
Independent Component Analysis: A Tutorial

Aapo Hyvärinen and Erkki Oja

Helsinki University of Technology

Laboratory of Computer and Information Science

P.O. Box 5400, FIN-02015 Espoo, Finland

aapo.hyvarinen@hut.fi, erkki.oja@hut.fi

http://www.cis.hut.fi/projects/ica/

A version of this paper will appear in Neural Networks

with the title �Independent Component Analysis: Algorithms and Applications�

April 1999

1 Motivation

Imagine that you are in a room where two people are speaking simultaneously. You have two microphones,
which you hold in di�erent locations. The microphones give you two recorded time signals, which we could
denote by x1(t) and x2(t), with x1 and x2 the amplitudes, and t the time index. Each of these recorded
signals is a weighted sum of the speech signals emitted by the two speakers, which we denote by s1(t) and
s2(t). We could express this as a linear equation:

x1(t) = a11s1 + a12s2 (1)

x2(t) = a21s1 + a22s2 (2)

where a11; a12; a21, and a22 are some parameters that depend on the distances of the microphones from
the speakers. It would be very useful if you could now estimate the two original speech signals s1(t) and
s2(t), using only the recorded signals x1(t) and x2(t). This is called the cocktail-party problem. For the
time being, we omit any time delays or other extra factors from our simpli�ed mixing model.

As an illustration, consider the waveforms in Fig. 1 and Fig. 2. These are, of course, not realistic speech
signals, but su�ce for this illustration. The original speech signals could look something like those in Fig. 1
and the mixed signals could look like those in Fig. 2. The problem is to recover the data in Fig. 1 using
only the data in Fig. 2.

Actually, if we knew the parameters aij , we could solve the linear equation in (1) by classical methods.
The point is, however, that if you don't know the aij , the problem is considerably more di�cult.

One approach to solving this problem would be to use some information on the statistical properties of
the signals si(t) to estimate the aii. Actually, and perhaps surprisingly, it turns out that it is enough to
assume that s1(t) and s2(t), at each time instant t, are statistically independent. This is not an unrealistic
assumption in many cases, and it need not be exactly true in practice. The recently developed technique
of Independent Component Analysis, or ICA, can be used to estimate the aij based on the information of
their independence, which allows us to separate the two original source signals s1(t) and s2(t) from their
mixtures x1(t) and x2(t). Fig. 3 gives the two signals estimated by the ICA method. As can be seen, these
are very close to the original source signals (their signs are reversed, but this has no signi�cance.)

Independent component analysis was originally developed to deal with problems that are closely related
to the cocktail-party problem. Since the recent increase of interest in ICA, it has become clear that this
principle has a lot of other interesting applications as well.
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Figure 1: The original signals.
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Figure 2: The observed mixtures of the source signals in Fig. 1.
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Figure 3: The estimates of the original source signals, estimated using only the observed signals in Fig. 2.
The original signals were very accurately estimated, up to multiplicative signs.

Consider, for example, electrical recordings of brain activity as given by an electroencephalogram (EEG).
The EEG data consists of recordings of electrical potentials in many di�erent locations on the scalp.
These potentials are presumably generated by mixing some underlying components of brain activity. This
situation is quite similar to the cocktail-party problem: we would like to �nd the original components of
brain activity, but we can only observe mixtures of the components. ICA can reveal interesting information
on brain activity by giving access to its independent components.

Another, very di�erent application of ICA is on feature extraction. A fundamental problem in digital
signal processing is to �nd suitable representations for image, audio or other kind of data for tasks like
compression and denoising. Data representations are often based on (discrete) linear transformations.
Standard linear transformations widely used in image processing are the Fourier, Haar, cosine transforms
etc. Each of them has its own favorable properties [15].

It would be most useful to estimate the linear transformation from the data itself, in which case the
transform could be ideally adapted to the kind of data that is being processed. Figure 4 shows the basis
functions obtained by ICA from patches of natural images. Each image window in the set of training images
would be a superposition of these windows so that the coe�cient in the superposition are independent.
Feature extraction by ICA will be explained in more detail later on.

All of the applications described above can actually be formulated in a uni�ed mathematical framework,
that of ICA. This is a very general-purpose method of signal processing and data analysis.

In this review, we cover the de�nition and underlying principles of ICA in Sections 2 and 3. Then,
starting from Section 4, the ICA problem is solved on the basis of minimizing or maximizing certain
conrast functions; this transforms the ICA problem to a numerical optimization problem. Many contrast
functions are given and the relations between them are clari�ed. Section 5 covers a useful preprocessing that
greatly helps solving the ICA problem, and Section 6 reviews one of the most e�cient practical learning
rules for solving the problem, the FastICA algorithm. Then, in Section 7, typical applications of ICA are
covered: removing artefacts from brain signal recordings, �nding hidden factors in �nancial time series,
and reducing noise in natural images. Section 8 concludes the text.
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Figure 4: Basis functions in ICA of natural images. The input window size was 16� 16 pixels. These basis
functions can be considered as the independent features of images.
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2 Independent Component Analysis

2.1 De�nition of ICA

To rigorously de�ne ICA [28, 7], we can use a statistical �latent variables� model. Assume that we observe
n linear mixtures x1; :::; xn of n independent components

xj = aj1s1 + aj2s2 + :::+ ajnsn; for all j: (3)

We have now dropped the time index t; in the ICA model, we assume that each mixture xj as well
as each independent component sk is a random variable, instead of a proper time signal. The observed
values xj(t), e.g., the microphone signals in the cocktail party problem, are then a sample of this random
variable. Without loss of generality, we can assume that both the mixture variables and the independent
components have zero mean: If this is not true, then the observable variables xi can always be centered by
subtracting the sample mean, which makes the model zero-mean.

It is convenient to use vector-matrix notation instead of the sums like in the previous equation. Let us
denote by x the random vector whose elements are the mixtures x1; :::; xn, and likewise by s the random
vector with elements s1; :::; sn. Let us denote by A the matrix with elements aij . Generally, bold lower
case letters indicate vectors and bold upper-case letters denote matrices. All vectors are understood as
column vectors; thus xT , or the transpose of x, is a row vector. Using this vector-matrix notation, the
above mixing model is written as

x = As: (4)

Sometimes we need the columns of matrix A; denoting them by aj the model can also be written as

x =
nX
i=1

aisi: (5)

The statistical model in Eq. 4 is called independent component analysis, or ICA model. The ICA model
is a generative model, which means that it describes how the observed data are generated by a process of
mixing the components si. The independent components are latent variables, meaning that they cannot
be directly observed. Also the mixing matrix is assumed to be unknown. All we observe is the random
vector x, and we must estimate both A and s using it. This must be done under as general assumptions
as possible.

The starting point for ICA is the very simple assumption that the components si are statistically
independent. Statistical independence will be rigorously de�ned in Section 3. It will be seen below that we
must also assume that the independent component must have nongaussian distributions. However, in the
basic model we do not assume these distributions known (if they are known, the problem is considerably
simpli�ed.) For simplicity, we are also assuming that the unknown mixing matrix is square, but this
assumption can be sometimes relaxed, as explained in Section 4.5. Then, after estimating the matrix A,
we can compute its inverse, sayW, and obtain the independent component simply by:

s =Wx: (6)

ICA is very closely related to the method called blind source separation (BSS) or blind signal separa-
tion. A �source� means here an original signal, i.e. independent component, like the speaker in a cocktail
party problem. �Blind� means that we no very little, if anything, on the mixing matrix, and make little
assumptions on the source signals. ICA is one method, perhaps the most widely used, for performing blind
source separation.

