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A vector  quantizer is a system for mapping  a sequence of 
continuous or discrete  vectors into a digital sequence suitable 
for  communication  over  or storage in a digital channel. The 
goal of such a system i s  data compression: to reduce  the bit 
rate so as to  minimize  communication channel  capacity  or 
digital storage memory  requirements while  maintaining the 
necessary fidelity  of  the data.  The mapping for each vector 
may or may not have memory in the sense of  depending on 
past actions of the coder, just as in  well established  scalar 
techniques  such as PCM, which has no memory,  and pre- 
dictive  quantization, which does,  Even though  information 
theory  implies  that  one can  always obtain  better  performance 
by coding  vectors  instead of scalars,  scalar quantizers have 
remained by far  the most common  data compression  system 
because of  their  simplicity and  good  performance  when 
the  communication  rate is sufficiently large. In addition, 
relatively  few  design  techniques  have  existed  for  vector 
quantizers. 

During the past few years  several  design algorithms have 
been developed  for  a  variety  of  vector  quantizers and the 
performance of these  codes has been  studied for speech 
waveforms,  speech linear  predictive  parameter vectors, 
images, and  several simulated  random processes. It is the 
purpose of  this article to survey  some of these  design tech- 
niques  and their  applications. 

ATA compression is the conversion  of a stream of analog 
or very high rate discrete data into a stream of relatively 

low rate  data for  communication  over a digital  communica- 
tion  link  or storage in a digital  memory. As digital  communi- 
cation and  secure communication have become increasingly 
important, the  theory and  practice of data compression have 
received increased attention.  While it is  true that in many 
systems bandwidth is relatively inexpensive,  e.g., fiber  optic 
and cable n/ links, in  most systems the  growing  amount  of 
information  that users wish to communicate or store necessi- 
tates  some form of compression for efficient, secure,  and 
reliable,use of the  communication  or storage medium. 

A prime example  arises with image  data, where  simple 
schemes require bit rates too large for many communicatipn 
links or storage  devices. Another  example  where  com- 
pression is required results from  the fact that if speech is  
digitized  using a simple PCM  system consisting  of a sampler 
followed  by scalar quantization, the  resulting signal will  no 
longer have a small enough  bandwidth to  fit  on ordinary 
telephone channels.  That is, digitization  (which may be  de- 
sirable for security or reliability) causes bandwidth expan- 

sion. Hence  data compression will be  required  if  the  original 
communication  channel is to  be used. 

The two examples of image compression  and speech com- 
pression or, as they are often called, image coding and 
speech coding, are probably the currently  most  important 
applications of data  compression.  They  are  also among the 
most interesting  for study  because  experience has shown 
that both types of data exhibit  sufficient  structure to per- 
mit considerable  compression with  sufficiently  sophisti- 
cated  codes. 

Such conversion of relatively high rate data to  lower rate 
data virtually always entails a loss of  fidelity  or an  increase in 
distortion. Hence a fundamental goal of data  compression 
is  to obtain  the best possible fidelity  for  the given rate 
or, equivalently, to minimize  the rate required  for a given 
fidelity. If a system has a sufficiently  high rate constraint, then 
good  fidelity is relatively easy to achieve  and techniques such 
as PCM, transform  coding,  predictive  coding, and  adaptive 
versions of these techniques have become quite  popular  be- 
cause of their  simplicity and good  performance t1,2,31. All  of 
these techniques share a fundamental  property: The  actual 
quantization or  coding  or conversion of continuous  quanti- 
ties into discrete quantities is done on scalars,  e.g., on  indi- 
vidual real-valued samples of waveforms or pixels of images. 
PCM  does this in a memoryless fashion; that is, each  succes- 
sive input is encoded  using a rule  that does not depend on 
any  past inputs or  outputs of the  encoder. Transform coding 
does it by  first  taking  block  transforms of a vector and then 
scalar coding  the  coordinates of the  transformed vector. Pre- 
dictive  coding does it by  quantizing an error  term  formed as 
the  difference  between  the  new sample  and a prediction  of 
the new sample  based on past coded  outputs. 

~ A fundamental  result of Shannon's rate-distortion theory, 
the  branch  of  information  theory  devoted to  data com- 
pression, is that  better  performance can  always be achieved 
by  coding vectors instead of scalars,  even if  the data  source 
is memoryless,  e.g.,  consists of a sequence of  independent 
random variables, or if the data compression system  can  have 
memory, i.e., the action of an encoder at each time is  permit- 
ted  to depend on past encoder  inputs or  outputs [4,5,6,7,8]. 
While some traditional  compression schemes  such as trans- 
form  coding operate on vectors and  achieve significant im- 
provement over  PCM, the  quantization is  sti l l  accomplished 
on scalars  and  hence  these  systems  are, in a Shannon sense, 
inherently  suboptimal:  better  performance is always  achiev- 
able in theory by  coding vectors instead of scalars,  even if the 
scalars  have been  produced  by  preprocessing  the  original 
input data so as to make them  uncorrelated or  independent! 
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This theory  had  a  limited  impact  on actual  system  design 
because I )  the  Shannon  theory  does  not  provide  con- 
structive  design  techniques for  vector  coders,  and 
2) traditional scalar coders often  yield satisfactory per- 
formance  with  enough  adaptation  and  fine  tuning. As a 
result, few design  techniques  for  vector  quantizers  were 
considered  in  the  literature  prior  to  the  late 1970’s when it 
was found  that  a  simple  algorithm of Lloyd [91 for  the 
iterative  design of scalar quantization or PCM  systems  ex- 
tended  in a  straightforward way to  the design of  memory- 
less vector  quantizers,  that is, of vector  quantizers which 
encode successive input  vectors  in a  manner  not  de- 
pending  on  previous  encoder  input  vectors  or  their  coded 
outputs.  Variations  of  the basic algorithm have  since 
proved  useful  for  the  design  of  vector  quantizers  with  and 
without  memory  for a  variety  of  data  sources including 
speech  waveforms,  speech  parameter  vectors,  images, 
and  several random process  models, the  latter  being 
useful for  gauging  the  performance of the  resulting 
codes with  the  optimal  performance  bounds  of  informa- 
tion theory. 

This  paper is intended as a  survey of  the basic  design 
algorithm  and  many  of  its  variations  and  applications. We 
begin  with  the  simplest  example  of  a  memoryless  vector 
quantizer,  a  vector  generalization  of  PCM. For con- 
venience we use the  shorthand  VQ  for  both  vector  quan- 
tization  and  vector  quantizer. Necessary properties  of 
optimal  quantizers  are  described  and an algorithm  given 
which uses these  properties  to  iteratively  improve  a  code. 
For concreteness, we focus on  two examples of  distortion 
measures: the  ubiquitous mean-squared  error  and  the 
Itakura-Saito  distortion.  The  first  example,  which is popu- 
lar in  waveform  coding  applications,  provides  a  geometric 
flavor to  the  development;  the second  example, which is 
useful  in  voice  coding  applications,  helps to demonstrate 
the  generality  and  power  of  the  technique. 

Next,  various  techniques  are  described for  designing 
the  initial codes required  by  the  algorithm. These tech- 
niques also indicate  some  useful  structure  that can be 
imposed on vector  quantizers  to  make  them  more  imple- 
mentable. Several variations of  the basic VQ are  de- 
scribed which  permit  reduced  complexity  or  memory  or 
both at the expense of a hopefully  tolerable loss of  per- 
formance. These include  tree-searched codes, product 
codes,  and multistep  codes. 

We then  turn  from memoryless  vector  quantizers to 
those  with  memory:  feedback  vector  quantizers such as 
vector  predictive  quantizers  and  finite-state  vector  quan- 
tizers.  These  codes  are not  yet  well  understood,  but  they 
possess a  structure  highly  suited  to VLSl implementation 
and  initial  studies suggest that  they  offer  significant  per- 
formance gains. 

For comparison,  we also briefly  describe  trellis  en- 
coding systems or  “lookahead”  or  ”delayed decision’’ or 
”multipath search”  codes which use the same decoder as 
a feedback  vector  quantizer but  which  permit  the  encoder 
to base i ts decision on a  longer  input data  sequence. 

A final  general  code  structure is described  which uses 

vector  quantization  to adapt  a waveform  coder,  which may 
be another  VQ. 

We next  present  a  variety  of  simulation  results  de- 
scribing  the  performance  of  various  VQ systems on vari- 
ous  data  sources. Examples of all of the above VQ varieties 
are  tested for  waveform  coding  applications  on  two 
common data  sources:  a Gauss Markov source  and  real 
sampled  speech. One  bit  per sample  coders for these 
sources  are compared on  the basis of  performance, 
memory  requirements,  and c o m m i o n a l  complexity. 
Both  memoryless  and  simple  feedback  Sector  quantizers 
are studied  for  voice  coding  applications at a rate  of 
0.062 bits/sample  and less and  for  image  coding at a  rate 
of 0.5 bit  per sample. One example is given of a  simple 
adaptive  predictive  vector  quanfizer  for speech  wave- 
form  coding. 

By studying a variety of  coding systems on  common data 
sources, the results yield  some  general  comparisons  and 
trends  among the various  vector  quantization  techniques. 
The  reader should,  however,  keep two caveats in  mind 
when  interpreting  such  quantitative  results: First, the  em- 
phasis here is on  low  bit rate  systems,  e.g.,  speech  coders 
using 1 bit  per sample  or less and  image  coders 1/2 bit  per 
pixel.  Comparisons  favoring  certain systems  at such low 
rates  may not  be  valid for the same systems at higher rates. 
Second, the  numbers  reported  here are intended  to  pro- 
vide  comparisons for  different systems  used on  common 
data  sources; they can be  compared  with  other  numbers 
reported  in  the  literature  only  with great  care: the  input 
data  and the system  design  parameters  such as sampling 
rate  and pre-  or  post-filtering may be  quite  different. 

Applications  of  vector  quantization  to real  data  sources 
such as sampled  speech  waveforms  and  images  are still 
young  and  the  algorithms  do  not  yet  incorporate  the so- 
phisticated  ”bells  and  whistles’’  of  many  well-established 
scalar quantization schemes.  The preliminary  experiments 
described  here,  using  fairly  simple  vector  quantizers with 
and without memory,  demonstrate  that  the  general ap- 
proach  holds  considerable  promise  for  some  applications. 
For example, good  qualityvocoding systems using  VQ  and 
the  Itakura-Saito  distortion  have  been  developed at 
800 bits  per  second,  a  significant  reduction in  the  bit rate 
previously  required  for  comparable  quality [IO]. While  the 
compression  achieved so far in  waveform  coding  and  im- 
age coding  applications  using  the  squared-error  distor- 
tion has not  yet  been as significant, we believe  that it has 
yielded  comparable  or  better  performance at low rates 
than  traditional scalar schemes of greater  complexity. The 
quality  of  the lh bit  per  pixel images shown  here is prom- 
ising  given  the  simplicity  of  the  coding scheme  used. 

We attempt  to use the  minimum of mathematics  and  a 
maximum  of English in  the  presentation so as to focus on 
the  intuitive ideas underlying  the  design  and  operation  of 
vector  quantizers.  The  detailed  descriptions  of  the  vari- 
ous algorithms can be  found  in  the  cited references.  The 
reader is also referred  to a  recent  tutorial  by  Gersho  and 
Cuperman [Ill which  presents a brief  overview  of 
VQ  applied  to speech waveform  coding. 
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MEMORYLESS VECTOR QUANTIZERS 

In  this  section  we  introduce  the basic definition  of 
memoryless  vector  quantizers,  their  properties,  and an 
algorithm  for  their  design. 

Quantization 

Mathematically,  a  k-dimensional  memoryless  vector 
quantizer or,  simply,  a V Q  (without  modifying adjectives) 
consists of  two  mappings: an encoder y which assigns to 
each input  vector x = (xo,xl, , x ~ - ~ )  a  channel  symbol 
y ( x )  in some  channel  symbol set M, and  a  decoder p as- 
signing  to each  chanFel  symbol u in M a  value in a  re- 
production alphabet A. The  channel  symbol set is often 
assumed to  be a space of  binary  vectors  for  convenience, 
e.g., M may be  the set of all 2R binary  R-dimensional  vec- 
tors. The reproduction  alphabet may or may not  be  the 
same as the  input  vector space; in particular, it may  consist 
of real  vectors of a  different  dimension. 

If M has M elements, then  the  quantity R = logz M is 
called the rate of  the  quantizer  in  bits  per  vector  and 
r = R/k is the  rate in bits  per  symbol  or,  when  the  input is 
a  sampled  waveform,  bits  per  sample. 

