 
of d ( n , m ; k )  . The threshold  margin  is chosen as M = 4 on words. An algorithm to find to  the best match  between  the 
the basis of preliminary  experiments. The  average  num-  input  pattern  and  a reference pattern is derived,  in which 
ber of lattice  points  actually examined is 69 per  reference the  dynamic  programming  technique is used in conjunc- 
pattern;  that is,  only  12  percent of L expressed by (22) tion  with a sequential decision scheme. The  system is 
in which the sequential decision scheme  is not used. The  implemented  on  a  DDP-516  computer to recognize 200 
total recognition time including the autocorrelation  analy-  isolated words. The  validity of the scheme  has been 
sis and  other preprocessing is about 12 s for one ut- confirmed experimentally. Further work is in progress to 
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No. of ERRORS 

15 

10 

9 

9 

5 

5 

53 

29 

TOTAL ERRORS / TOTAL TRIALS 82 / 720 

ERROR RATE =11.4% 

test  the  system for a greater  number of talkers  and for 
telephone connections switched over greater  distances. 

ACKNOWLEDGMENT 

The  author wishes to  thank J .  1,. Elanagan  for  his 
guidance and  stimulating discussions, and  to acknowledge 
the help received from C. H. Coker and A. E. Rosenberg 
during  implementation of the  system. 

REl’ERENCES 
[I] F. Itakura  and S. Saito, “Analysis synthesis  telephony based on 

the maximum likelihood method,” in Proc. Znt.  Congr.  Acoust.. 
Tokyo, Japan,  Rep. C-5-6, 1968. 

[2] B. S. Atal  and S. L. Ilarlauer, “Speech analysis  and  synthesis 
by linear  prediction of speech waveform,” J .  Acoust.  Soc.  Amw., 

[3] M. Kohda, S. Hashimoto,  and 8. Saito, “Spoken digit mechani- 

vol. M-D, no. 3,  1972 
cal recognition,” Trans.  Inst.  Electron.  Commun. Eng. ( Japan) ,  

[4] Y. Nakano, A .  Ichikawa,  and K.  Nakata,  “Evaluation of various 
parameters  in  spoken  digits  recognition,”  presented at  the IISEE 

Mass.,  Apr. 1972, Paper C4. 
Conf.  Speech Communication and Processing, Cambridge, 

[5]  H. Fujisaki  and Y. Sato,  “Evaluation  and comparison of 
features  in speech  recognition,” Faculty  Eng.,  Univ. of Tokyo, 
Tokyo, Japan, Annu.  Rep. Eng. Res. Inst., 1873, vol. 32, pp. 

[6] F. Itakura  and S. Saito, “A statistical  method  far  estimation of 
speech spectral  density  and  formant  frequencies,” Trans.  Inst. 

[7] S. Saito, T.  Fukumura, a.nd F. Itakura,  “statistically  optimum 
Electron.  Cammun. Eng. ( Japan) ,  vol. 53-A, pp. 36-43,  1970. 

discrimination of speech spectra,” J. Awus t .  Soc. Japan,  vol. 

[SI V. “I Velichiko and N. (2. Zagoruiko, “Automatic recognition 
23, no. 5 ,  1967. 

of  2OO-words,” In t .  J. Mnn-Mach,inc  Studies, vol. 2, pp. 223- 
234, 1970. 

[9] H. Sakoe and S. Chiba, “A dyllarnic programming  approach to 
continuous speech  recognition,”  in Proc. Znt.  Conyr.  Acoust., 
Budapest,  Hungary, Rep. 20-C-13,  1$171. 

[lo] -, “Comparative  study o f  I>P-pattern  matching  techniques 
for speech  recognition.”  Speech Res. Group, Acoust. Soc. 

[ll] D. 11. Iteddy, “Segment sy~~chro~~ixation problem in speech 
Japan, Rep. S73-22,  1973. 

[la] H. B. Mann  and ,4. Wal$  “On the statistical  treatment of 
recognition,” J .  Acoust.  Soc. Amur., vol.  46,  no. 1, p. 89, 1969. 

linear difference eqtmtions, Econo~vdr iw .  vol. 11, pp. 173-217, 
1943. 

VOI. 50, pp. 637-655,  1971. 

213-218. 

Pitch Detection by Data Reduction 

Absfrucf-This paper presents an algorithm  that determines  the 
fundamental  frequency of sampled speech by segmenting the signal 
into pitch  periods. Segmentation is achieved by identifying those 
samples of the waveform  corresponding  to the beginning of each 
pitch  period. 

The segmentation is accomplished in three phases. First, using 
zero crossing and energy measurements, a data structure is con- 
structed from the speech  samples.  This structure contains candi- 
dates for  pitch  period  markers. Next,  the number of candidate 
markers within this structure is reduced utilizing syllabic segmenta- 
tion, coarse pitch  frequency estimations, and discrimination func- 
tions. Finally, the remaining  pitch  period markers are corrected, 
compensating for errors  introduced by the data  reduction process. 

This algorithm processes both male and female speech, provides 
a voiced-unvoiced decision, and operates in real time on a medium 
speed,  general purpose  computer. 
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T 
INTRODUCTION 

HE pitch  detection process described in this paper 
has  the following characteristics. It computes  a 

marker that identifies the beginning of each  pitch  period. 
It permits  the analysis of both male and female  speech 
by detecting  pitch frequencies over  a  range of 50 to 500 Hz. 
Finally,  the process normally  requires less than 20*N 
computer  operations, wThere N is thc  number of samples 
in  the speech signal. 

The algorithm was  developed for utilization  within  a 
pitch  synchronous speech recognition system. However, 
determination of pitch  rate is also essential  in  pitch 
synchronous  time compression [l], in t’he study of 
prosodics [a], and  in several  bandwidth compression 
systems [3]-[.5]. A variety of algorithms  have been re- 
ported that perform pitch  detection.  Thcse  include 
heuristic  methods [SI, [7 I, aut’ocorrclation  mcthods [SI, 
single Fourier  transform  methods [9], single Fourier 
transforms combined wit’h histograms [lo], double 