In many applications, it would be more realistic to assume that there is some noise in the measurements
(see e.g. [17, 21]), which would mean adding a noise term in the model. For simplicity, we omit any noise
terms, since the estimation of the noise-free model is di�cult enough in itself, and seems to be su�cient
for many applications.
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2.2 Ambiguities of ICA

In the ICA model in Eq. (4), it is easy to see that the following ambiguities will hold:

1. We cannot determine the variances (energies) of the independent components.

The reason is that, both s and A being unknown, any scalar multiplier in one of the sources si could
always be cancelled by dividing the corresponding column ai of A by the same scalar; see eq. (5). As a
consequence, we may quite as well �x the magnitudes of the independent components; as they are random
variables, the most natural way to do this is to assume that each has unit variance: Efs2i g = 1. Then the
matrix A will be adapted in the ICA solution methods to take into account this restriction. Note that
this still leaves the ambiguity of the sign: we could multiply the an independent component by �1 without
a�ecting the model. This ambiguity is, fortunately, insigni�cant in most applications.

2. We cannot determine the order of the independent components.

The reason is that, again both s and A being unknown, we can freely change the order of the terms in
the sum in (5), and call any of the independent components the �rst one. Formally, a permutation matrix
P and its inverse can be substituted in the model to give x = AP�1Ps. The elements of Ps are the original
independent variables sj , but in another order. The matrix AP�1 is just a new unknown mixing matrix,
to be solved by the ICA algorithms.

2.3 Illustration of ICA

To illustrate the ICA model in statistical terms, consider two independent components that have the
following uniform distributions:

p(si) =

(
1

2
p
3

if jsij �
p
3

0 otherwise
(7)

The range of values for this uniform distribution were chosen so as to make the mean zero and the variance
equal to one, as was agreed in the previous Section. The joint density of s1 and s2 is then uniform on a
square. This follows from the basic de�nition that the joint density of two independent variables is just
the product of their marginal densities (see Eq. 10): we need to simply compute the product. The joint
density is illustrated in Figure 5 by showing data points randomly drawn from this distribution.

Now let as mix these two independent components. Let us take the following mixing matrix:

A0 =

�
2 3
2 1

�
(8)

This gives us two mixed variables, x1 and x2. It is easily computed that the mixed data has a uniform
distribution on a parallelogram, as shown in Figure 6. Note that the random variables x1 and x2 are not
independent any more; an easy way to see this is to consider, whether it is possible to predict the value of
one of them, say x2, from the value of the other. Clearly if x1 attains one of its maximum or minimum
values, then this completely determines the value of x2. They are therefore not independent. (For variables
s1 and s2 the situation is di�erent: from Fig. 5 it can be seen that knowing the value of s1 does not in any
way help in guessing the value of s2.)

The problem of estimating the data model of ICA is now to estimate the mixing matrix A0 using only
information contained in the mixtures x1 and x2. Actually, you can see from Figure 6 an intuitive way of
estimating A: The edges of the parallelogram are in the directions of the columns of A. This means that
we could, in principle, estimate the ICA model by �rst estimating the joint density of x1 and x2, and then
locating the edges. So, the problem seems to have a solution.

In reality, however, this would be a very poor method because it only works with variables that have
exactly uniform distributions. Moreover, it would be computationally quite complicated. What we need is
a method that works for any distributions of the independent components, and works fast and reliably.

Next we shall consider the exact de�nition of independence before starting to develop methods for
estimation of the ICA model.
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Figure 5: The joint distribution of the independent components s1 and s2 with uniform distributions.
Horizontal axis: s1, vertical axis: s2.

Figure 6: The joint distribution of the observed mixtures x1 and x2. Horizontal axis: x1, vertical axis: x2.
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3 What is independence?

3.1 De�nition and fundamental properties

To de�ne the concept of independence, consider two scalar-valued random variables y1 and y2. Basically,
the variables y1 and y2 are said to be independent if information on the value of y1 does not give any
information on the value of y2, and vice versa. Above, we noted that this is the case with the variables
s1; s2 but not with the mixture variables x1; x2.

Technically, independence can be de�ned by the probability densities. Let us denote by p(y1; y2) the
joint probability density function (pdf) of y1 and y2. Let us further denote by p1(y1) the marginal pdf of
y1, i.e. the pdf of y1 when it is considered alone:

p1(y1) =

Z
p(y1; y2)dy2; (9)

and similarly for y2. Then we de�ne that y1 and y2 are independent if and only if the joint pdf is factorizable
in the following way:

p(y1; y2) = p1(y1)p2(y2): (10)

This de�nition extends naturally for any number n of random variables, in which case the joint density
must be a product of n terms.

The de�nition can be used to derive a most important property of independent random variables. Given
two functions, h1 and h2, we always have

Efh1(y1)h2(y2)g = Efh1(y1)gEfh2(y2)g: (11)

This can be proven as follows:

Efh1(y1)h2(y2)g =

Z Z
h1(y1)h2(y2)p(y1; y2)dy1dy2

=

Z Z
h1(y1)p1(y1)h2(y2)p2(y2)dy1dy2 =

Z
h1(y1)p1(y1)dy1

Z
h2(y2)p2(y2)dy2

= Efh1(y1)gEfh2(y2)g: (12)

3.2 Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness. Two random variables y1 and y2 are said to be
uncorrelated, if their covariance is zero:

Efy1y2g �Efy1gEfy2g = 0 (13)

If the variables are independent, they are uncorrelated, which follows directly from Eq. (11), taking h1(y1) =
y1 and h2(y2) = y2.

On the other hand, uncorrelatedness does not imply independence. For example, assume that (y1; y2)
are discrete valued and follow such a distribution that the pair are with probability 1=4 equal to any of the
following values: (0; 1); (0;�1); (1; 0); (�1; 0). Then y1 and y2 are uncorrelated, as can be simply calculated.
On the other hand,

Efy21y22g = 0 6= 1=4 = Efy21gEfy22g: (14)

so the condition in Eq. (11) is violated, and the variables cannot be independent.
Since independence implies uncorrelatedness, many ICA methods constrain the estimation procedure

so that it always gives uncorrelated estimates of the independent components. This reduces the number of
free parameters, and simpli�es the problem.
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Figure 7: The multivariate distribution of two independent gaussian variables.

3.3 Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the independent components must be nongaussian for ICA to
be possible.

To see why gaussian variables make ICA impossible, assume that the mixing matrix is orthogonal and
the si are gaussian. Then x1 and x2 are gaussian, uncorrelated, and of unit variance. Their joint density
is given by

p(x1; x2) =
1

2�
exp(�x21 + x22

2
) (15)

This distribution is illustrated in Fig. 7. The Figure shows that the density is completely symmetric.
Therefore, it does not contain any information on the directions of the columns of the mixing matrix A.
This is why A cannot be estimated.

More rigorously, one can prove that the distribution of any orthogonal transformation of the gaussian
(x1; x2) has exactly the same distribution as (x1; x2), and that x1 and x2 are independent. Thus, in the
case of gaussian variables, we can only estimate the ICA model up to an orthogonal transformation. In
other words, the matrix A is not identi�able for gaussian independent components. (Actually, if just one
of the independent components is gaussian, the ICA model can still be estimated.)

4 Principles of ICA estimation

4.1 �Nongaussian is independent�

Intuitively speaking, the key to estimating the ICA model is nongaussianity. Actually, without nongaus-
sianity the estimation is not possible at all, as mentioned in Sec. 3.3. This is at the same time probably the
main reason for the rather late resurgence of ICA research: In most of classical statistical theory, random
variables are assumed to have gaussian distributions, thus precluding any methods related to ICA.