The application  of  a  quantizer  to data compression is 
depicted  in  the  standard Fig. 1. The input data  vectors 
might  be  consecutive samples of a  waveform,  consecutive 
parameter  vectors  in a voice  coding system, or  con- 
secutive  rasters or subrasters in an image coding system. 
For integer values of R it is useful  to  think  of  the  channel 
symbols,  the  encoded  input  vectors, as binary R- 
dimensional  vectors. As is commonly  done  in  informa- 
tion  and  communication  theory, we, assume that  the  chan- 
nel is noiseless, that is, that U ,  = U,. While real  channels 
are  rarely  noiseless,  the joint source  and  channel  coding 
theorem  of  information  theory  implies  that a good data 
compression system designed  for  a noiseless channel can 
be  combined  with a good  error  correction  coding system 
for a  noisy  channel  in  order  to  produce  a  complete system. 
In  other  words,  the  assumption of a  noiseless channel is 
made  simply to  focus on  the  problem of data compression 
system  design  and not  to reflect any  practical  model. 

CHANNEL 

Figure 1. Data Compression  System. The data or in- 
formation  source {Xn; n = 0,1, , . . } is a  sequence of 
random vectors. The encoder  produces  a  seqyence of 
cbannel  symbols {&: n = 0,1,2,, . . }, The sequence 
{U,,; n = 0, 1,2, . . . }  is  delivered to  the receiver by the 
digital channel.  The decoder  then  maps this sequence 
in-to the  f inal  reproduction  sequence o f  vec to rs  
{Xn: n = 0, 1,2, . . , }. 

Observe  that  unlike scalar quantization,  general V Q  
permits  fractional rates in bits  per sample. For example, 
scalar PCM must. have  a bit rate of at least 1 bit  per sample 
while  a k dimensional V Q  can have  a bit rate of only I l k  
bits  per  sample  by  having  only  a  single  binary  channel 
symbol for  k-dimensional  input  vectors. 

The  goal  of  such  a  quantization  system is to  produce  the 
"best"  possible reproduction sequence for a  given  rate R. 
To quantify  this idea, to  define  the  performance  of a  quan- 
tizer,  and to  complete  the  definition  of a  quantizer,  we 
require  the  idea  of  a  distortion measure. 

Distortion 

A distortion measure d is  an assignment  of  a  cost d(x,N 
of  reproducing any input  vector x as a reproduction 
vector 1. Given such  a distortion measure, we can quantify 
the  performance  of  a system by an average distortion 
€d(X,X) between  the  input  and  the  final  reproduction: A 
system will  be  good  if it yields  a  small  average  distortion. 
In practice,  the  important average is the  long  term sample 
average or  time average 

4 "-1 

l im L.2' d(Xi,.Xi) 
n-- n ,=O 

provided, of course,  that the  limit makes sense. If the vec- 
tor process is stationaryand  ergodic,  then,  with  probability 
one, the  limit exists and equals an expectation €(d(X,X)). 
For the  moment  we will assume that  such  conditions are 
met  and  that  such long  term sample averages are  given  by 
expectations.  Later  remarks will focus on  the general as- 
sumptions  required  and  their  implications  for  practice. 

Ideally  a  distortion  measure  should  be  tractable  to 
permit analysis, computable so that it can be evaluated in 
real time  and used in  minimum  distortion systems, and 
subjectively  meaningful so that large or small  quantitative 
distortion measures correlate  with  bad  and  good  subjec- 
tive  quality.  Here  we  do  not  consider  the  difficult  and 
controversial issues of  selecting  a  distortion measure; we 
assume that  one has been  selected  and  consider means of 
designing systems which  yield small  average distortion. 
For simplicity  and  to ease exposition,  we  focus on two 
important  specific  examples: 

(1) The squared  error  distortion measure: Here  the  in- 
put  and  reproduction spaces are k-dimensional Euclidean 
space 

d(x,9) = IIX - k(12 = x ( X i  - 2 i ) 2 ,  

k - l  

i = O  

the square of the Euclidean  distance between  the vectors. 
This i s  the  simplest  distortion  measure  and  the  most 
common  for  waveform  coding.  While  not  subjectively 
meaningful  in many cases, generalizations  permitting 
input-dependent  weighting have proved  useful  and  only 
slightly  more  complicated. For the  squared-error dis- 
tortion  it is common practice to measure the  performance 
of a  system by  the  signal-to-noise  ratio  (or  signal-to- 
quantization-noise  ratio) 
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This corresponds  to  normalizing  the average distortion 
by  the average energy  and  plotting  it  on a logarithmic 
scale:  Large (small) SNR corresponds  to  small  (large) 
average distortion. 

(2) The (modified)  Itakura-Saito  distortion: This distor- 
tion measure i s  useful  in  voice  coding  applications  where 
the  receiver is sent a linear  model  of  the  underlying  voice 
production  process.  The  distortion  measure i s  based on 
the  ”error  matching  measure”  developed  in  the  pio- 
neering  work  of  ltakura  and Saito on  the PARCOR or LPC 
approach to  voice  coding [12]. More  generally,  this  dis- 
tortion  measure is a special case of a minimum  relative 
entropy  or  discrimination measure; VQ  using such  dis- 
tortion measures can be  viewed as an application  of  the 
minimum  relative  entropy  pattern  classification  technique 
introduced  by  Kullback [I31 as an application  of  infor- 
mation  theory  to statistical  pattern  classification. (See 
also [14,15].) 

We  here  introduce  a  minimum  of  notation  to  present a 
definition  of  the  ltakura-Saito  distortion  measure. Details 
and  generalizations may be  found  in [16,17,14,15]. Here 
the  input  vector can again be  considered as a collection of 
consecutive  waveform  samples.  Now,  however,  the 
output  vectors have the  form 9 = (a, al,  a2, +, ap), where 
a is  a positive  gain  or  residual  energy  term  and  where  the 
ai with a. = 1 are inverse  filter  coefficients  in  the sense 
that  if 

P 

A(z) = aiz-‘ 

then  the  all-pole  filter  with  z-transform I/A(z) is a stable 
filter.  Here  the  reproduction  vectors may be  thought  of 
as all-pole  models  for  synthesizing  the  reproduction at 
the  receiver  using a locally  generated  noise  or  periodic 
source, in  other  words, as the  filter  portion  of a linear 
predictive  coding (LPC) model  in  a  vocoding  (voice 
coding) system.  The ltakura-Saito  distortion  between  the 
input  vector  and  the  model can be  defined  in  the  time 
domain as 

i = O  

d(x.91 = - - In - - 1. afR(x)a a,,(x) 
\ ,  , a a 

where af = ( I , + ,  * - . , a p ) ,  R(x) is the (p + 1) X (p + 1 )  
sample autocorrelation  matrix  of  the  input  vector x, and 
where aJx) is an input  gain  (residual  energy)  term  defined 
as the  minimum  value  of brR(x)b, where  the  minimum is 
taken  over all vectors b with  first  component  equal  to 1 .  
There are many  equivalent  forms  of  the  distortion mea- 
sure, some useful  for  theory  and some for  computation. 
Frequency  domain  forms  show  that  minimizing  the  above 
distortion can be  interpreted as trying  to  match  the  sample 
spectrum  of  the  input  vector  to  the  power spectral density 
of  the  linear  all-pole  model  formed  by  driving  the  filter 
with  z-transform I/A(z) by  white  noise  with  constant 

power spectral density G, 
The above  formula  for  the  distortion is one of the  sim- 

plest, yet  it  demonstrates  that  the  distortion measure is 
indeed  complicated-it is not a simple  function  of an 
error  vector,  it is not  symmetric  in its input  and  output 
arguments,  and it is not a metric  or  distance. Because of 
the  intimate  connection  of  this  distortion measure with 
LPC vocoding  techniques,  we  will  refer  to  VQ‘s  designed 
using  this  distortion  measure as  LPC VQ‘s. 

Average distortion 
As the average distortion  quantifies  the  performance of 

a system and  since  we will  be  trying  to  minimize this  quan- 
tity  using  good  codes, we  pause to  consider  what  the 
average means in  theory  and  in  practice. 

As previously  noted,  in  practice  it is the  long  term 
sample average of ( I )  that  we  actually measure  and which 
we  would  like  to  be small. If the process is stationary and 
ergodic,  then  this  limiting  time average is the same as 
the  mathematical  expectation. The mathematical  expec- 
tation is useful  for  developing  information  theoretic  per- 
formance  bounds,  but  it is often  impossible  to  calculate  in 
practice because the  required probabilitydistributions are 
not  known,  e.g.,  there are no  noncontroversial  generally 
accepted  accurate  probability  distributions  for real  speech 
and  image data. Hence a pragmatic  approach  to system 
design is to  take  long sequences of  training data, estimate 
the  “true”  but  unknown  expected  distortion  by  the sample 
average, and  attempt  to  design a code  that  minimizes  the 
sample average distortion  for  the  training  sequence. If the 
input source is indeed  stationary  and  ergodic,  the  re- 
sulting  sample average should  be  nearly  the  expected 
value  and  the same code  used on  future  data  should  yield 
approximately  the same  averages [181. 

The  above  motivates a training  sequence based design 
for  stationary  and  ergodic data sources. In fact, even if the 
“true”  probability  distributions are known as in  the case of 
a Gauss Markov  source,  the  training  sequence  approach 
reduces to a standard Monte  Carlo  approach. 

An  immediate  objection  to  the  above  approach,  how- 
ever, is whether  or  not  it makes sense for real  sources 
which may be  neither  stationary  nor  ergodic. The  answer 
is an emphatic  “yes”  in  the  following sense: The desired 
property is that  if  we  design a code based on a sufficiently 
long  training  sequence  and  then use the  code  on  future 
data produced  by  the same source,  then  the  performance 
of  the  code  on  the  new  data  should  be  roughly  that 
achieved on  the  training data. The theoretical issue is to 
provide  conditions  under  which  this  statement can be 
made rigorous. For reasonable  distortion measures, a 
sufficient  condition  for  this  to  be  true  for  memoryless 
VQ  design i s  that  the  source  be  asymptotically mean 
stationary, it need  not  be  either  stationary  nor  ergodic 
[19,20,21,22,23]. Asymptotically mean stationary sources 
include all stationary sources, block  (or  cyclo)  stationary 
sources, and  asymptotically  stationary  sources. Processes 
such as speech which  exhibit  distinct  short  term  and  long 
term  stationarity  properties are well  modeled  by asymp- 
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totically mean stationary  sources [211. 
The key point  here is that  the  general  design  approach 

using  long  training  sequences does not  require  either 
ergodicity  nor  stationarity  to have a solid  mathematical 
foundation.  In fact, the  mathematics  suggest  the  follow- 
ing  pragmatic  approach:  Try  to  design 'a code  which 
minimizes  the  sample average distortion  for a very long 
training  sequence.  Then use the  code on test  sequences 
produced  by  the same source, but  not  in  the  training se- 
quence.  lf  the  performance is reasonably  close to  the 
design values, then  one can have a certain  amount  of 
confidence  that  the  code  will  continue  to  yield  roughly  the 
same performance  in  the  future. If the  training  and test 
performance are significantly  different,  then  probably  the 
training  sequence is not  sufficiently  long.  In  other  words, 
do  not  try  to  prove  mathematically  that a source is asymp- 
totically  mean  stationary,  instead try  to  design codes for  it 
and  then see if they  work  on  new data. 

Henceforth  for  brevity  we  will  write  expectations  with 
the  assumption  that  they are to  be  interpreted as short- 
hand  for  long  term  sample averages.  (A sample average 
L- l  d(Xi,k) is, in fact, an expectation  with  respect  to 
the  sample  distribution  which assigns a probability  of 1 / L  
to each vector  in  the  training  sequence.) 

Properties of optimal quantizers 

A VQ is optimal  if  it  minimizes an  average distortion 
Ed{X,/3[y(X)]}. Two necessary conditions  for a VQ  to  be 
optimal  follow easily using  the same logic as in Lloyd's [9] 

b ( i )  = bin 
of 

Figure 2. VQ Encoder. The distortion  between  the input 
vector and each stored codeword  is  computed. The en- 
coded output is then  the binary representation of the 
index of the minimum distortion codeword. 

classical development  for  optimal PCM with  a  mean- 
squared  error  distortion measure.  The following  defini- 
tion is useful  for  stating  these  properties: The collection  of 
possible  reproduction  vectors C = {all y : y = p(u), some 
u in M} is  called  the  reproduction  codebook or,  simply, 
codebook of  the  quantizer  and  its  members  called 
codewords  (or  templates). The encoder  knows  the  struc- 
ture of the  decoder  and  hence all of  the  possible  final 
output  codewords. 

Property 7: Given  the  goal  of  minimizing  the average 
distortion  and  given a specific  decoder p, no memoryless 
quantizer  encoder can do  better  than select the  codeword 
u in M that  will  yield  the  minimum  possible  distortion at 
the  output,  that is, to select the  channel  symbol u yielding 
the  minimum 

d{x,PCy(x)l} = min d[x,.P(v)l = min  d(x,y). (2) 
vEM YEC 

That is, for  a  given'decoder  in a memoryless  vector  quan- 
tizer  the  best  encoder is a  minimum  distortion  or nearest 
neighbor  mapping 

y(x) = min-'  d[x,p(u)], (3) 
,vEM 

where  the  inverse  minimum  notation means that we  select 
the u giving  the  minimum of (2). 

Gersho [24] calls a quantizer  with  a  minimum  distortion 
encoder,a  Voronoi  quantizer  since  the  Voronoi  regions 
about a set of  points  in a space correspond  to a partition 
of  that space according  to  the  nearest-neighbor  rule. The 
word  quantizer,  however, is practically always associated 
with  such a minimum  distortion  mapping.  We  observe 
that such a  vector  quantizer  with  such a minimum  dis- 
tortion  encoder is exactly  the  Shannon  model  for a block 
source  code  subject to  a  fidelity  criterion  which is used in 
information  theory  to  develop  optimal  performance 
bounds  for  data  compression systems. 

An encoder y can be thought  of as a  partition  of  the 
input space into cells where all input  vectors  yielding  a 
common  reproduction are grouped  together. Such a 
partition  according  to a minimum  distortion  rule is called 
a  Voronoi  or  Dirichlet  partition.  A  general  minimum 
distance  VQ  encoder is depicted  In Fig. 2. 

A  simple  example of  such a partition  and  hence  of an 
encoder is depicted  in Fig. 3 (a more  interesting  example 
follows  shortly).  Observe  that  this  vector  quantizer is just 
two uses of a scalar quantizer  in  disguise. 

As the  minimum  distortion  rule  optimizes  the  encoder 
of a memoryless  VQ  for  a  decoder,  we can also optimize 
the  decoder  for a given  encoder. 
Property 2: Given an encoder y, then  no  decoder can do 
better  than  that  which assigns to each channel  symbol u 
the  generalized  centroid  (or  center of gravity  or  bary- 
center) of  all source  vectors  encoded  into u, that is, 

p(u) = cent(u) = min- l  f(d(X,f) I y(X) = u), (4) 
E,& 
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Figure 3 .  Two-Dimensional   Minimum  Distort ion 
Partition. The four  circles  are  the  codewords  of  a 
two-dimensional codebook. The Voronoi  regions  are the 
quadrants  containing the  circles. The x’s were  produced 
by a training  sequence  of  twelve  two-dimensional 
Gaussian vectors. Each  input  vector  is mapped into 
the  nearest-neighbor  codeword, that is,  the  circle in the 
same quadrant. 

that is, p(v) i s  the  vector  yielding  the  minimum  conditional 
average distortion given  that the  input  vector was mapped 
into v, 

While  minimizing  such a condit ional average  may 
be  quite  difficult  for an arbitrary  random  process  and 
distortion measure, it is often easy to find  for  a sample 
distribution  and  a  nice  distortion measure. For example, 
the  centroid  in  the case of  a  sample distribution and a 
squared-error  distortion measure is simply  the  ordinary 
Euclidean centroid  or  the  vector sum of all input vectors 
encoded  into  the  given  channel  symbol,  that is, given the 
sample  distribution  defined  by  a  training  sequence 
{xi; i = 0,1,. . . , L - I}, then 

I 
cent(v) = - C. x i ,  

where i(v) i s  the  number  of  indices i for  which $x i )  = V .  

i(v) x,:r(x,)=v 

The Euclidean centroids  of  the example  of Fig. 3 are  de- 
picted  in Fig. 4. (The  numerical values  may be  found  in 
[251.) The new  codewords  better  represent  the  training 
vectors mapping  into  the  old  codewords,  but  they  yield  a 
different  minimum  distortion  partition of the  input alpha- 
bet, as indicated  by  the  broken  line  in Fig. 3. This is the key 
of the  algorithm:  iteratively  optimize  the  codebook  for  the 
old  encoder  and  then use a  minimum  distortion  encoder 
for  the  new  codebook. 

The  Itakura-Saito  distortion  example i s  somewhat 
more  complicated,  but  st i l l   easi ly  computable. As 
with  the squared  error  distortion,  one  groups all input 
vectors  yielding  a  common  channel  symbol.  Instead  of 
averaging the  vectors,  however,  the sample autocorre- 
lation  matrices for all of  the vectors  are  averaged.  The 
centroid is then  given  by  the  standard LPC all-pole  model 
for  this average autocorrelation,  that is, the  centroid 
is  found  by  a  standard Levinson’s recursion  run  on  the 
average autocorrelation. 
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Figure 4. Centroids of Figure 3. The new centroids of 
the old  Voronoi regions  of Fig. 3 are  drawn as circles. 
Note that  the  centroid  computation has  moved the code- 
words t o  better represent  the input vectors which yielded 
those  codewords, that  is,  if one used the same encoder 
[as in Fig. 33, but replaced the  reproduction codewords 
produced a t  the decoder by these new centroids,  the 
average distortion would decrease. The broken line  delin- 
eates  the new  Voronoi regions for  these codewords. s 
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The generalized Lloyd algorithm 

The  fact  that  the  encoder can be  optimized  for  the 
decoder  and  vice versa formed  the basis of Lloyd’s origi- 
nal optimal PCM  design  algorithm  for a scalar random 
variable with a known  probability  density  function and a 
squared  error  distortion.  The  general  VQ  design  algo- 
rithms  considered  here are  based on  the  simple  obser- 
vation  that Lloyd’s  basic development i s  valid  for  vectors, 
for sample distributions,  and  for  a  variety  of  distortion 
measures.  The only  requirement  on  the  distortion mea- 
sure is that  one can compute  the  centroids. The  basic 
algorithm is the  following: 

Step 0. Given: A training  sequence  and an initial 
decoder. 

Step 1. Encode the  training sequence into a  sequence 
of  channel  symbols  using  the  given  decoder 
minimum  distortion  rule.  If  the average  dis- 
tortion is small enough,  quit. 

Step 2. Replace the  old  reproduction  codeword  of 
the  decoder  for each channel  symbol u by  the 
centroid  of all training  vectors  which  mapped 
into u in Step 1. Go to Step 1. 

Means of  generating  initial  decoders  will  be  considered 
in  the next  section. Each step of  the  algorithm  must  either 
reduce average distortion  or leave it unchanged.  The 
algorithm is  usually  stopped when  the relative  distortion 
decrease falls below some  small threshold. The algorithm 
was developed  for  vector  quantizers,  training sequences, 
and  general distortion measures by  Linde, BUZO, and  Gray 
[25] and it is sometimes  referred  to as the LBG algorithm. 
Previously  Lloyd’s  algorithm had been  considered  for vec- 
tors  and  difference  distortion measures in cluster analysis 
and  pattern  recognition  problems (e.g., MacQueen [261 
and  Diday  and  Simon  [27])  and  in  two-dimensional 
quantization (e.g., Chen [28] and  Adoul et a/ .  [291). Only 
recently,  however, has it been  extensively  studied  for 
vector  quantization  applications  using several different 
distortion measures. 

Before  continuing, it should  be  emphasized  that such 
iterative  improvement  algorithms  need  not  in  general 
yield  truly  optimum  codes. It is known  that  subject  to 
some  mathematical  conditions  the  algorithm  will  yield 
locally optimum quantizers, but  in general  there may be 
numerous  such  codes  and  many may yield  poor  per- 
formance. (See, e.g., [30].) It is often useful,  therefore,  to 
enhance the  algorithm’s  potential  by  providing  it  with 
good  initial  codebooks  and  perhaps  by  trying it on several 
different  initial  codebooks. 

INITIAL CODEBOOKS 

The  basic-design algorithm  of  the  previous  section is an 
iterative  improvement  algorithm  and  requires an initial 
code to  improve. Two  basic  approaches  have been  devel- 
oped:  One can  start with some  simple  codebook  of  the 
correct size or  one can start with a  simple small codebook 
and  recursively  construct  larger  ones. 
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NRandomN codes 

Perhaps the  simplest  example of the  first  technique is 
that used in  the  k-means  variation  of  the  algorithm [261: 
Use the  first 2R vectors in  the  training sequence as the 
initial  codebook.  An  obvious  modification  more  natural 
for  highly  correlated data is to select  several widely spaced 
words  from  the  training  sequence. This  approach is some- 
times  called  random  code  generation, but  we  avoid  this 
nomenclature because of i t s  confusion  with  the  random 
code  techniques  of  information  theory  which are  used to 
prove  the  performance  bounds. 

Product codes 

Another  example of  the  first  approach is  to use  a scalar 
code  such as a uniform  quantizer k times  in succession 
and then  prune  the  resulting vector  codebook  down  to 
the  correct size.  The  mathematical model  for such  a  code 
is a product code, which  we pause to  define  for  current 
and  later  use: Say we have  a collection  of  codebooks Ci, 
i = 0 ,1 , .  . . ,m - 1, each consisting  of Mi vectors of  di- 
mension ki and  having  rate Ri = logz Mi bits  per  vector. 
Then the  product  codebook C is  defined as the  collection 
of all M = HiMi  possible  concatenations  of rn words  drawn 
successively from  the m codebooks Ci .  The  dimension  of 
the  product  codebook is  k = Et;’ ki,  the sum of the  di- 
mensions of  the  component  codebooks. The product 
code is denoted  mathematically as a  Cartesian product: 

C = X Ci = {al l  vectors of the form (ko ,%;** ,k , , , -d ;  
m-7 

i=O 

k i i n  Ci; i =  O,l,.,.,m - I }  

Thus, for  example,  using  a scalar quantizer  with rate R/k 
k times in succession  yields a product  k-dimensional vec- 
tor  quantizer  of  rate R bits  per  vector, This product  code 
can be used as an initial  code  for  the  design  algorithm. The 
scalar quantizers may be  identical  uniform  quantizers  with 
a range  selected to  match  the  source,  or  they may be 
different, e.g.,  a positive  codebook  for a gain  and uniform 
quantizers  for  [-1,1]  for  reflection  coefficients  in an 
LPC VQ system. 

In  waveform  coding  applications  where  the  reproduc- 
tion and input alphabets  are the  same-k-dimensional 
Euclidean  space-an  alternative product  code  provides 
a  means of  growing  better  initial guesses from smaller 
dimensional codes [31]. Begin with a scalar quantizer Co 
and use a  two-dimensional  product  code Co X Co as an 
initial guess for  designing  a  two-dimensional  VQ. O n  com- 
pletion  of  the  design  we have  a two-dimensional  code, say 
C2. Form an initial guess for  a  three  dimensional  code as 
all possible  pairs from C2 and scalars from Ca, that is, use 
the  product  code Cz x Co as an initial guess. Continuing  in 
this way, given  a  good k - 1 dimensional  VQ  described  by 
a  codebook Ck- l ,  an initial guess for a  k-dimensional  code 
design is the  product  code Ck-’ x Co. One can  also use 
such product code  constructions with a  different  initial 
scalar code Co, such as those  produced  by  the scalar ver- 
sion  of  the  next  algorithm. 
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Figure 5. Splitting. A large code is defined in stages: at 
each stage each codeword of a small  code is split  into two 
new codewords, giving an initial codebook of twice  the 
size. The algorithm is  run t o  get a new better codebook. 
tal Rate 0: The centroid of the  entire  training sequence. 
[bl Initial Rate  1: The  one codeword is split t o  form an 
initial guess for  a  two  word code. [cl Final Rate 1: The 
algorithm  produces  a good code with  two  words. The 
dotted line indicates  the  Voronoi  regions, [d l  Initial 
Rate 2: The two words are split to  form an initial guess for 
a four  word  code. [e l  Final Rate 2: The algorithm  is run t o  
produce a final four  word  code. 

Splitting 

Instead  of  constructing  long  codes  from  smaller  dimen- 
sional  codes, we can construct  a  sequence  of  bigger codes 
having  a  fixed  dimension  using  a  “splitting”  technique 
[25,16]. This method can be used for any fixed  dimension, 
including scalar codes. Here  one  first  finds  the  optimum 0 
rate  code-the  centroid  of  the  entire  training sequence, 
as depicted in Fig. 5a for  a  two-dimensional  input  alpha- 
bet. This  single  codeword is  then  split  to  form  two  code- 
words (Fig. 5b). For example,  the  energy can be  perturbed 
slightly  to  form  a  second  distinct  word  or  one  might  pur- 
posefullyfind  aword distant from  the  first.  It i s  convenient 
to have the  original  codeword a member  of  the  new  pair 
to ensure  that  the  distortion  will  not increase.  The  algo- 
rithm is then  run  to get a good rate 1 bit  per  vector  code 
as indicated in Fig. 5c.  The  design continues  in  this way in 
stages as shown:  the  final  code  of  one stage is split  to  form 
an initial  code  for  the  next. 