The Central Limit Theorem, a classical result in probability theory, tells that the distribution of a sum
of independent random variables tends toward a gaussian distribution, under certain conditions. Thus, a
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sum of two independent random variables usually has a distribution that is closer to gaussian than any of
the two original random variables.

Let us now assume that the data vector x is distributed according to the ICA data model in Eq. 4,
i.e. it is a mixture of independent components. For simplicity, let us assume in this section that all the
independent components have identical distributions. To estimate one of the independent components, we
consider a linear combination of the xi (see eq. 6); let us denote this by y = wTx =

P
i wixi, where w is

a vector to be determined. If w were one of the rows of the inverse of A, this linear combination would
actually equal one of the independent components. The question is now: How could we use the Central
Limit Theorem to determine w so that it would equal one of the rows of the inverse of A? In practice,
we cannot determine such a w exactly, because we have no knowledge of matrix A, but we can �nd an
estimator that gives a good approximation.

To see how this leads to the basic principle of ICA estimation, let us make a change of variables, de�ning
z = ATw. Then we have y = wTx = wTAs = zT s. y is thus a linear combination of si, with weights given
by zi. Since a sum of even two independent random variables is more gaussian than the original variables,
zT s is more gaussian than any of the si and becomes least gaussian when it in fact equals one of the si.
In this case, obviously only one of the elements zi of z is nonzero. (Note that the si were here assumed to
have identical distributions.)

Therefore, we could take as w a vector that maximizes the nongaussianity of wTx. Such a vector
would necessarily correspond (in the transformed coordinate system) to a z which has only one nonzero
component. This means that wTx = zT s equals one of the independent components!

Maximizing the nongaussianity of wTx thus gives us one of the independent components. In fact, the
optimization landscape for nongaussianity in the n-dimensional space of vectorsw has 2n local maxima, two
for each independent component, corresponding to si and �si (recall that the independent components can
be estimated only up to a multiplicative sign). To �nd several independent components, we need to �nd all
these local maxima. This is not di�cult, because the di�erent independent components are uncorrelated:
We can always constrain the search to the space that gives estimates uncorrelated with the previous ones.
This corresponds to orthogonalization in a suitably transformed (i.e. whitened) space.

Our approach here is rather heuristic, but it will be seen in the next section and Sec. 4.3 that it has a
perfectly rigorous justi�cation.

4.2 Measures of nongaussianity

To use nongaussianity in ICA estimation, we must have a quantitative measure of nongaussianity of a
random variable, say y. To simplify things, let us assume that y is centered (zero-mean) and has variance
equal to one. Actually, one of the functions of preprocessing in ICA algorithms, to be covered in Section 5,
is to make this simpli�cation possible.

4.2.1 Kurtosis

The classical measure of nongaussianity is kurtosis or the fourth-order cumulant. The kurtosis of y is
classically de�ned by

kurt(y) = Efy4g � 3(Efy2g)2 (16)

Actually, since we assumed that y is of unit variance, the right-hand side simpli�es to Efy4g � 3. This
shows that kurtosis is simply a normalized version of the fourth moment Efy4g. For a gaussian y, the
fourth moment equals 3(Efy2g)2. Thus, kurtosis is zero for a gaussian random variable. For most (but not
quite all) nongaussian random variables, kurtosis is nonzero.

Kurtosis can be both positive or negative. Random variables that have a negative kurtosis are called
subgaussian, and those with positive kurtosis are called supergaussian. In statistical literature, the cor-
responding expressions platykurtic and leptokurtic are also used. Supergaussian random variables have
typically a �spiky� pdf with heavy tails, i.e. the pdf is relatively large at zero and at large values of the
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Figure 8: The density function of the Laplace distribution, which is a typical supergaussian distribution.
For comparison, the gaussian density is given by a dashed line. Both densities are normalized ot unit
variance.

variable, while being small for intermediate values. A typical example is the Laplace distribution, whose
pdf (normalized to unit variance) is given by

p(y) =
1p
2
exp(

p
2jyj) (17)

This pdf is illustrated in Fig. 8. Subgaussian random variables, on the other hand, have typically a ��at�
pdf, which is rather constant near zero, and very small for larger values of the variable. A typical example
is the uniform distibution in eq. (7).

Typically nongaussianity is measured by the absolute value of kurtosis. The square of kurtosis can
also be used. These are zero for a gaussian variable, and greater than zero for most nongaussian random
variables. There are nongaussian random variables that have zero kurtosis, but they can be considered as
very rare.

Kurtosis, or rather its absolute value, has been widely used as a measure of nongaussianity in ICA and
related �elds. The main reason is its simplicity, both computational and theoretical. Computationally,
kurtosis can be estimated simply by using the fourth moment of the sample data. Theoretical analysis is
simpli�ed because of the following linearity property: If x1 and x2 are two independent random variables,
it holds

kurt(x1 + x2) = kurt(x1) + kurt(x2) (18)

and

kurt(�x1) = �4 kurt(x1) (19)

where � is a scalar. These properties can be easily proven using the de�nition.
To illustrate in a simple example what the optimization landscape for kurtosis looks like, and how

independent components could be found by kurtosis minimization or maximization, let us look at a
2-dimensional model x = As. Assume that the independent components s1; s2 have kurtosis values
kurt(s1); kurt(s2), respectively, both di�erent from zero. Remember that we assumed that they have
unit variances. We seek for one of the independent components as y = wTx.

Let us again make the transformation z = ATw. Then we have y = wTx = wTAs = zT s = z1s1+z2s2.
Now, based on the additive property of kurtosis, we have kurt(y) = kurt(z1s1)+ kurt(z2s2) = z41 kurt(s1)+
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z42 kurt(s2). On the other hand, we made the constraint that the variance of y is equal to 1, based on the
same assumption concerning s1; s2. This implies a constraint on z: Efy2g = z21 + z22 = 1. Geometrically,
this means that vector z is constrained to the unit circle on the 2-dimensional plane. The optimization
problem is now: what are the maxima of the function j kurt(y)j = jz41 kurt(s1) + z42 kurt(s2)j on the unit
circle? For simplicity, you may consider that the kurtosis are of the same sign, in which case it absolute
value operators can be omitted. The graph of this function is the "optimization landscape" for the problem.

It is not hard to show [9] that the maxima are at the points when exactly one of the elements of vector
z is zero and the other nonzero; because of the unit circle constraint, the nonzero element must be equal
to 1 or -1. But these points are exactly the ones when y equals one of the independent components �si,
and the problem has been solved.

In practice we would start from some weight vector w, compute the direction in which the kurtosis
of y = wTx is growing most strongly (if kurtosis is positive) or decreasing most strongly (if kurtosis is
negative) based on the available sample x(1); :::;x(T ) of mixture vector x, and use a gradient method or
one of their extensions for �nding a new vector w. The example can be generalized to arbitrary dimensions,
showing that kurtosis can theoretically be used as an optimization criterion for the ICA problem.

However, kurtosis has also some drawbacks in practice, when its value has to be estimated from a
measured sample. The main problem is that kurtosis can be very sensitive to outliers [16]. Its value may
depend on only a few observations in the tails of the distribution, which may be erroneous or irrelevant
observations. In other words, kurtosis is not a robust measure of nongaussianity.

Thus, other measures of nongaussianity might be better than kurtosis in some situations. Below we
shall consider negentropy whose properties are rather opposite to those of kurtosis, and �nally introduce
approximations of negentropy that more or less combine the good properties of both measures.

4.2.2 Negentropy

A second very important measure of nongaussianity is given by negentropy. Negentropy is based on the
information-theoretic quantity of (di�erential) entropy.