VARIATIONS OF MEMORYLESS  VECTOR  QUANTIZERS 

In  this  section  we  consider  some of the variations of 
memoryless  vector  quantization  aimed at reducing  the 
computation  or  memory  requirements  of a full search 
memoryless VQ. 

Tree-searched V Q  
Tree-searched vector  quantizers  were  first  proposed  by 

Buzo et a/. [I61 and  are a  natural  byproduct  of  the  splitting 
algorithm  for  generating  initial  code guesses. We  focus on 
the case of  a  binary  tree  for  simplicity,  but  more general 
trees will  provide  better  performance  while  retaining a 
significant  reduction in complexity. 

Say that  we have a  good rate 1 code as in Fig. 5c and  we 
form  a  new rate two  code  by  splitting  the  two  codewords 
as in Fig. 5d.  Instead of  running  a  full search VQ design on 
the  resulting  4-word  codebook,  however,  we  divide  the 
training  sequence  into  two pieces, collecting  together all 
those  vectors  encoded  into a common  word  in  the 1 bit 
codebook,  that is, all of  the  training  sequence  vectors  in 
a common  cell  of  the  Voronoi  partition. For each of  these 
subsequences of  training  vectors,  we  then  find  a  good 
I -b i t  code  using  the  algorithm. The final  codebook (so far) 
consists of  the  four  codewords  in  the  two  I-bit  codebooks 
designed  for  the  two  subsequences. A tree-searched  en- 
coder  selects one of the  words  not  by an ordinary  full 
search of  this  codebook,  but  instead it uses the  first  one 
bit  codebook  designed  on  the  whole sequence to select a 
second  code  and it then  picks  the  best  word  in  the second 
code.  This  encoder  can  then be used to  further  subdivide 
the  training  sequence  and  construct even better  code- 
books  for  the  subsequences. The encoder  operation can 
be  depicted as a  tree  in Fig. 6. 

The tree is designed  one layer at a time; each new layer 
being  designed so that  the  new  codebook available from 
each node is good  for  the vectors  encoded into  the  node. 
Observe  that  there are 2R possible  reproduction  vectors as 
in  the  full search VQ,  but  now R binary searches are  made 
instead of  a  single 2’?-ary search. In  addition,  the  encoder 
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code book 
Figure 6. Tree-Searched VCI. A binary encoder tree is 
shown for a three-dimensional  one bit per sample VQ. The 
encoder makes a succession of R minimum distortion 
choices from binary codebooks, where  the available  code- 
book at each  level consists of labels of the nodes  in the 
next level.  The labels of the nodes of the final layer are the 
actual  reproduction  codewords. A t  each node the en- 
coder  chooses the minimum distortion available  label  and, 
if  the new index is a 0 (1 3 ,  sends  a  channel  symbol of 0 [I I 
and  advances  up  [down) to  the  next node. After R binary 
selections the complete channel codeword  has been sent 
and the  reproduction codeword  specified to  the decoder. 

storage requirements have doubled.  The  encoder is  no 
longer  optimal  for  the  decoder in the sense of  Property 1 
since it no  longer can perform an  exhaustive search of the 
codebook.  The search, however, is much  more  efficient if 
done  sequentiallythan is a full search. Thus one may trade 
performance  for  efficiency  of  implementation. 
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Nonbinary  trees can also be used  where at the i th layer 
codebooks  of rate Ri are  used  and the overall  rate is  then 
ZjRi .  For example, a depth  three  tree  for  VQ  of LPC pa- 
rameter vectors using successive  rates of 4, 4, and 2 bits per 
vector yields performance nearly as good as a full search VQ 
of the same total rate of 10 bits  per vector, yet for  the tree 
search one  need  only  compute 24 + 24 + z2 = 36 distortions 
instead of 2’’ = 1028 distortions [IO]. 

Other techniques can be used to design  tree-searched 
codes.  For  example, Adoul et a/ .  [32]  use a separating hyper- 
plane  approach. Another approach is  to begin with a full 
search codebook and to design a tree-search into  the code- 
book.  One  technique  for  accomplishing  this is to first  group 
the  codewords into close disjoint pairs  and then  form  the 
centroids of the pairs as the  node label of  the immediate 
ancestor of the pair. One  then  works backwards through  the 
tree,  always grouping close  pairs. Ideally, one  would  like a 
general  design technique  for  obtaining a tree search into an 
arbitrary  VQ  codebook with  only a small loss of average 
distortion. Gersho  and Cheng [33]  have reported  preliminary 
results for designing a variable-length  tree search for an arbi- 
trary codebook and  have demonstrated its implementability 
for several  small dimensional examples. 

Multistep VQ 

A multistep VQ is a tree-searched VQ  where  only a single 
small codebook is  stored for each  layer of  the  tree instead of 
a different  codebook  for each node  of each  layer.  Such  codes 
provide  the  computation  reduction of tree-searched  codes 
while  reducing  the storage requirements  below that of even 
ordinary VQ‘s.  The first example of such a code was the 
multistage codebook [34].  For simplicity  we again confine 
interest to codes which make a sequence of  binary decisions. 
The first layer binary  code is designed as in the tree-searched 
case.  This codebook is  used to encode  the  training sequence 
and then a training sequence of  error  or residual vectors is 
formed. For  waveform coding  applications  the  error vectors 
are  simply the  difference  of  the input vectors and their  code- 
words. For vocoding  applications,  the  error  vectors are 
residuals formed by  passing the  input waveform  through  the 
inverse filter A(z) /a .  The algorithm is  then  run  to design a 
binary VQ  for this vector training sequence of  coding errors. 
The reconstruction for these two  bits i s  then  formed by 
combining  the  two  codewords: For waveform  coding  this is  
accomplished  by  adding the first codeword  to  the  error 
codeword. For voice  coding  this is  accomplished by using the 
cascade of  two all-pole  filters  for synthesis.  This reproduction 
can then  be used to  form a “finer”  error vector and a code 
designed for it. Thus an input vector is encoded in stages as 
with  the tree-searched  code, but  now  only R binary code- 
books and  hence 2R total  codewords  need to be stored. 
Observe that there are still 2R possible final  codewords, but 
we have not needed this  much storage  because the  code can 
be  constructed  by  adding  different  combinations of a smaller 
set of words. A multistage VQ is depicted in Fig. 7. 

Product codes 

Another  useful  structure  for a memoryless VQ is  a prod- 
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Figure 7 .  Multistage VQ with 2 Stages. The input 
vector  is first encoded by  one VQ and  an error vector is 
formed. The second VQ then  encodes the error vector. 
The two channel  symbols from  the  two VQ’s together 
form  the complete channel  symbol for  the  entire encoder. 
The decoder  adds  together  the  corresponding re -  
production  vectors. 

uct  code, In one extreme, multiple use of scalar quantizers 
is equivalent  to  product VQ’s and are obviously  simple  to 
implement.  More general product VQ‘s, however,  may 
permit  one  to take  advantage of  the  performance achiev- 
able  by VQ’s while st i l l  being  able  to  achieve  the  higher 
rates required  for  good  fidelity.  In  addition, such  codes 
may yield a smaller  computational  complexity  than an or- 
dinary  VQ  of  the same rate  and  performance  (but  different 
dimension). The  basic technique is useful  when  there are 
differing aspects of  the  input  vector  that  one  might  wish  to 
code separately  because of  different effects,  e.g., on  dy- 
namic  range or  finite  word  length  implementation. 

Gainlshape VQ 

One example of  a  product  code is  a  gainishape VQ 
where separate, but  interdependent,  codes are  used to 
code  the  “shape”  and  ”gain”  of  the  waveform,  where  the 
”shape” is defined as the  original  input  vector  normalized 
by removal of a  “gain”  term  such as energy in  a  waveform 
coder  or LPC residual  energy  in  a  vocoder.  Gainishape 
encoders  were introduced  by  Buzo et a/ .  [I61 and  were 
subsequently  extended  and  optimized  by Sabin and 
Gray [35,36]. A gain/shape VQ for  waveform  coding  with 
a  squared-error  distortion is illustrated  in Fig. 8. 

Figure 8 sketches the  surprising fact that  for  the  squared 
error case considered, the two-step  selection of the 
product  codeword is an optimal  encoding  for  the  given 
product  codebook. We  emphasize  that  here  the  encoder 
is optimal  for  the  given  product  codebook  or  decoder, but 
the  codebook  itself is in general  suboptimal because of 
the  constrained  product  form. A similar  property  holds 
for  the  Itakura-Saito  distortion  gainhhape VQ. Thus in  this 
case if  one  devotes R, bits to  the shape and R, bits to  the 
gain, where R, + R, = R, then  one  need  only  compute 2RS 
vector  distortions  and an  easy  scalar quantization. The 
full search encoder  would  require 2R vector  distortions, 
yet both  encoders  yield  the same minimum  distortion 
codeword! 

ENCODER 

DECODER 

Figure 8. GainiShape VQ. First  a  unit energy shape 
vector  is chosen to  match  the input vector by  maximizing 
the inner product  over  the  codewords. Given the  resulting 
shape vector,  a  scalar gain codeword  is  selected so as t o  
minimize the indicated  quantity. The encoder yields the 
product  codeword aiyi with  the minimum possible  squared 
error distortion  from  the  input  vector. Thus this  multistep 
encoder is optimum for  the  product codebook. 
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Variations of  the basic VQ  algorithm can be used to 
iteratively  improve a gain  shape code  by  alternately opti- 
mizing  the shape for  the gain  and  vice versa. The resulting 
conditional  centroids are easy to  compute. The  centroid 
updates  can be  made  either  simultaneously  or  alternately. 
after  each  iteration [36]. 

One can experimentally  determine  the  optimal  bit  allo- 
cation  between  the  gain  and  the shape codebooks. 

Separating  mean V Q  
Another  example of a multistep  product  code is the 

separating  mean VQ  where  a sample  mean  instead of an 
energy  term i s  removed [37]. Define  the sample  mean (x) 
of a k-dimensional  vector  by k-’ XFIi xi .  In  a separated 
mean VQ one  first uses a scalar quantizer to  code  the 
sample  mean of a vector, then  the  coded sample  mean is 
subtracted from all of  the  components  of  the  input  vector 
to  form  a  new  vector  with  approximately  zero sample 
mean.  This  new  vector is then  vector  quantized. Such a 
system is depicted  in Fig. 9. The  basic motivation  here is 
that in image coding  the sample  mean of  pixel  intensities 
in a small  rectangular  block  represents a relatively  slowly 
varying average background  value  of  pixel  intensity 
around  which  there are  variations. 

To design  such  a  VQ,  first use the  algorithm  to  design  a 
scalar quantizer  for  the  sample  mean  sequence (x,), 
j = 0,1 , .  . ., L - 1. Let $(x)) denote  the  reproduction  for 
(x) using  the  quantizer.  Then use the  vector  training se- 
quence x, - q ( ( x j } ) l ,  where 1 = (1, l f . .  . , I ) ,  to design  a 
VQ  for  the  difference.  Like  the  gainishape VQ, a  product 
codebook and a  multistep  encoder are  used, but  unlike 
the gainishape VQ it can be  shown  that  .the  multistep 
encoder  here does not select the best possible mean, 
shape  pair,  that is, the  multistep  encoder is not  equivalent 
to a full search  encoder. 