Entropy is the basic concept of information theory. The entropy of a random variable can be inter-
preted as the degree of information that the observation of the variable gives. The more �random�, i.e.
unpredictable and unstructured the variable is, the larger its entropy. More rigorously, entropy is closely
related to the coding length of the random variable, in fact, under some simplifying assumptions, entropy
is the coding length of the random variable. For introductions on information theory, see e.g. [8, 36].

Entropy H is de�ned for a discrete random variable Y as

H(Y ) = �
X
i

P (Y = ai) logP (Y = ai) (20)

where the ai are the possible values of Y . This very well-known de�nition can be generalized for continuous-
valued random variables and vectors, in which case it is often called di�erential entropy. The di�erential
entropy H of a random vector y with density f(y) is de�ned as [8, 36]:

H(y) = �
Z

f(y) log f(y)dy: (21)

A fundamental result of information theory is that a gaussian variable has the largest entropy among
all random variables of equal variance. For a proof, see e.g. [8, 36]. This means that entropy could be used
as a measure of nongaussianity. In fact, this shows that the gaussian distribution is the �most random� or
the least structured of all distributions. Entropy is small for distributions that are clearly concentrated on
certain values, i.e., when the variable is clearly clustered, or has a pdf that is very �spiky�.

To obtain a measure of nongaussianity that is zero for a gaussian variable and always nonnegative, one
often uses a slightly modi�ed version of the de�nition of di�erential entropy, called negentropy. Negentropy
J is de�ned as follows

J(y) = H(ygauss)�H(y) (22)
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where ygauss is a Gaussian random variable of the same covariance matrix as y. Due to the above-mentioned
properties, negentropy is always non-negative, and it is zero if and only if y has a Gaussian distribution.
Negentropy has the additional interesting property that it is invariant for invertible linear transformations
[7, 23].

The advantage of using negentropy, or, equivalently, di�erential entropy, as a measure of nongaussianity
is that it is well justi�ed by statistical theory. In fact, negentropy is in some sense the optimal estimator of
nongaussianity, as far as statistical properties are concerned. The problem in using negentropy is, however,
that it is computationally very di�cult. Estimating negentropy using the de�nition would require an
estimate (possibly nonparametric) of the pdf. Therefore, simpler approximations of negentropy are very
useful, as will be discussed next.

4.2.3 Approximations of negentropy

The estimation of negentropy is di�cult, as mentioned above, and therefore this contrast function remains
mainly a theoretical one. In practice, some approximation have to be used. Here we introduce approxi-
mations that have very promising properties, and which will be used in the following to derive an e�cient
method for ICA.

The classical method of approximating negentropy is using higher-order moments, for example as follows
[27]:

J(y) � 1

12
Efy3g2 + 1

48
kurt(y)2 (23)

The random variable y is assumed to be of zero mean and unit variance. However, the validity of such
approximations may be rather limited. In particular, these approximations su�er from the nonrobustness
encountered with kurtosis.

To avoid the problems encountered with the preceding approximations of negentropy, new approxi-
mations were developed in [18]. These approximation were based on the maximum-entropy principle. In
general we obtain the following approximation:

J(y) �
pX
i=1

ki[EfGi(y)g �EfGi(�)g]2; (24)

where ki are some positive constants, and � is a Gaussian variable of zero mean and unit variance (i.e.,
standardized). The variable y is assumed to be of zero mean and unit variance, and the functions Gi are
some nonquadratic functions [18]. Note that even in cases where this approximation is not very accurate,
(24) can be used to construct a measure of nongaussianity that is consistent in the sense that it is always
non-negative, and equal to zero if y has a Gaussian distribution.

In the case where we use only one nonquadratic function G, the approximation becomes

J(y) / [EfG(y)g �EfG(�)g]2 (25)

for practically any non-quadratic function G. This is clearly a generalization of the moment-based ap-
proximation in (23), if y is symmetric. Indeed, taking G(y) = y4, one then obtains exactly (23), i.e. a
kurtosis-based approximation.

But the point here is that by choosing G wisely, one obtains approximations of negentropy that are
much better than the one given by (23). In particular, choosing G that does not grow too fast, one obtains
more robust estimators. The following choices of G have proved very useful:

G1(u) =
1

a1
log cosha1u; G2(u) = � exp(�u2=2) (26)

where 1 � a1 � 2 is some suitable constant.
Thus we obtain approximations of negentropy that give a very good compromise between the properties

of the two classical nongaussianity measures given by kurtosis and negentropy. They are conceptually
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simple, fast to compute, yet have appealing statistical properties, especially robustness. Therefore, we shall
use these contrast functions in our ICA methods. Since kurtosis can be expressed in this same framework,
it can still be used by our ICA methods. A practical algorithm based on these contrast function will be
presented in Section 6.

4.3 Minimization of Mutual Information

Another approach for ICA estimation, inspired by information theory, is minimization of mutual informa-
tion. We will explain this approach here, and show that it leads to the same principle of �nding most
nongaussian directions as was described above. In particular, this approach gives a rigorous justi�cation
for the heuristic principles used above.

4.3.1 Mutual Information

Using the concept of di�erential entropy, we de�ne the mutual information I between m (scalar) random
variables, yi; i = 1:::m as follows

I(y1; y2; :::; ym) =

mX
i=1

H(yi)�H(y): (27)

Mutual information is a natural measure of the dependence between random variables. In fact, it is
equivalent to the well-known Kullback-Leibler divergence between the joint density f(y) and the product
of its marginal densities; a very natural measure for independence. It is always non-negative, and zero if
and only if the variables are statistically independent. Thus, mutual information takes into account the
whole dependence structure of the variables, and not only the covariance, like PCA and related methods.

Mutual information can be interpreted by using the interpretation of entropy as code length. The
terms H(yi) give the lengths of codes for the yi when these are coded separately, and H(y) gives the code
length when y is coded as a random vector, i.e. all the components are coded in the same code. Mutual
information thus shows what code length reduction is obtained by coding the whole vector instead of the
separate components. In general, better codes can be obtained by coding the whole vector. However, if the
yi are independent, they give no information on each other, and one could just as well code the variables
separately without increasing code length.

An important property of mutual information [36, 8] is that we have for an invertible linear transfor-
mation y =Wx:

I(y1; y2; :::; yn) =
X
i

H(yi)�H(x) � log j detWj: (28)

Now, let us consider what happens if we constrain the yi to be uncorrelated and of unit variance. This means
EfyyT g =WEfxxT gWT = I, which implies det I = 1 = (detWEfxxT gWT ) = (detW)(detEfxxT g)(detWT ),
and this implies that detW must be constant. Moreover, for yi of unit variance, entropy and negentropy
di�er only by a constant, and the sign. Thus we obtain,

I(y1; y2; :::; yn) = C �
X
i

J(yi): (29)

where C is a constant that does not depend onW. This shows the fundamental relation between negentropy
and mutual information.

4.3.2 De�ning ICA by Mutual Information

Since mutual information is the natural information-theoretic measure of the independence of random vari-
ables, we could use it as the criterion for �nding the ICA transform. In this approach that is an alternative
to the model estimation approach, we de�ne the ICA of a random vector x as an invertible transformation
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as in (6), where the matrixW is determined so that the mutual information of the transformed components
si is minimized.

It is now obvious from (29) that �nding an invertible transformation W that minimizes the mutual
information is roughly equivalent to �nding directions in which the negentropy is maximized. More precisely,
it is roughly equivalent to �nding 1-D subspaces such that the projections in those subspaces have maximum
negentropy. Rigorously, speaking, (29) shows that ICA estimation by minimization of mutual information is
equivalent to maximizing the sum of nongaussianities of the estimates, when the estimates are constrained to
be uncorrelated. The constraint of uncorrelatedness is in fact not necessary, but simpli�es the computations
considerably, as one can then use the simpler form in (29) instead of the more complicated form in (28).