Lattice VQ 

A  final  VQ  structure  capable  of  efficient searches  and 
memory usage is  the  lattice  quantizer,  a  k-dimensional 
generalization  of  the scalar uniform quantizer.  A lattice in 
k-dimensional space is a  collection of all  vectors  of  the 
form y = E;=-; aiei, where n I k ,  where eo,.  . . e,-1 are a 
set of linearly  independent  vectors  in Rk, and  where  the ai 
are arbitrary  integers. A lattice  quantizer is a  quantizer 
whose  codewords  form  a subset of  a  lattice.  Lattice  quan- 
tizers  were  introduced  by  Gersho [38] and  the  per- 
formance and efficient  coding  algorithms  were  developed 
for  many  particular  lattices  by  Conway  and  Sloane 
[39,40f41] and Barnes and  Sloane [42]. The  disadvantage 
of  lattice  quantizers is that  they  cannot  be  improved  by a 
variation  of  the  Lloyd  algorithm  without  losing  their  struc- 
ture and  good  quantizers  produced  by  the  Lloyd  algorithm 
cannot  generally  be  well  approximated  by  lattices. Lattice 
codes can work  well  on source  distributions  that are ap- 
proximately  uniform over a  bounded  region  of space. In 
fact,  lattices  that  are  asymptotically  optimal in  the  limit  of 
large  rate  are known  for  this case in two and  three  dimen- 
sions  and good lattices are known  for  dimensions  up  to 16. 
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Ideaily, one  would  like  to  take  a  full search, uncon- 
strained VQ and find some fast means of encoding  having 
complexity  more  like  the above techniques  than  that  of 
the  full  search.  For  example,  some  form of mul t i -  
dimensional  companding  followed  by  a  lattice  quantizer 
as suggested by  Gersho [24] would  provide  both  good 
performanceand  efficient  implementation.  Unfortunately, 
however, no design  methods  accomplishing  this  goal have 
yet  been  found. 

FEEDBACK VECTOR QUANTIZERS 

Memory can be  incorporated  into  a  vector  quantizer  in 
a simple  manner by  using  different  codebooks for each 
input vector,  where  the  codebooks are  chosen  based on 
past input vectors.  The  decoder  must know  which  code- 
book is being used by  the  encoder  in  order  to  decode 
the  channel  symbols.  This can be  accomplished  in  two 
ways: 1)  The encoder can use a  codebook  selection  proce- 
dure  that  depends  only  on past encoder  outputs  and 
hence  the codebook  sequence can be  tracked  by  the 
decoder. 2) The  decoder is informed  of  the  selected  code- 
book via a special low-rate  side  channel. The first ap- 
proach is called  feedback  vector  quantization  and is the 

t 
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Figure 9. Separating  Mean VQ. The sample  mean of the 
input vector is computed,  scalar  quantized, and then sub- 
t rac ted  from each  component of the input vector. The 
resulting  vector  with approximately  zero sample  mean is 
then  vector quantized. The decoder  adds the coded 
sample  mean t o  all components of the coded  shape vector. 



topic  of  this  section. The  name  follows because the  en- 
coder  output is "fed  back"  for use in  selecting  the  new 
codebook.  A  feedback  vector  quantizer can be  viewed as 
the  vector  extension  of a scalar adaptive  quantizer  with 
backward  estimation  (AQB) [31. The  second  approach is 
the  vector  extension  of  a scalar adaptive  quantizer  with 
forward  estimation  (AQF)  and is called  simply  adaptive 
vector  quantization.  Adaptive VQ  will  be  considered  in  a 

ENCODER 

DECODER 
Figure 10. Feedback VQ. A t  time n both encoder and 
decoder are in a common state S,, The encoder  uses a 
state VGI ys, t o  encode the input vector and then  selects 
a new state  for  the  next input vector. Knowing the VQ 
used and the  resulting channel  symbol, the decoder can 
produce the correct  reproduction.  Note  that  the  state 
VQ's may  be computed at each  time from some rule or, if 
they  are small  in number, simply stored separately. 

later  section.  Observe  that  systems can combine  the  two 
techniques  and use both feedback  and  side  information. 
We  also point  out  that  unlike  most scalar AQB  and  AQF 
systems, the  vector analogs considered  here  involve no 
explicit  estimation  of  the  underlying  densities. 

It  should be  emphasized  that  the  results of  information 
theory  imply  that  VQ's  with  memory can do  no  better  than 
memoryless  VQ's in  the sense of minimizing average 
distortion  for  a  given  rate  constraint.  In fact, the basic 
mathematical model  for  a data  compression system in 
information  theory is exactly a memoryless  VQ  and such 
codes  can perform  arbitrarily  close  to  the  optimal  per- 
formance  achievable  using  any  data  compression  system. 
The exponential  growth  of  computation  and  memory  with 
rate,  however,  may  result in  nonimplementable  VQ's.  A 
VQ  with  memory may yield  the  desired  distortion  with 
practicable  complexity. 

A  general  feedback VQ can be  described as follows [221: 
Suppose now  that  we have a space S whose  members  we 
shall call states and  that  for each  state s in S we have a 
separate quantizer: an encoder ys, decoder ps, and code- 
book C,. The channel  codeword space M is  assumed to 
be the same for all of  the VQ's. Consider a data com- 
pression  system  consisting  of  a  sequential  machine  such 
that  if  the  machine is in state s, then it uses the  quantizer 
with  encoder ys and  decoder pS. It then selects i ts  next 
state by a mapping  called  a  next-state  function  or state- 
transition  function f such that  given  a  state s and  a  channel 
symbol u, then f(v,s)  is  the  new state of  the  machine. 
More  precisely,  given  a  sequence of input  vectors 
{x,,; n = 0 , 1 , 2 , .  . . }  and an initial state so, then  the  sub- 
sequent  state  sequence s,,, channel  symbol  sequence v,, 
and reproduction sequence 2,, are defined  recursively  for 
n = 0 , 1 , 2 , .  . . as 

un = 3/s,,(Xn), 2 n  = ps, (vn) ,  sn+1 = f ( u n , s n ) .  ( 5 )  

Since the  next state depends  only  on  the  current state  and 
the  channel  codeword,  the  decoder can track  the state if 
it knows  the  initial state  and the  channel  sequence.  A 
general  feedback  vector  quantizer is  depicted  in Fig. IO. 
The freedom  to use different quantizers  based on  the past 
without  increasing  the rate should  permit  the  code to per- 
form  better  than  a  memoryless  quantizer  of  the same di- 
mension  and  rate. 

An  important  drawback of all feedback  quantizers is  that 
channel  errors can accumulate  and  cause  disastrous 
reconstruction  errors. As with scalar feedback  quantizer 
systems, this  must  be  handled  by  periodic  resetting  or  by 
error  control  or  by  a  combination of the  two. 

If  the state space is  finite,  then  we shall call the  resulting 
system a  finite-state  vector  quantizer  or FSVQ.  For  an 
FSVQ, all of  the  codebooks  and  the  next-state  transition 
table can  all be  stored in ROM, making  the  general FSVQ 
structure  amenable  to LSI or VLSl implementation [43]. 

Observe  that  a  memoryless  vector  quantizer is simply  a 
feedback  vector  quantizer or  finite-state  vector  quantizer 
with  only  a  single state.  The  general FSVQ is a special case 

APRIL 1984 IEEE  ASSP  MAGAZINE 1 5 



of  a  tracking  finite state  source coding system [441 where 
the  encoder is  a  minimum  distortion  mapping. 

Three  design  algorithms  for  feedback  vector  quantizers 
using  variations on  the  generalized  Lloyd  algorithm have 
been  recently  developed. The remainder  of  this  section is 
devoted  to  brief  descriptions  of  these  techniques. 

Vector  predictive quantization 

Cuperman  and  Gersho [45,46] proposed  a  vector  pre- 
dictive  coder  or  vector  predictive  quantizer  (VPQ)  which is 
a  vector  generalization  of  DPCM or  predictive  quanti- 
zation. A VPQ is sketched  in Fig. 11, For a  fixed  predictor, 
the  VQ design  algorithm is  used to design  a VQ  for  the 
prediction  error  sequence.  Cuperman  and  Gersho  consid- 
ered several  variations on  the basic algorithm, some of 
which  will  be later  mentioned. 

Chang [471 developed an extension  to  Cuperman and 
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Figure 1 ' i .  Vector  Predictive  Quantization. A linear 
vector  predictor for the  next input vector of a process 
given the previous  input vector  is applied t o  the previous 
reproduction of the input vector. The resulting  prediction 
is  subtracted from the  current input vector t o  form an 
error vector which is vector quantized. The decoder  uses 
a copy of the encoder and the received encoded error 
vectors to  construct  the reproduction, 

Gersho's algorithm  which  begins  with  their system  and 
then uses a stochastic gradient  algorithm  to  iteratively  im- 
prove  the  vector  linear  predictor  coefficients,  that is, to 
better  match  the  predictor  to  the  quantizer. The  stochastic 
gradient  algorithm is  used only  in  the design of  the sys- 
tem, not as an on  line  adaptation  mechanism as in  the 
adaptive  gradient  algorithms  of,  e.g.,  Gibson  et a/. [481 
and  Dunn [49]. A scalar version  of  this  algorithm  for  im- 
proving  the  predictor  for  the  quantizer was developed in 
unpublished  work  of Y. Linde. 

Productlmultistep FVQ 

A second basic approach  for  designing  feedback  vector 
quantizers which is quite  simple  and  works  quite  well is  to 
use a product  multistep  VQ such as the  gainishape  VQ  or 
the separating  mean VQ and  use a  simple  feedback  quan- 
tizer on  the scalar portion and an ordinary  memoryless  VQ 
on  the  remaining  vector. This  approach was developed  in 
[IO] for gainishape VQ  of LPC parameters  and in [37] for 
separating  mean VQ  of images. Both  efforts used simple 
scalar predictive  quantization  for  the  feedback  quan- 
tization  of  the scalar terms. 

FS V Q  

The first  general  design  technique  for  finite-state  vector 
quantizers was reported  by Foster  and  Gray [50,51]. There 
are two  principal  design  components: 1, Design an initial 
set of state codebooks  and  a  next-state  function  using an 
ad hoc algorithm. 2. Given  the  next-state  function, use a 
variation of  the basic algorithm  to  attempt  to  improve  the 
state codebooks. The  second  component is accomplished 
by a slight  extension  of  the basic algorithm  that is similar 
to  the  extension  of [52] for  the  design  of  trellis  encoders: 
Encode the data using  the FSVQ and  then  replace all of  the 
reproduction  vectors  by  the  centroids  of  the  training vec- 
tors which map into  those  vectors;  now,  however,  the 
centroids are conditioned  on  both  the channel  symbol 
and the state. While such conditional averages are likely 
impossible to  compute analytically, they are  easily com- 
puted  for a training  sequence. For example, in  the case of 
a squared  error  distance  one  simply  forms  the Euclidean 
centroid  of all input  vectors  which  correspond  to  the 
state s and  channel  symbol v i n  an encoding of the 
training  sequence. 

As with  ordinary  VQ,  replacing  the  old  decoder  or  code- 
book  by  centroids  cannot  yield a code  with  larger dis- 
tortion.  Unlike  memoryless  VQ,  however,  replacing  the 
old  encoder  by  a  minimum  distortion  rule  for  the  new 
decoder can in  principal cause  an increase in  distortion 
and hence now  the  iteration is  somewhat  different: Re- 
place the  old  encoder  (which is a  minimum  distortion  rule 
for  the  old  decoder) by a  minimum  distortion  rule  for  the 
new  decoder.  If  the  distortion goes down,  then  continue 
the  iteration  and  find  the  new  centroids. If the  distortion 
goes up, then  quit  with  the  encoder  being  a  quantizer  for 
the  previous  codebook  and  the  decoder  being  the  cen- 
troids  for  the  encoder. By construction  this  algorithm can 
only  improve  performance. It turns  out,  however,  that  in 
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practice it is a  good  idea  to  not  stop  the  algorithm  if  the 
distortion increases  slightly, but  to  let it continue: it will 
almost always eventually  drop  back  down in distortion and 
converge to  something  better. 

The first  design  component is more  complicated. We 
here  describe  one  of  the  more  promising approaches of 
[511 called the  omniscient  design  approach. Say that  we 
wish to  design an  FSVQ with K states and  rate R bits  per 
vector. For simplicity  we  label  the states as 0 through K-I. 
First use the  training  sequence  to  design  a  memoryless  VQ 
with K codewords,  one  for each  state.  We  shall call these 
codewords state  labels  and this VQ the state quantizer. We 
call the  output of the state VQ  the  “ideal  next state” in- 
stead of  a  channel  symbol.  Next  break up  the  training 
sequence into subsequences as follows: Encode the  train- 
ing sequence using  the state VQ and  for each  state s col- 
lect all of  training  vectors  which follow the  occurrence of 
this state  label.  Thus  for s the  corresponding  training  sub- 
sequence  consists of all input vectors  that  occur  when  the 
current ideal  state is s. Use the basic algorithm  to design 
a rate R codebook C, for  the  corresponding  training se- 
quence  for each s. 

The  resulting state VQ and the  collection  of  codebooks 
for each  state  have been  designed  to  yield  good  per- 
formance in  the  following  communication system:  The 
encoder is in an ideal state s chosen by  using  the state VQ 
on  the last input vector.  The  encoder uses the  correspond- 
ing  VQ  encoder ys described  by  the  codebook C,. The 
output  of y, i s  the  channel  symbol.  In  order  to  decode  the 
channel  symbol,  the  decoder  must also know  the ideal 
state. Unfortunately,  however,  this  ideal state cannot  be 
determined  from  knowledge  of  the  initial state  and all of 
the received  channel  symbols.  Thus the decoder  must  be 
omniscient  in  the sense of knowing  this  additional side 
information  in  order  to  be  able  to  decode.  In  particular, 
this system is not an  FSVQ by  our  definition. We can  use 
the state quantizer  and  the  various  codebooks,  however, 
to  construct an FSVQ by  approximating  the  omniscient 
system:  Instead  of forming  the ideal  next  state  by  using 
the state VQ  on  the actual input  vector (as we  did  in  the 
design  procedure), use the state VQ  on  the  current re- 
production  vector  in  order  to  choose  the  next state.  This 
will  yield  a state  sequence  depending  only on encoder 
outputs and the  original state  and hence will be trackable 
by  the  decoder. This is  analogous to  the scalar practice  of 
building a predictive  coder  and  choosing  the  predictor as 
if it knew  the past inputs,  but  in  fact  applying it to past 
reproductions. 

Combining  the  previously  described steps of (I)  initial 
(state  label) codebook  design, (2) state codebooks  and 
next-state function design,  and (3) iterative  improvement 
of code  for  given  next-state  function,  provides  a  complete 
design  algorithm. 

In  addition  to  the above  design  approach,  techniques 
have been  developed  for  iterating  on (2) and (3) above in 
the sense of  optimizing  the  next-state  function  for  a  given 
collection  of  codebooks. These algorithms,  however, are 
more  complicated  and  require ideas from  the  theory  of 

adaptive  stochastic  automata.  The  reader is referred  to [531 
for  a  discussion of these  improvement  algorithms. 

VECTOR TREE AND TRELLIS ENCODERS 

As with scalar feedback  quantizers,  the  actions of  the 
decoder  of a feedback VQ can be  depicted as a  directed 
graph  or  tree. A simple  example is depicted  in Fig.  12, 
where  a  merged  tree  or  trellis can be  drawn  since  the 
feedback VQ has only  a  finite  number  of states. 

Instead of  using  the  ordinary  VQ  encoder  which is only 
permitted  to  look at the  current  input  vector  in  order 
to  decide  on  a  channel  symbol,  one  could use algo- 
rithms  such as the  Viterbi  algorithm,  M-algorithm  or 
M,L-algorithm, Fano algorithm,  or stack algorithm  for  a 
minimum cost search through a directed  graph  and search 
several  levels  ahead into  the  tree  or  trellis  before  choosing 
a  channel  symbol.  This  introduces an additional delay into 
the  encoding  of several  vectors, but it ensures better  long 
run average distortion  behavior. This technique is called 
tree  or  trellis  encoding  and is also referred to as look- 
ahead coding,  delayed  decision  coding,  and  multipath 
search coding. (See, e.g.,  [54,52] for surveys.)  We point 
out  that  a  tree  encoding system uses a  tree  to  denote  the -F (01-1) 
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Figure 12. Decoder  trellis  for a two  state 1 bit  per 
vector two  dimensional  waveform  coder. The trellis 
depicts the possible state  transitions  for  the given next- 
state  function. The transitions are labeled by the corre- 
sponding decoder output [in parentheses1 and  channel 
symbol produced by the encoder. 



operation on successive  vectors by  the  decoder at  succes- 
sive times while  a  tree-searched  VQ uses a  tree  to  con- 
struct  a fast  search for a single  vector at a  single  time. 

A  natural  variation of the basic algorithm  for  designing 
FSVQ’s can be used to design  trellis  encoding systems: 
Simply  replace  the FSVQ encoder  which  finds  the  mini- 
mum  distortion  reproduction  for  a single input  vector by 
a  Viterbi  or  other search algorithm  which searches the 
decoder  trellis to some  fixed  depth  to  find  a  good  long 
term  minimum  distortion  path. The centroid  computation 
is accomplished exactly as with an FSVQ:  each branch  or 
transition  label is replaced  by  the  centroid  of all training 
vectors  causing  that  transition,  that is, the  centroid  condi- 
tioned  on  the  decoder state  and channel  symbol. Scalar 
and  simple  two  dimensional  vector  trellis  encoding sys- 
tems were  designed in [52]  using  this  approach. 

Trellis encoding systems  are not really  vector  quan- 
tization systems as we have defined  them since the  en- 
coder is  permitted  to search  ahead to determine  the  effect 
on  the  decoder  output  of several input vectors  while a 
vector  quantizer is  restricted to search only  a  single  vector 
ahead.  The two systems are  intimately  related,  how- 
ever, and  a  trellis  encoder can always be  used to  im- 
prove  the  performance  of  a  feedback  vector  quantizer. 
Very l itt le  work has yet  been  done  on  vector  trellis 
encoding systems. 
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Figure 13. A d a ~ t i ~ ~  UB. The model VQ uses  the  Itakura- 
Saito distortion t o  select an LPG model t o  fit the  input 
frame ef many  sample vectors. This selection in turn de- 
termines  the  waveform  coder  used t o  digitize the sample 
vectors. A side  channel then  informs  the receiver  which 
decoder t o  use on the channel  symbols produced by the 
waveform coder. 

ADAPTIVE VQ 
As a  final class of  VQ  we  consider systems that use one 

VQ  to adapt a  waveform  coder,  which  might  be  another 
VQ. The  adaptation information is communicated to the 
receiver  via  a low rate  side information  channel. 

The  various  forms of vector  quantization  using  the 
Itakura-Saito  family of  distortion measures  can be  consid- 
ered as model classifiers, that is, they  fit an all-pole  model 
to an observed  sequence of sampled  speech. When used 
alone in an LPC VQ system, the  model is used, to  syn- 
thesize  the speech at the  receiver.  Alternatively,  one  could 
use the  model  selected  to  choose a waveform  coder  de- 
signed to  be  good  for  sampled  waveforms  that  produce 
that  model. For example,  analogous to the  omniscient 
design of FSVQ one  could  design separate  VQ‘s for the 
subsequences  of the  training  sequence  encoding  into 
common  models.  Both  the  model  index  and  the  waveform 
coding  index are then sent to  the receiver.  Thus LPC VQ 
can be  used to adapt a waveform  coder,  possibly also a  VQ 
or related  system.  This will  yield  a system typically  of  much 
higher rate, but  potentially  of  much  better  quality since 
the  codebooks can be  matched  to  local  behavior  of  the 
data.  The  general structure is shown  in Fig. 13. The model 
VQ  typically  operates on a much  larger  vector  of samples 
and at a  much  lower  rate in bits  per sample than  does  the 
waveform  coder and hence  the  bits  spent on specifying 
the  model  through  the  side  channel are typically  much 
fewer  than  those  devoted  to  the  waveform  coder. 

There  are  a  variety of such  possible systems since both 
the  model  quantizer  and  the  waveform  quantizer can take 
on many of the  structures so far considered. In addition, 
as in  speech  recognition  applications [ 5 5 ]  the  gain- 
independent  variations of the  Itakura-Saito  distortion 
measure which  either  normalize  or  optimize  gain may be 
better  suited  for  the  model  quantization  than  the usual 
form. Few such systems have yet  been  studied  in  detail. 
We here  briefly  describe  some systems of this  type  that 
have appeared in  the  literature  to  exemplify some typical 
combinations.  All of them use  some form of  memoryless 
VQ  for  the  model  quantization,  but a variety of  waveform 
coders  are  used. 

The first  application  of  VQ  to  adaptive  coding was by 
Adoul,  Debray,  and  Dalle [32] who used an  LPC VQ to 
choose a predictor  for use in a scalar predictive  waveform 
coder.  Vector quantization was used only  for  the adap- 
tation  and  not  for  the  waveform  coding.  An  adaptive 
VQ  generalization of this system was later  developed  by 
Cuperman  and  Gersho [45,461 who used an alternative 
classification  technique to  pick  one  of  three  vector  predic- 
tors  and  then  used  those  predictors  in a predictive  vector 
quantizer.  The  predictive  vector  quantizer  design  algo- 
rithm  previously  described was used,  except now  the 
training  sequence was broken  up  into subsequences cor- 
responding  to  the  selected  predictor  and a quantizer was 
designed  for each resulting  error  sequence.  Chang t471 
used a  similar  scheme with an ordinary LPC VQ as the 
classifier  and with  a stochastic  gradient  algorithm  run on 
each of  the  vector  predictive  quantizers  in  order  to  im- 

1 IEEE ASSP  MAGAZINE  APRIL 1984 



ENCODER 

DECODER 

Figure 14. RELP VQ. An  LPC VQ is used for model  se- 
lection and a single VQ t o  waveform encode the residuals 
formed by passing the original  waveform  through the in- 
verse filter A/*, The side information  specifies t o  the 
decoder which of the model filters */A should  be used 
for synthesis. 

prove  the  prediction  coefficienrs  for  the  corresponding 
codebooks. 

Rebolledo et a/.  [561 and  Adoul  and  Mabilleau [571 de- 
veloped  vector  residual  excited  linear  predictive (RELP) 
systems. (See Fig. 14.) A  similar  system  employing  either a 
scalar or a simple  vector  trellis  encoder  for  the  waveform 
coder wa.s developed  by Stewart et a/ .  [52]. Both  of these 
systems used  the basic algorithm  to  design  both  the  model 
VQ  and  the  waveform  coders. 

The RELP VQ systems yielded  disappointingly  poor  per- 
formance at low  bit rates. Significantly  better  performance 
was achieved by  using  the  residual  codebooks  produced 
in  the RELP design to  construct  codebooks  for  the  original 
waveform,  that is, instead of  coding  the  model and  the 
residual,  code  the  model  and use the selected  model  to 
construct  a  waveform  coder  for  the  original  waveform as 
depicted  in Fig. 15 [521. For lack of  a  better name, this 
system might  be  called an inverted RELP because it uses 
residual  codebooks to drive an inverse model  filter  in  or- 
der to get a  codebook  for  the  original  waveform. 

Yet another use of LPC VQ  to adapt a waveform  coder 
was reported  by  Heron,  Crochiere,  and Cox 1581 who used 

a  subbanditransform  coder  for  the  waveform  coding and 
used the side information  to adapt the  bit  allocation  for 
the scalar parameter  quantizers. 

Many  other  variations on  the general  theme are  possible 
and  the  structure is a  promising  one for processes  such as 
speech that  exhibit  local  stationarity,  that is, slowly  varying 
short  term statistical behavior. The  use of  one  VQ  to  par- 
tition  a  training sequence in  order  to design good codes 
for  the  resulting  distinct subsequences is  an intuitive ap- 
proach to the  computer-aided  design of adaptive  data 
compression systems. 

EXAMPLES 

We  next  consider  the  performance  of  various  forms  of 
vector  quantizers on  three  popular  guinea  pigs: Gauss 
Markov sources,  speech  waveforms,  and  images.  For 
the speech coding example  we  consider both  waveform 
coders  using the squared  error  distortion measure  and 
vocoders  using  the  Itakura-Saito  distortion. The caveats 
of  the  introduction  should  be  kept  in  mind  when  inter- 
preting  the results. 

ENCODER 

I CODEBOOK 

DECODER 

Figure 15. Inverted  RELP. An LPG VQ is  used t o  select 
a model filter u/A. A  waveform codebook is  then  formec 
by driving  the model filter  with all possible  residual code- 
words  from a RELP VQ design.  Thus, unlike a RELP sys- 
tem,  the  original  waveform  [and  not  a residual1 is  matched 
by possible  reproduction  codewords. 
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The performance  of  the systems  are  given by SNR’s for 
squared  error  and  by an analogous  quantity  for  the 
Itakura-Saito distortion:  In  both cases we measure nor- 
malized  average distortion  on a  logarithmic scale, where 
the  normalization is by  the average distortion  of  the  opti- 
mum  zero rate  code-the average distortion  between  the 
input sequence  and the  centroid  of  the  entire  input se- 
quence. This quantity  reduces  to an SNR in  the squared 
error case and  provides  a  useful  dimensionless  normal- 
ized average distortion  in  general. We call this  quantity 
the SNR in  both cases, The SNR is given in tables  instead 
of graphs in  order  to facilitate  quantitative  comparisons 
among  the  coding schemes. 