Thus, we see that the formulation of ICA as minimization of mutual information gives another rigorous
justi�cation of our more heuristically introduced idea of �nding maximally nongaussian directions.

4.4 Maximum Likelihood Estimation

4.4.1 The likelihood

A very popular approach for estimating the ICA model is maximum likelihood estimation, which is closely
connected to the infomax principle. Here we discuss this approach, and show that it is essentially equivalent
to minimization of mutual information.

It is possible to formulate directly the likelihood in the noise-free ICA model, which was done in [38],
and then estimate the model by a maximum likelihood method. Denoting byW = (w1; :::;wn)

T the matrix
A�1, the log-likelihood takes the form [38]:

L =

TX
t=1

nX
i=1

log fi(w
T
i x(t)) + T log j detWj (30)

where the fi are the density functions of the si (here assumed to be known), and the x(t); t = 1; :::; T
are the realizations of x. The term log j detWj in the likelihood comes from the classic rule for (linearly)
transforming random variables and their densities [36]: In general, for any random vector x with density
px and for any matrix W, the density of y =Wx is given by px(Wx)j detWj.

4.4.2 The Infomax Principle

Another related contrast function was derived from a neural network viewpoint in [3, 35]. This was based on
maximizing the output entropy (or information �ow) of a neural network with non-linear outputs. Assume
that x is the input to the neural network whose outputs are of the form gi(w

T
i x), where the gi are some

non-linear scalar functions, and the wi are the weight vectors of the neurons. One then wants to maximize
the entropy of the outputs:

L2 = H(g1(w
T
1 x); :::; gn(w

T
nx)): (31)

If the gi are well chosen, this framework also enables the estimation of the ICA model. Indeed, several
authors, e.g., [4, 37], proved the surprising result that the principle of network entropy maximization,
or �infomax�, is equivalent to maximum likelihood estimation. This equivalence requires that the non-
linearities gi used in the neural network are chosen as the cumulative distribution functions corresponding
to the densities fi, i.e., g

0
i(:) = fi(:).

4.4.3 Connection to mutual information

To see the connection between likelihood and mutual information, consider the expectation of the log-
likelihood:

1

T
EfLg =

nX
i=1

Eflog fi(wT
i x)g+ log j detWj: (32)
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Figure 9: An illustration of projection pursuit and the �interestingness� of nongaussian projections. The
data in this �gure is clearly divided into two clusters. However, the principal component, i.e. the direction
of maximum variance, would be vertical, providing no separation between the clusters. In contrast, the
strongly nongaussian projection pursuit direction is horizontal, providing optimal separation of the clusters.

Actually, if the fi were equal to the actual distributions of wT
i x, the �rst term would be equal to

�PiH(wT
i x). Thus the likelihood would be equal, up to an additive constant, to the negative of mutual

information as given in Eq. (28).
Actually, in practice the connection is even stronger. This is because in practice we don't know the

distributions of the independent components. A reasonable approach would be to estimate the density of
wT
i x as part of the ML estimation method, and use this as an approximation of the density of si. In this

case, likelihood and mutual information are, for all practical purposes, equivalent.
Nevertheless, there is a small di�erence that may be very important in practice. The problem with

maximum likelihood estimation is that the densities fi must be estimated correctly. They need not be
estimated with any great precision: in fact it is enough to estimate whether they are sub- or supergaussian
[5, 25, 31]. In many cases, in fact, we have enough prior knowledge on the independent components, and
we don't need to estimate their nature from the data. In any case, if the information on the nature of
the independent components is not correct, ML estimation will give completely wrong results. Some care
must be taken with ML estimation, therefore. In contrast, using reasonable measures of nongaussianity,
this problem does not usually arise.

4.5 ICA and Projection Pursuit

It is interesting to note how our approach to ICA makes explicit the connection between ICA and projection
pursuit. Projection pursuit [12, 13, 16, 27] is a technique developed in statistics for �nding �interesting�
projections of multidimensional data. Such projections can then be used for optimal visualization of the
data, and for such purposes as density estimation and regression. In basic (1-D) projection pursuit, we try
to �nd directions such that the projections of the data in those directions have interesting distributions, i.e.,
display some structure. It has been argued by Huber [16] and by Jones and Sibson [27] that the Gaussian
distribution is the least interesting one, and that the most interesting directions are those that show the
least Gaussian distribution. This is exactly what we do to estimate the ICA model.

The usefulness of �nding such projections can be seen in Fig. 9, where the projection on the projection
pursuit direction, which is horizontal, clearly shows the clustered structure of the data. The projection on
the �rst principal component (vertical), on the other hand, fails to show this structure.

Thus, in the general formulation, ICA can be considered a variant of projection pursuit. All the non-
gaussianity measures and the corresponding ICA algorithms presented here could also be called projection
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pursuit �indices� and algorithms. In particular, the projection pursuit allows us to tackle the situation
where there are less independent components si than original variables xi is. Assuming that those dimen-
sions of the space that are not spanned by the independent components are �lled by gaussian noise, we
see that computing the nongaussian projection pursuit directions, we e�ectively estimate the independent
components. When all the nongaussian directions have been found, all the independent components have
been estimated. Such a procedure can be interpreted as a hybrid of projection pursuit and ICA.

However, it should be noted that in the formulation of projection pursuit, no data model or assumption
about independent components is made. If the ICA model holds, optimizing the ICA nongaussianity
measures produce independent components; if the model does not hold, then what we get are the projection
pursuit directions.

5 Preprocessing for ICA

In the preceding section, we discussed the statistical principles underlying ICA methods. Practical algo-
rithms based on these principles will be discussed in the next section. However, before applying an ICA
algorithm on the data, it is usually very useful to do some preprocessing. In this section, we discuss some
preprocessing techniques that make the problem of ICA estimation simpler and better conditioned.

5.1 Centering

The most basic and necessary preprocessing is to center x, i.e. subtract its mean vector m = Efxg so
as to make x a zero-mean variable. This implies that s is zero-mean as well, as can be seen by taking
expectations on both sides of Eq. (4).

This preprocessing is made solely to simplify the ICA algorithms: It does not mean that the mean
could not be estimated. After estimating the mixing matrix A with centered data, we can complete the
estimation by adding the mean vector of s back to the centered estimates of s. The mean vector of s is
given by A�1m, where m is the mean that was subtracted in the preprocessing.

5.2 Whitening

Another useful preprocessing strategy in ICA is to �rst whiten the observed variables. This means that
before the application of the ICA algorithm (and after centering), we transform the observed vector x
linearly so that we obtain a new vector ~x which is white, i.e. its components are uncorrelated and their
variances equal unity. In other words, the covariance matrix of ~x equals the identity matrix:

Ef~x~xT g = I: (33)

The whitening transformation is always possible. One popular method for whitening is to use the eigen-
value decomposition (EVD) of the covariance matrix EfxxT g = EDET , where E is the orthogonal matrix
of eigenvectors of EfxxT g and D is the diagonal matrix of its eigenvalues, D = diag(d1; :::; dn). Note that
EfxxT g can be estimated in a standard way from the available sample x(1); :::;x(T ). Whitening can now
be done by

~x = ED�1=2ETx (34)

where the matrixD�1=2is computed by a simple component-wise operation asD�1=2 = diag(d
�1=2
1 ; :::; d

�1=2
n ).

It is easy to check that now Ef~x~xT g = I.
Whitening transforms the mixing matrix into a new one, ~A. We have from (4) and (34):

~x = ED�1=2ETAs = ~As (35)

The utility of whitening resides in the fact that the new mixing matrix ~A is orthogonal. This can be seen
from

Ef~x~xT g = ~AEfssT g ~AT = ~A ~AT = I: (36)
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Figure 10: The joint distribution of the whitened mixtures.

Here we see that whitening reduces the number of parameters to be estimated. Instead of having to
estimate the n2 parameters that are the elements of the original matrix A, we only need to estimate
the new, orthogonal mixing matrix ~A. An orthogonal matrix contains n(n � 1)=2 degrees of freedom.
For example, in two dimensions, an orthogonal transformation is determined by a single angle parameter.
In larger dimensions, an orthogonal matrix contains only about half of the number of parameters of an
arbitrary matrix. Thus one can say that whitening solves half of the problem of ICA. Because whitening is
a very simple and standard procedure, much simpler than any ICA algorithms, it is a good idea to reduce
the complexity of the problem this way.

It may also be quite useful to reduce the dimension of the data at the same time as we do the whitening.
Then we look at the eigenvalues dj of EfxxT g and discard those that are too small, as is often done in the
statistical technique of principal component analysis. This has often the e�ect of reducing noise. Moreover,
dimension reduction prevents overlearning, which can sometimes be observed in ICA [26].

A graphical illustration of the e�ect of whitening can be seen in Figure 10, in which the data in Figure 6
has been whitened. The square de�ning the distribution is now clearly a rotated version of the original
square in Figure 5. All that is left is the estimation of a single angle that gives the rotation.

In the rest of this tutorial, we assume that the data has been preprocessed by centering and whitening.
For simplicity of notation, we denote the preprocessed data just by x, and the transformed mixing matrix
by A, omitting the tildes.

5.3 Further preprocessing

The success of ICA for a given data set may depende crucially on performing some application-dependent
preprocessing steps. For example, if the data consists of time-signals, some band-pass �ltering may be very
useful. Note that if we �lter linearly the observed signals xi(t) to obtain new signals, say x�i (t), the ICA
model still holds for x�i (t), with the same mixing matrix.

This can be seen as follows. Denote byX the matrix that contains the observations x(1); :::;x(T ) as its columns,
and similarly for S. Then the ICA model can be expressed as:

X = AS (37)
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Now, time �ltering of X corresponds to multiplying X from the right by a matrix, let us call it M. This gives

X
� = XM = ASM = AS�; (38)

which shows that the ICA model remains still valid.

6 The FastICA Algorithm

In the preceding sections, we introduced di�erent measures of nongaussianity, i.e. objective functions for
ICA estimation. In practice, one also needs an algorithm for maximizing the contrast function, for example
the one in (25). In this section, we introduce a very e�cient method of maximization suited for this task.
It is here assumed that the data is preprocessed by centering and whitening as discussed in the preceding
section.

6.1 FastICA for one unit

To begin with, we shall show the one-unit version of FastICA. By a "unit" we refer to a computational
unit, eventually an arti�cial neuron, having a weight vector w that the neuron is able to update by a
learning rule. The FastICA learning rule �nds a direction, i.e. a unit vector w such that the projection
wTx maximizes nongaussianity. Nongaussianity is here measured by the approximation of negentropy
J(wTx) given in (25). Recall that the variance of wTx must here be constrained to unity; for whitened
data this is equivalent to constraining the norm of w to be unity.

The FastICA is based on a �xed-point iteration scheme for �nding a maximum of the nongaussianity of
wTx, as measured in (25), see [24, 19]. It can be also derived as an approximative Newton iteration [19].
Denote by g the derivative of the nonquadratic function G used in (25); for example the derivatives of the
functions in (26) are:

g1(u) = tanh(a1u); (39)

g2(u) = u exp(�u2=2)

where 1 � a1 � 2 is some suitable constant, often taken as a1 = 1. The basic form of the FastICA algorithm
is as follows:

1. Choose an initial (e.g. random) weight vector w.

2. Let w+ = Efxg(wTx)g �Efg0(wTx)gw
3. Let w = w+=kw+k
4. If not converged, go back to 2.

Note that convergence means that the old and new values of w point in the same direction, i.e. their
dot-product is (almost) equal to 1. It is not necessary that the vector converges to a single point, since w
and �w de�ne the same direction. This is again because the independent components can be de�ned only
up to a multiplicative sign. Note also that it is here assumed that the data is prewhitened.

The derivation of FastICA is as follows. First note that the maxima of the approximation of the negentropy of
w
T
x are obtained at certain optima of EfG(wT

x)g. According to the Kuhn-Tucker conditions [32], the optima of
EfG(wT

x)g under the constraint Ef(wT
x)2g = kwk2 = 1 are obtained at points where

Efxg(wT
x)g � �w = 0 (40)

Let us try to solve this equation by Newton's method. Denoting the function on the left-hand side of (40) by F , we
obtain its Jacobian matrix JF (w) as

JF (w) = EfxxT g0(wT
x)g � �I (41)
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To simplify the inversion of this matrix, we decide to approximate the �rst term in (41). Since the data is sphered, a
reasonable approximation seems to be EfxxT g0(wT

x)g � EfxxT gEfg0(wT
x)g = Efg0(wT

x)gI. Thus the Jacobian
matrix becomes diagonal, and can easily be inverted. Thus we obtain the following approximative Newton iteration:

w
+ = w� [Efxg(wT

x)g � �w]=[Efg0(wT
x)g � �] (42)

This algorithm can be further simpli�ed by multiplying both sides of (42) by � � Efg0(wT
x)g. This gives, after

algebraic simplication, the FastICA iteration.

In practice, the expectations in FastICA must be replaced by their estimates. The natural estimates
are of course the corresponding sample means. Ideally, all the data available should be used, but this is
often not a good idea because the computations may become too demanding. Then the averages can be
estimated using a smaller sample, whose size may have a considerable e�ect on the accuracy of the �nal
estimates. The sample points should be chosen separately at every iteration. If the convergence is not
satisfactory, one may then increase the sample size.

6.2 FastICA for several units

The one-unit algorithm of the preceding subsection estimates just one of the independent components, or
one projection pursuit direction. To estimate several independent components, we need to run the one-unit
FastICA algorithm using several units (e.g. neurons) with weight vectors w1; :::;wn.

To prevent di�erent vectors from converging to the same maxima we must decorrelate the outputs
wT
1 x; :::;w

T
nx after every iteration. We present here three methods for achieving this.

A simple way of achieving decorrelation is a de�ation scheme based on a Gram-Schmidt-like decorrela-
tion. This means that we estimate the independent components one by one. When we have estimated p
independent components, or p vectors w1; :::;wp, we run the one-unit �xed-point algorithm for wp+1, and
after every iteration step subtract from wp+1 the �projections� wT

p+1wjwj ; j = 1; :::; p of the previously
estimated p vectors, and then renormalize wp+1:

1. Let wp+1 = wp+1 �
Pp

j=1w
T
p+1wjwj

2. Let wp+1 = wp+1=
q
wT
p+1wp+1

(43)

In certain applications, however, it may be desired to use a symmetric decorrelation, in which no vectors
are �privileged� over others [29]. This can be accomplished, e.g., by the classical method involving matrix
square roots,

Let W = (WWT )�1=2W (44)

where W is the matrix (w1; :::;wn)
T of the vectors, and the inverse square root (WWT )�1=2 is obtained

from the eigenvalue decomposition ofWWT = F�FT as (WWT )�1=2 = F��1=2FT . A simpler alternative
is the following iterative algorithm [19],

1. Let W =W=
p
kWWTk

Repeat 2. until convergence:
2. Let W = 3

2
W � 1

2
WWTW

(45)

The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the largest absolute row
(or column) sum (but not the Frobenius norm).