Gauss Markov sources 

We first  consider  the  popular  guinea  pig  of a Gauss 
Markov  source. This  source is useful as a  mathematical 
model  for  some  real data  sources and its information  the- 
oretic  optimal  performance  bounds as described  by 
the  distortion-rate  function are known. For this  example 
we  consider only  the squared  error  distortion. A Gauss 
Markov  source  or a first  order Gauss autoregressive 
source (X,} i s  def ined  by  the  d i f ference  equat ion 
Xn+l  = ax,, + W n ,  where {W,} is  a  zero mean, unit vari- 
ance, independent  and  identically  distributed Gaussian 
source.  We  here  consider the  highly  correlated case of 
a = 0.9 and  vector  quantizers  of 1 bit/sample. The  maxi- 
mum achievable SNRas given  by Shannon’s distortion-rate 
function  for  this  source  and  rate is 13.2 dB [7]. 

Various  design algorithms  were used to design  vector 
quantizers  for several dimensions  for  this  source. Table I 
describes the  results  of  designing several  memoryless  vec- 

TABLE I 
MEMORYLESS VQ FOR A  GAUSS  MARKOV  SOURCE. 

VQ TSVQ MVQ W V Q  
k SNR n M SNR n M SNR n M SNR n M 
1 4.4 2 2 4.4 2 2 4.4 2 2 
2 7.9 4  8 7.9 4  12 7.6 4 8 7.9 1  3 
3 9.2 8 24 9.2 6 42 8.6 6 18 9.3 1 5 
4 10.2 16 64 10.2 8 120 8.4  8 32  9.4 2  10 
5 10.6 32 160 10.4 10 310 9.3 10 50 9.8 3  17 
6  10.9 64 384 10.7  12 756 9.1 12 72 9.9  4 26 
7 11.2 128 896 11.0 14 1778 9.4 14 98 10.2 4 31 
8 9.9 16 128 10.6 5 43 
9 10.9 6 57 

Signal t o  Noise  Ratios  [SNRI, number  of multiplications  per 
sample [nl, and storage  requirements of memoryless  vec- 
tor quantizers: full search  memoryless  VQ IVQI, binary 
tree-searched  [TSVQI,  binary  multistage VQ [MVQI, and 
gainishape VQ (G/SVQI. Rate = 1 bit/sample. k = vec- 
to r  dimension. Training Sequence = 60000 samples from 
a Gauss Markov  Source with  correlation  coefficient 0.9, 
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TABLE I I  
FEEDBACK VQ OF A  GAUSS  MARKOV SOURCE, 

FSVQI FSVQ2  VPQ 

k SNR K n M SNR K n M SNR n M 
1 10.0 64 2 64 9.5 16 2 16 10.0 2 2 

3  11.4 512 8 1536 11.1 64 8 192 11.6 8 24 
2 10.8 256 4 512 10.8 32 4 64 11.2 4 a 

4 12.1 5-12 16 2048 11.3 128 16 5-12 11.6  16 64 

Signal t o  Noise Ratios  (SNR),  number of states (K), 
number  of multiplications  per sample (nl, and storage 
[MI  for feedback quantizers:  FSVQ with number of states 
increased until negligible  change lFSVQl1, FSVQ with 
fewer  states  [FSVQ21, VPQ.  Rate = 1 bit/sample, 
k = vector  dimension.  Training  Sequence = 60000 
samples from  a Gauss Markov  Source with  correlation 
coefficient 0.9, 

tor quantizers for a  training  sequence  of 60,000 samples. 
Given  are the design SNR (code  performance on the  train- 
ing  sequence),  the  number  of  multiplications  per sample 
required  by  the  encoder,  and  the  number of real scalars 
that  must  be  stored  for  the  encoder  codebook. The num- 
ber  of  multiplications is  used as a  measure of.  encoder 
complexity because it is usually the  dominant  compu- 
tation  and because the  number  of  additions  required is 
usually  comparable. It is given by n = (the  number  of 
codewords  searched) X (dimension)/(dimension) = the 
number of codewords searched.  The  actual  storage  re- 
quired  depends on  the  number  of bytes  used to  store each 
floating  point  number.  Many  (but  not  all)  of  the  final  codes 
were  subsequently  tested on  different test  sequences of 
60,000 samples. In all cases the  open test SNR’s were  with- 
in -25 dB of the  design  distortion. The systems considered 
are full search  VQ’s [251, binary  tree-searched VQ‘s [591, 
binary  multistage VQ’s [47], and  gainishape VQ‘s [36]. The 
gain  and codebook sizes for  the  gainishape  codes  were 
experimentally  optimized. 

As expected, the  full search VQ  yields  the  best  per- 
formance  for each dimension,  but  the  tree-searched  VQ is 
not  much  worse  and has a  much  lower  complexity. The 
multistage VQ is  noticeably  inferior,  losing  more  than 1 dB 
at the  higher  dimensions,  but i t s  memory  requirements 
are  small.  The  gainishape VQ compares poorly  on  the 
basis of  performance vs. rate  for  a  fixed  dimension,  but it 
is the  best  code in  the sense of providing  the  minimum 
distortion  for  a  fixed  complexity  and rate. 

For larger rates and lower  distortion  the  relative  merits 
may  be quite  different. For example, the  multistage  VQ is 
then capable of  better  performance  relative  to  the  ordi- 
nary VQ since  the  quantization  errors  in  the  various stages 
do  not accumulate so rapidly. (See,  e.g., [341.) Thus in this 
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TABLE I l l  
MEMORYLESS VQ DF SAMPLED  SPEECH. 

k SNRin  SNRout  n M SNRin  SNRout  n M 
’ 

1 2.0 2.1 2 2 2.0 2.1 2 2  
2 5.2 5.3 4 8 5.1 5.1 4 12 
3 6.1 6.0 8 24 5.5 5.5 6 42 
4 7.1 7.0 16 64 6.4 6.4 8 120 
5 7.9 7.6 32 160 7.1 6.9 10 310 
6 8.5 8.1 64 384 7.9 7.5 12 756 
7 9.1 8.4 128 896 8.3 7.8 14 1778 
8 9.7 8.8 256 2048 8.9 8.0 16 4080 

MVQ W V Q  
k SNRin SNRout n M SNRin  SNRout  n M 
1 2.0 2.1 2 2  
2 4.3 4.4 4 8 
3 4.3  4.4 6 18 4.5  4.6 4 14 
4 4.4 4.5 8 32 6.0 6.1 4 20 
5 5.0 5.0 10 50 7.2 6.9 8 4 4  
6 5.0 4.9 12 72 7.7 7.4 16 100 
7 5.3 5.1 14 98 8.2 7.7 16 120 
8 5.6 5.5 16  128  8.8 8.1 32  264 
9 9.3 8.5 64  584 
IO 9.8 8.9 128 1288 
11 10.4 9.3 256  2824 

Signal t o  Noise  Ratios  inside  training sequence  ISNRin3 of 
640000 speech  samples, Signal to  Noise  Ratios  outside 
training sequence [SNRoutI of 76800 speech  samples, 
number of multiplications  per sample [nl, and storage re- 
quirements of memoryless vector quantizers: full search 
memoryless VQ [VQI, binary  tree-searched [TSVQI, 
binary  multistage VQ [MVQI,  and gain/shape VQ 
(G/SVQI.  Rate = 1 bit/sample. k = vector dimension, 

case multistage VQ may be far better because if i ts much 
smaller  computational  requirements. 

Table II presents  results for  three  feedback VQ’s for  the 
same source. In  .addition  to  the  parameters  of Table I, 
the  number  of states for  the FSVQ‘s are given. The first 
FSVQ and  the VPQ were  designed  for  the same training 
sequence of 60,000 samples. Because of  the extensive 
computation  required  and  the  shortness  of  the  training 
sequence  for  a  feedback  quantizer,  only  dimensions 
1 through 4 were  considered. The first FSVQ  was designed 
using  the  omniscient  design  approach  for 1 bit  per 
sample, dimensions 1 through 4, and  a  variety  of  numbers 
of states. For the  first example, the  number  of states  was 
chosen  by  designing FSVQ‘s for  more  and  more states 
until  firther increases yielded  negligible  improvements 
[SI]. It was found,  however,  that  the  performance  outside 

of  the  training sequence for these  codes was significantly 
inferior,  by 1 to 2 dB for  the  larger  dimensions. From the 
discussion of average distortion,  this suggests that  the 
training sequence was too short.  Hence  the  second FSVQ 
design (FSVQ2)  was run  with a  larger  training sequence of 
128,000 samples  and fewer states. The  test  sequence for 
these  codes always yielded  performance  within .3 dB of 
the  design value.  The VPQ test  performance  with  within 
.I dB of  the design  performance. The scalar predictive 
quantizer  performance  and  the  codebook  for  the  predic- 
tion  error  quantizer are the same as the  analytically  opti- 
mized  predictive  quantization system of Arnstein [60] run 
on  the same data. 

Observe  that the scalar  FSVQ in  the  first  experiment 
with 64 states yielded  performance  quite  close to that  of 
the scalar  VPQ, which does not have  a finite  number  of 
states. Intuitively  the FSVQ is trying  to  approximate  the 
infinite state machine  by  using  a large number of states. 
The VPQ, however, i s  less complex  and  requires less 
memory  and  hence  for  this  application is superior. 

For comparison,  the  best I bit/sample scalar trellis  en- 
coding system for  this  source  yields 11.25 dB for  this 
source [52]. The  trellis  encoding system uses a block 
Viterbi  algorithm  with  a search depth  of 1000 samples for 
the  encoder. It is perhaps  surprising  that in this  example 
the VPQ and the FSVQ with  the  short delay of  only 4 sam- 
ples  can outperform a  Viterbi  algorithm  with  a delay of 
1000 samples. It points  out,  however,  two advantages of 
feedback VQ  over scalar trellis  encoding systems: 1.  The 
decoder is  permitted  to  be  a  more  general  form  of  finite- 
state machine  than the  shift-register based nonlinear  filter 
usually  used in  trellis  encoding systems; and 2. the  en- 
coder  performs a  single  full  search  of  a  small  vector 
codebook  instead of a  Viterbi  algorithm  consisting  of  a 
tree search of a  sequence of scalar codebooks.  In  other 
words,  single  short  vector  searches  may  yield  better  per- 
formance  than  a  “look  ahead”  sequence  of searches of 
scalar codebooks. 

Speech waveform coding 

The  second set of results  considers  a  training sequence 
of 640,000 samples of  ordinary speech from  four  different 
male  speakers  sampled at 6.5 kHz. The  reader is reminded 
that  squared  error is not generally  a  subjectively  good 
distortion measure for speech.  Better  subjective  quality 
may be obtained  by  using  more  complicated  distortion 
measures  such as the general  quadratic  distortion mea- 
sures with  input  dependent  weighting such as the  arith- 
metic  segmented  distortions. The VQ design  techniques 
extend  to such distortion measures, but  the  centroid  com- 
putations are more  complicated. (See [301 for  the  theory 
and [45,461 for  the  application  of  input-weighted  quadratic 
distortion measures,) 

Tables Ill and  IV are the  counterparts of Tables I and I I  
for  this  source. Now,  however,  the SNR’s of  the  codes  on 
test  sequences of samples outside  of  the  training se- 
quence  (and by  a different  speaker) are presented  for 
comparison.  In  addition,  some  larger  dimensions are con- 
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FEEDBACK VQ OF SAMPLED  SPEECH. 

I SNRin  SNRout K n M SNRin  SNRout  n M 
I 2.0 2.0 2  2  2 2.1  2.6 2  2 
! 7.8  7.5  32 4 64  6.4  6.2 4  8 
! 9.0  8.3  64 10 192  7.3  6.8 8 24 
I 10.9 9.4  512 16 2048 , 8.0  7.6 16 64 
; 12.2 10.8 512  32  2560 

Signal t o  Noise  Ratios inside training sequence [SNRinI 
of 640000 speech  samples,  Signal t o  Noise Ratios  out- 
side training sequence  [SNRouel  of 76800 speech  sam- 
ples, number of states (Kl, number of multiplications  per 
sample (nl, and storage [MI for feedback  quantizers: 
Rate = 1 bit/sample. k = vector dimension, 

idered because the  longer  training  sequence  made  them 
more  trustworthy.  Again  for  comparison,  the  best  known 
(nonadaptive) scalar trellis  encoding  system  for this 
source  yields  a  performance of 9  dB [521. Here  the  trellis 
encoder uses the  M-algorithm  with a  search depth  of 
31 samples. The  general  comparisons  are  similar to  those 
of the  previous  source,  but  there are several differences. 
The  tree-searched VQ is now  more  degraded in com- 
parison  to  the  full search VQ and  the  multistage VQ is 
even  worse, about 3 dB below  the  full search at the largest 

TABLE V 
LPC VQ AND FSVQ WITH  AND  WITHOUT  NEXT  STATE 

FUNCTION  IMPROVEMENT. 