6.3 FastICA and maximum likelihood

Finally, we give a version of FastICA that shows explicitly the connection to the well-known infomax or
maximum likelihood algorithm introduced in [1, 3, 5, 6]. If we express FastICA using the intermediate
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formula in (42), and write it in matrix form (see [20] for details), we see that FastICA takes the following
form:

W+ =W + �[diag(��i) +Efg(y)yT g]W: (46)

where y =Wx, �i = Efyig(yi)g, and � = diag(1=(�i � Efg0(yi)g)). The matrix W needs to be orthogo-
nalized after every step. In this matrix version, it is natural to orthogonalizeW symmetrically.

The above version of FastICA could be compared with the stochastic gradient method for maximizing
likelihood [1, 3, 5, 6]:

W+ =W + �[I+ g(y)yT ]W: (47)

where � is the learning rate, not necessarily constant in time. Comparing (46) and (47), we see that
FastICA can be considered as a �xed-point algorithm for maximum likelihood estimation of the ICA data
model. For details, see [20]. In FastICA, convergence speed is optimized by the choice of the matrices
� and diag(��i). Another advantage of FastICA is that it can estimate both sub- and super-gaussian
independent components, which is in contrast to ordinary ML algorithms, which only work for a given class
of distributions (see Sec. 4.4).

6.4 Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast functions have a number of desirable properties when
compared with existing methods for ICA.

1. The convergence is cubic (or at least quadratic), under the assumption of the ICA data model (for a
proof, see [19]). This is in contrast to ordinary ICA algorithms based on (stochastic) gradient descent
methods, where the convergence is only linear. This means a very fast convergence, as has been
con�rmed by simulations and experiments on real data (see [14]).

2. Contrary to gradient-based algorithms, there are no step size parameters to choose. This means that
the algorithm is easy to use.

3. The algorithm �nds directly independent components of (practically) any non-Gaussian distribution
using any nonlinearity g. This is in contrast to many algorithms, where some estimate of the proba-
bility distribution function has to be �rst available, and the nonlinearity must be chosen accordingly.

4. The performance of the method can be optimized by choosing a suitable nonlinearity g. In particular,
one can obtain algorithms that are robust and/or of minimum variance. In fact, the two nonlinearities
in (39) have some optimal properties; for details see [19].

5. The independent components can be estimated one by one, which is roughly equivalent to doing
projection pursuit. This es useful in exploratory data analysis, and decreases the computational load
of the method in cases where only some of the independent components need to be estimated.

6. The FastICA has most of the advantages of neural algorithms: It is parallel, distributed, computa-
tionally simple, and requires little memory space. Stochastic gradient methods seem to be preferable
only if fast adaptivity in a changing environment is required.

A MatlabTM implementation of the FastICA algorithm is available on the World Wide Web free of
charge [11].

7 Applications of ICA

In this section we review some applications of ICA. The most classical application of ICA, the cocktail-party
problem, was already explained in the opening section of this paper.
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7.1 Separation of Artifacts in MEG Data

Magnetoencephalography (MEG) is a noninvasive technique by which the activity or the cortical neurons
can be measured with very good temporal resolution and moderate spatial resolution. When using a MEG
record, as a research or clinical tool, the investigator may face a problem of extracting the essential features
of the neuromagnetic signals in the presence of artifacts. The amplitude of the disturbances may be higher
than that of the brain signals, and the artifacts may resemble pathological signals in shape.

In [41], the authors introduced a new method to separate brain activity from artifacts using ICA. The
approach is based on the assumption that the brain activity and the artifacts, e.g. eye movements or
blinks, or sensor malfunctions, are anatomically and physiologically separate processes, and this separation
is re�ected in the statistical independence between the magnetic signals generated by those processes. The
approach follows the earlier experiments with EEG signals, reported in [40]. A related approach is that of
[33].

The MEG signals were recorded in a magnetically shielded room with a 122-channel whole-scalp
Neuromag-122 neuromagnetometer. This device collects data at 61 locations over the scalp, using or-
thogonal double-loop pick-up coils that couple strongly to a local source just underneath. The test person
was asked to blink and make horizontal saccades, in order to produce typical ocular (eye) artifacts. More-
over, to produce myographic (muscle) artifacts, the subject was asked to bite his teeth for as long as 20
seconds. Yet another artifact was created by placing a digital watch one meter away from the helmet into
the shielded room.

Figure 11 presents a subset of 12 spontaneous MEG signals xi(t) from the frontal, temporal, and
occipital areas [41]. The �gure also shows the positions of the corresponding sensors on the helmet. Due
to the dimension of the data (122 magnetic signals were recorded), it is impractical to plot all the MEG
signals xi(t); i = 1; :::; 122. Also two electro-oculogram channels and the electrocardiogram are presented,
but they were not used in computing the ICA.

The signal vector x in the ICA model (4) consists now of the amplitudes xi(t) of the 122 signals at a
certain time point, so the dimensionality is n = 122. In the theoretical model, x is regarded as a random
vector, and the measurements x(t) give a set of realizations of x as time proceeds. Note that in the basic
ICA model that we are using, the temporal correlations in the signals are not utilized at all.

The x(t) vectors were whitened using PCA and the dimensionality was decreased at the same time.
Then, using the FastICA algorithm, a subset of the rows of the separating matrix W of eq. (6) were
computed. Once a vector wi has become available, an ICA signal si(t) can be computed from si(t) =
wT
i x

0(t) with x0(t) now denoting the whitened and lower dimensional signal vector.
Figure 12 shows sections of 9 independent components (IC's) si(t); i = 1; :::; 9 found from the recorded

data together with the corresponding �eld patterns [41]. The �rst two IC's are clearly due to the musclular
activity originated from the biting. Their separation into two components seems to correspond, on the
basis of the �eld patterns, to two di�erent sets of muscles that were activated during the process. IC3 and
IC5 are showing the horizontal eye movements and the eye blinks, respectively. IC4 represents the cardiac
artifact that is very clearly extracted.

To �nd the remaining artifacts, the data were high-pass �ltered, with cuto� frequency at 1 Hz. Next,
the independent component IC8 was found. It shows clearly the artifact originated at the digital watch,
located to the right side of the magnetometer. The last independent component IC9 is related to a sensor
presenting higher RMS (root mean squared) noise than the others.

The results of Fig. 12 clearly show that using the ICA technique and the FastICA algorithm, it is
possible to isolate both eye movement and eye blinking artifacts, as well as cardiac, myographic, and other
artifacts from MEG signals. The FastICA algorithm is an especially suitable tool, because artifact removal
is an interactive technique and the investigator may freely choose how many of the IC's he or she wants.

In addition to reducing artifacts, ICA can be used to decompose evoked �elds [42], which enables direct
access to the underlying brain functioning, which is likely to be of great signi�cance in neuroscienti�c
research.
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Figure 11: (From [41]). Samples of MEG signals, showing artifacts produced by blinking, saccades, biting
and cardiac cycle. For each of the 6 positions shown, the two orthogonal directions of the sensors are
plotted.

7.2 Finding Hidden Factors in Financial Data

It is a tempting alternative to try ICA on �nancial data. There are many situations in that application
domain in which parallel time series are available, such as currency exchange rates or daily returns of stocks,
that may have some common underlying factors. ICA might reveal some driving mechanisms that otherwise
remain hidden. In a recent study of a stock portfolio [2], it was found that ICA is a complementary tool
to PCA, allowing the underlying structure of the data to be more readily observed.

In [30], we applied ICA on a di�erent problem: the cash�ow of several stores belonging to the same
retail chain, trying to �nd the fundamental factors common to all stores that a�ect the cash�ow data.
Thus, the cash�ow e�ect of the factors speci�c to any particular store, i.e., the e�ect of the actions taken
at the individual stores and in its local environment could be analyzed.

The assumption of having some underlying independent components in this speci�c application may
not be unrealistic. For example, factors like seasonal variations due to holidays and annual variations,
and factors having a sudden e�ect on the purchasing power of the customers like prize changes of various
commodities, can be expected to have an e�ect on all the retail stores, and such factors can be assumed to
be roughly independent of each other. Yet, depending on the policy and skills of the individual manager
like e.g. advertising e�orts, the e�ect of the factors on the cash �ow of speci�c retail outlets are slightly
di�erent. By ICA, it is possible to isolate both the underlying factors and the e�ect weights, thus also
making it possible to group the stores on the basis of their managerial policies using only the cash �ow
time series data.

The data consisted of the weekly cash �ow in 40 stores that belong to the same retail chain; the cash
�ow measurements cover 140 weeks. Some examples of the original data xi(t) are shown in Fig. 13.

The prewhitening was performed so that the original signal vectors were projected to the subspace
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spanned by their �rst �ve principal components and the variances were normalized to 1. Thus the dimension
of the signal space was decreased from 40 to 5. Using the FastICA algorithm, four IC's si(t); i = 1; :::; 5 were
estimated. As depicted in Fig. 14, the FastICA algorithm has found several clearly di�erent fundamental
factors hidden in the original data.

The factors have clearly di�erent interpretations. The upmost two factors follow the sudden changes
that are caused by holidays etc.; the most prominent example is the Christmas time. The factor on the
bottom row, on the other hand, re�ects the slower seasonal variation, with the e�ect of the summer holidays
clearly visible. The factor on the third row could represent a still slower variation, something resembling
a trend. The last factor, on the fourth row, is di�erent from the others; it might be that this factor
follows mostly the relative competitive position of the retail chain with respect to its competitors, but
other interpretations are also possible.

More details on the experiments and their interpretation can be found in [30].

7.3 Reducing Noise in Natural Images

The third example deals with �nding ICA �lters for natural images and, based on the ICA decomposition,
removing noise from images corrupted with additive Gaussian noise.

A set of digitized natural images were used. Denote the vector of pixel gray levels in an image window
by x. Note that, contrary to the other two applications in the previous sections, we are not this time
considering multivalued time series or images changing with time; instead the elements of x are indexed by
the location in the image window or patch. The sample windows were taken at random locations. The 2-D
structure of the windows is of no signi�cance here: row by row scanning was used to turn a square image
window into a vector of pixel values. The independent components of such image windows are represented
in Fig. 4. Each window in this Figure corresponds to one of the columns ai of the mixing matrix A. Thus
an observed image window is a superposition of these windows as in (5), with independent coe�cients.

Now, suppose a noisy image model holds:

z = x+ n (48)

where n is uncorrelated noise, with elements indexed in the image window in the same way as x, and z
is the measured image window corrupted with noise. Let us further assume that n is Gaussian and x is
non-Gaussian. There are many ways to clean the noise; one example is to make a transformation to spatial
frequency space by DFT, do low-pass �ltering, and return to the image space by IDFT [15]. This is not
very e�cient, however. A better method is the recently introduced Wavelet Shrinkage method [10] in which
a transform based on wavelets is used, or methods based on median �ltering [15]. None of these methods
is explicitly taking advantage of the image statistics, however.

We have recently introduced another, statistically principled method called Sparse Code Shrinkage [22].
It is very closely related to independent component analysis. Brie�y, if we model the density of x by ICA,
and assume n Gaussian, then the Maximum Likelihood (ML) solution for x given the measurement z can
be developed in the signal model (48).

The ML solution can be simply computed, albeit approximately, by using a decomposition that is an
orthogonalized version of ICA. The transform is given by

Wz =Wx+Wn = s+Wn; (49)

where W is here an orthogonal matrix that is the best orthognal approximation of the inverse of the
ICA mixing matrix. The noise term Wn is still Gaussian and white. With a suitably chosen orthogonal
transform W, however, the density of Wx = s becomes highly non-Gaussian, e.g., super-Gaussian with a
high positive kurtosis. This depends of course on the original x signals, as we are assuming in fact that
there exists a model x =WT s for the signal, such that the �source signals� or elements of s have a positive
kurtotic density, in which case the ICA transform gives highly supergaussian components. This seems to
hold at least for image windows of natural scenes [34].

It was shown in [22] that, assuming a Laplacian density for si, the ML solution for si is given by a
�shrinkage function� ŝi = g([Wz]i), or in vector form, ŝ = g(Wz). Function g(:) has a characteristic shape:
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it is zero close to the origin and then linear after a cutting value depending on the parameters of the
Laplacian density and the Gaussian noise density. Assuming other forms for the densities, other optimal
shrinkage functions can be derived [22].

In the Sparse Code Shrinkage method, the shrinkage operation is performed in the rotated space, after
which the estimate for the signal in the original space is given by rotating back:

x̂ =WT ŝ =WT g(Wz): (50)

Thus we get the Maximum Likelihood estimate for the image window x in which much of the noise has
been removed.

The rotation operator W is such that the sparsity of the components s = Wx is maximized. This
operator can be learned with a modi�cation of the FastICA algorithm; see [22] for details.

A noise cleaning result is shown in Fig. 15. A noiseless image and a noisy version, in which the noise
level is 50 % of the signal level, are shown. The results of the Sparse Code Shrinkage method and classic
wiener �ltering are given, indicating that Sparse Code Shrinkage may be a promising approach. The noise
is reduced without blurring edges or other sharp features as much as in wiener �ltering. This is largely
due to the strongly nonlinear nature of the shrinkage operator, that is optimally adapted to the inherent
statistics of natural images.

7.4 Telecommunications

Finally, we mention another emerging application area of great potential: telecommunications. An example
of a real-world communications application where blind separation techniques are useful is the separation
of the user's own signal from the interfering other users' signals in CDMA (Code-Division Multiple Access)
mobile communications [39]. This problem is semi-blind in the sense that certain additional prior informa-
tion is available on the CDMA data model. But the number of parameters to be estimated is often so high
that suitable blind source separation techniques taking into account the available prior knowledge provide
a clear performance improvement over more traditional estimation techniques [39].

8 Conclusion

ICA is a very general-purpose statistical technique in which observed random data are linearly transformed
into components that are maximally independent from each other, and simultaneously have �interesting�
distributions. ICA can be formulated as the estimation of a latent variable model. The intuitive notion of
maximum nongaussianity can be used to derive di�erent objective functions whose optimization enables the
estimation of the ICA model. Alternatively, one may use more classical notions like maximum likelihood
estimation or minimization of mutual information to estimate ICA; somewhat surprisingly, these approaches
are (approximatively) equivalent. A computationally very e�cient method performing the actual estimation
is given by the FastICA algorithm. Applications of ICA can be found in many di�erent areas such as audio
processing, biomedical signal processing, image processing, telecommunications, and econometrics.
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Figure 12: (From [41]). Nine independent components found from the MEG data. For each component the
left, back and right views of the �eld patterns generated by these components are shown � full line stands
for magnetic �ux coming out from the head, and dotted line the �ux inwards.
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Figure 13: (from [30]). Five samples of the original cash�ow time series (mean removed, normalized to
unit standard deviation). Horizontal axis: time in weeks.
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Figure 14: (from [30]). Four independent components or fundamental factors found from the cash�ow data.
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Figure 15: (from [22]). An experiment in denoising. Upper left: original image. Upper right: original
image corrupted with noise; the noise level is 50 %. Lower left: the recovered image after applying sparse
code shrinkage. Lower right: for comparison, a wiener �ltered image.
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