VQ  FSVQl FSVQZ 
R r SNRin  SNRout  SNRin  SNRout  SNRin  SNRout K 
1 .008  3.7  2.9 
2 .016  6.1 5.2 7.2  4.3  7.5 6.1 1 6  
3 ,023  7.3  6.2 8.4 5.9  9.0  7.5 16 
4 .031  8.8 7.9 9.5  7.8  9.6  8.7 4 
5 .039 9.7  8.8  10.6  8.9  10.7  9.3 4 
6 ,047  10.5  9.5 
7 .055  11.6 10.1 
8 ,062  12.6  10.7 

Signal to  Noise  Ratios inside training sequence  [SNRin) 
of 5000 vectors of 128 samples  each,  Signal t o  Noise 
Ratios  outside  training sequence [SNRoutl of 600 vec- 
tors of 128 samples  each: memoryless  VQ,  omniscient 
FSVQ  design [FSVQI I, and for omnisicient  FSVQ design 
with  next-state  function improvement  [FSVQ2). K = num- 
ber of states in FSVQ, R = rate in bits/vector, r = rate 
in bits/sample.  Itakura-Saito  distortion measure. 

dimension  in  comparison  to  about I dB for  the Gauss 
Markov case. The  complexity  and storage requirements 
are the same except for  the shapeigain VQ where  different 
optimum selections  of gain and shape codebook size yield 
different  complexity  and  storage  requirements.  The VPQ 
of  dimension 4 is inferior to the  trellis  encoder  and  the 
FSVQ of the same dimension.  The  four  dimensional FSVQ, 
however, still outperforms  the scalar trellis  encoder. 

Observe  that an FSVQ of dimension 4 provides  better 
performance  inside  and  outside  the  training  sequence 
than  does a full search memoryless  vector  quantizer  of 
dimension 8, achieving  better  performance with 16 
4-dimensional  distort ion  evaluations  than  with 512 
8-dimensional  distortion  computations.  The cost, of 
course, is a  large  increase in memory. This,  however, is a 
basic point  of FSVQ design-to use more  memory  but 
less computation. 

LPC VQ (vocoding) 
Table V presents  a  comparison of VQ and FSVQ for vec- 

tor  quantization  of  speech using the ltakura-Saito dis- 
tortion measure or, equivalently,  vector  quantization of 
LPC speech models [16,14,53]. The  training  sequence  and 

TABLE VI 
ADAPTIVE  VPQ. 

VPQ 
k SNRin SNRout 

1 4.12 4.34 
2 7.47 7.17 
3 8.10 7.67 
4 8.87 8.30 

Signal t o  Noise  Ratios inside training sequence [SNRinI 
of 5000 vectors, and Signal t o  Noise  Ratios in tes t  
sequence [SNRoutl of 600 vectors,  rate = 1.023  bits/ 
sample. 

test  sequence  are as above, but  now  the input dimension 
is 128 samples and  the  output vectors  are  10th  order  all- 
pole  models.  The  training  sequence i s  now effectively 
shorter since it contains  only 5000 input vectors of this 
dimension. As a  result the test  results  are  noticeablydiffer- 
ent  than  the  design results. Because of  the shortness of 
the  training sequence, only FSVQ’s of small  dimension 
and  few states were  considered. 

The  table  summarizes  memoryless VQ and two FSVQ 
designs: the  first FSVQ design  used was a straightforward 
application  of  the  design  technique  outlined  previously 
and  the  second used the stochastic iteration  next-state 
improvement  algorithm  of [53]. Observe  that  the  next- 
state function  improvement  yields  codes  that  perform  bet- 
ter  outside of the  training  sequence  then  do  the  ordinary 
FSVQ codes. 
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Figure 16. Image  Training Sequence. The training se- 
quence consisted of the sequence  of 3 x 4 subblocks of 
the five 256 x 256 images shown. 

Gainishape VQ's for  this  application are developed  in 
[I61 and [361. Tree-searched LPC VQ is considered  for bi- 
nary  and nonbinary trees in  combination  with gain/shape 
codes in [I61 and [IO]. 

Adaptive coding 

Table VI  presents  the  results  of  a  simple  example of an 
adaptive VQ, here  consisting of an  LPC  VQ with 8  code- 
words  every 128 samples  combined  wi th  VPQs of 
dimensions 1-4. Each' of-the 8 VPQs is designed  for  the 
subsequence of  training  vectors  mapping  into  the  corre- 
sponding LPG VQ model  [47]. The  rate of this system is 
1 f 3/128 = 1.023 bits/sample.  The  performance is  sig- 
nificantly  worse  than  the 10 dB achieved  by  a  hybrid scalar 
trellis  encoder of the same rate [ 5 2 ] ,  but it improves on  the 
nonadaptive VPQ by  about 3/4 dB.  Adaptive  vector  quan- 
tizers  are still quite new,  however,  and  relatively little  work 
on the  wide  variety  of  possible systems has yet  been  done. 

Image coding 
In 1980-1982 four separate groups  developed success- 

ful applications  of VQ techniques to  image  coding [61,  62, 
63,64,65,66,67,371. The only real difference  from wave- 
form  coding is that now  the VQ operates on small  rec- 
tangular  blocks of from 9 to 16 pixels,  that is, the  vectors 
are  really  2-dimensional  subblocks of images, typically 
squares with 3  Or4  pixels  on  a  side  or  3  by4  rectangles. We 
here  consider  both  the basic technique  and  one  variation. 
We consider only small  codebooks of 6 bits  per  4 X 3 
block  of 12 pixels for  purposes  of  demonstration.  Better 
quality  pictures  could  be  obtained at the same rate of 1h bit 
per  pixel  by  using  larger  block sizes and  hence  larger rates 
of, say, 8 to 10 bits  per  block.  Better  quality  could also 
likely  be  achieved  with  more  complicated  distortion 
measures than  the  simple  squared  error used. 

Fig. 16 gives the  training  sequence  of  five  images. 
Fig. 17a shows  a  small portion  of  the  fifth image, an  eye, 
magnified. Fig. 17b is a  picture  of  the 26 = 64 codewords. 
Fig. 17c shows the  decoded eye. Fig. 18 shows the  origi- 
nal, decoded image,  and error  image  for  the  complete 
picture. The error  image is useful  for  highlighting  the 
problems  encountered  with  the  ordinary  memoryless  VQ. 
In  particular,  edges  are poorly  reproduced  and  the  code- 
word edges  make the  picture appear "blocky." This prob- 
lem was attacked  by  Ramamurthi  and  Gersho [62,671 by 
constructing  segmented  (or  union  or  composite)  codes- 
separate codebooks  for  the  edge  information  and  the 
texture  information  where  a  simple classifier was used 
to  distinguish  the  two  in design. In [371 a feedback  vector 
quantizer was developed  by  using a separating  mean  VQ 
with a  predictive scalar quantizer  to  track  the mean. Fig. 19 
shows the  original eye, ordinary VQ, and the feedback 
VQ. The improved  ability  to  track edges is clearly  discern- 
ible. Fig. 20 shows the  full  decoded  image for feedback 
VQ together  with  the  error  pattern. 

Although  image  coding  using VQ is still in i ts infancy, 
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‘igure 17. Basic Image V&l Example a t  1/2 bit  per pixel. 
a1 Original Eye Magnified [bl 6 bit codebook VQ code- 
look for 4 x 3 blocks [GI Decoded Image. 

these preliminary  experiments  using  only  fairly  simple 
memoryless  and  feedback V Q  techniques  with small 
codebooks  demonstrate  that  the  general  approach  holds 
considerable  promise  for  such  applications. 

COMMENTS 

We  have described Lloyd’s  basic iterative  algorithm  and 
how it can be used to improve  the  performance of a  variety 
of  vector  quantization systems, ranging  from  the  funda- 
mental  memoryless full search VQ that serves as the basic 
model  for data compression  in  information  theory  to a 
variety of feedback  and  adaptive systems that can be 
viewed as vector  extensions of popular scalar com- 
pression  systems. By a  variety  of  examples of systems  and 
code  design  simulations  we  have tried to illustrate some of 

the  tradeoffs  among  performance, rate,  complexity,  and 
storage for these  codes. 

The  basic structure  of  all of the V Q  systems is well  suited 
to VLSl implementation:  a  minimum  distortion search al- 
gorithm  on a chip  communicating  with  off-board storage 
for  codebooks  and  next-state-transition  functions. As new 
and better  design  algorithms  are  developed,  the  chips can 
be  updated  by  simply  reburning  the  codebook  and  transi- 
tion ROM’s. 

The  basic  approach  can  also be  incorporated  into  the 
design  of  some  traditional scalar data  compression 
schemes, an approach  which  Gersho calls “imbedded 

bJ 

cl 

Figure 18. Full Image for Basic Example (a3 Original 
[bl Decoded  Image [cl Error Image. 
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Figure 19. VQ vs. Separating  Mean VQ at Rate V2 bit 
per pixel (a1 Original Eye Magnified [b l  VQ Decoded 
Image [cl Separating  Mean VQ with  DPCM Mean Coding 
Decoded  Image. 

1 

a1 

b l  

Figure 20. Full Image for  Separating  Mean Example 
(a) Decoded  Image  using  Separating  Mean VQ with 
DPCM  Mean Coding [bl Error Image. 

VQ" [Il l .  Such  schemes typically  enforce  additional  struc- 
ture  on  the  code such as preprocessing,  transforming, 
splitting  into subbands, and scalar quantization,  however, 
and  hence  the  algorithms may not have the  freedom to 
do as well as the  more  unconstrained  structures  consid- 
ered  here. Even if  the  traditional schemes prove  more 
useful  because of  existing DSP chips or intuitive  variations 
well  matched to particular  data  sources,  the  vector 
quantization systems  can prove  a  useful  benchmark 
for  comparison. 

Recently VQ has  also been successfully  used in isolated 
word  recognition systems without  dynamic  time  warping 
by  using  either separate codebooks  for each utterance or 
by  mapping  trajectories  through  one or more  codebooks 
[68,69,70,71,55,721. Vector  quantization has also been 
used as a  front  end  acoustic  processor  to  isolated  utter- 
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ance  and continuous speech recognition systems which 
then  do  approximately  maximum  likelihood  linguistic  de- 
coding based on  probabilities estimated  using ”hidden 
Markov’’  models for  the  VQ  output data. [73,74,751. 

Variations of  the basic VQ design  algorithm have  been 
tried  for  several  distortion  measures,  including  the 
squared  error, weighted  squared  error,  the  ltakura-Saito 
distortion, and an (arithmetic)  segmented signal to noise 
ratio. (See,  e.g., [30,45,461). Other  distortion measures 
are currently  under  study. 

The algorithm has not yet  been  extended  to some of  the 
more  complicated  distortion measures implicit  in noise 
masking  techniques  for  enhancing  the  subjective  per- 
formance  of scalar quantization speech coding systems. 
Whether scalar systems designed  by  sophisticated  tech- 
niques  matched  to  subjective  distortion measures will 
sound or look  better  than  vector systems designed  for 
mathematically  tractable  distortion measures  remains to 
be seen. Whenever  the  subjective  distortion measures  can 
be quantified and  a  means found  to  compute centroids, 
however,  the  vector systems will  yield  better  quantitative 
performance.  Since  the  centroid  computation is only 
done  in design  and not  in  implementation, it can be quite 
complicated and still yield  useful  results. 

The  generalized  Lloyd  algorithm is essentially  a  clus- 
tering  algorithm  and  we have attempted  to  demonstrate i ts  
applicability  to  the  design  of  a  variety  of data compression 
systems. Other  clustering  algorithms may yield  better 
codes in some  applications. For example,  Freeman [76] 
proposed  a  design  algorithm  for scalar trellis  encoding 
systems using  the  squared  error  distortion measure which 
replaced the  Lloyd  procedure  by  a  conjugate  gradient  pro- 
cedure  for  minimizing  the average distortion  for  a  long 
training  sequence. He  found  that  for a  memoryless  Gaus- 
sian source the  resulting codes were  superior  to  those 
obtained  by  the  Lloyd  procedure. It would  be  interesting 
to characterize the reasons for  this  superiority, e.g., the 
procedure may find a  better  local  minimum  or  it may  sim- 
ply  be  numerically  better  suited  for  finding  a  continuous 
local minimum  on a  digital  computer. It would also be 
interesting  to  consider  variatiqns of this  approach for  the 
design of some of  the  other systems considered  here. 

A  survey article  with  many  topics  cannot  provide  com- 
plete  descriptions  or  exhaustive  studies  of any of systems 
sketched. It i s  hoped,  however,  that  these  examples 
impart  the  flavor  of  vector  quantizer  design  algorithms 
and that  they may interest  some readers to  further  delve 
into  the  recent  and  current  work  in  the area. 
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