
I
0

Robert M. Gray

A vector quantizer is a system for mapping a sequence of
continuous or discrete vectors into a digital sequence suitable
for communication over or storage in a digital channel. The
goal of such a system i s data compression: to reduce the bit
rate so as to minimize communication channel capacity or
digital storage memory requirements while maintaining the
necessary fidelity of the data. The mapping for each vector
may or may not have memory in the sense of depending on
past actions of the coder, just as in well established scalar
techniques such as PCM, which has no memory, and pre-
dictive quantization, which does, Even though information
theory implies that one can always obtain better performance
by coding vectors instead of scalars, scalar quantizers have
remained by far the most common data compression system
because of their simplicity and good performance when
the communication rate is sufficiently large. In addition,
relatively few design techniques have existed for vector
quantizers.

During the past few years several design algorithms have
been developed for a variety of vector quantizers and the
performance of these codes has been studied for speech
waveforms, speech linear predictive parameter vectors,
images, and several simulated random processes. It is the
purpose of this article to survey some of these design tech-
niques and their applications.

ATA compression is the conversion of a stream of analog
or very high rate discrete data into a stream of relatively

low rate data for communication over a digital communica-
tion link or storage in a digital memory. As digital communi-
cation and secure communication have become increasingly
important, the theory and practice of data compression have
received increased attention. While it is true that in many
systems bandwidth is relatively inexpensive, e.g., fiber optic
and cable n/ links, in most systems the growing amount of
information that users wish to communicate or store necessi-
tates some form of compression for efficient, secure, and
reliable,use of the communication or storage medium.

A prime example arises with image data, where simple
schemes require bit rates too large for many communicatipn
links or storage devices. Another example where com-
pression is required results from the fact that if speech is
digitized using a simple PCM system consisting of a sampler
followed by scalar quantization, the resulting signal will no
longer have a small enough bandwidth to fit on ordinary
telephone channels. That is, digitization (which may be de-
sirable for security or reliability) causes bandwidth expan-

sion. Hence data compression will be required if the original
communication channel is to be used.

The two examples of image compression and speech com-
pression or, as they are often called, image coding and
speech coding, are probably the currently most important
applications of data compression. They are also among the
most interesting for study because experience has shown
that both types of data exhibit sufficient structure to per-
mit considerable compression with sufficiently sophisti-
cated codes.

Such conversion of relatively high rate data to lower rate
data virtually always entails a loss of fidelity or an increase in
distortion. Hence a fundamental goal of data compression
is to obtain the best possible fidelity for the given rate
or, equivalently, to minimize the rate required for a given
fidelity. If a system has a sufficiently high rate constraint, then
good fidelity is relatively easy to achieve and techniques such
as PCM, transform coding, predictive coding, and adaptive
versions of these techniques have become quite popular be-
cause of their simplicity and good performance t1,2,31. All of
these techniques share a fundamental property: The actual
quantization or coding or conversion of continuous quanti-
ties into discrete quantities is done on scalars, e.g., on indi-
vidual real-valued samples of waveforms or pixels of images.
PCM does this in a memoryless fashion; that is, each succes-
sive input is encoded using a rule that does not depend on
any past inputs or outputs of the encoder. Transform coding
does it by first taking block transforms of a vector and then
scalar coding the coordinates of the transformed vector. Pre-
dictive coding does it by quantizing an error term formed as
the difference between the new sample and a prediction of
the new sample based on past coded outputs.

~ A fundamental result of Shannon's rate-distortion theory,
the branch of information theory devoted to data com-
pression, is that better performance can always be achieved
by coding vectors instead of scalars, even if the data source
is memoryless, e.g., consists of a sequence of independent
random variables, or if the data compression system can have
memory, i.e., the action of an encoder at each time is permit-
ted to depend on past encoder inputs or outputs [4,5,6,7,8].
While some traditional compression schemes such as trans-
form coding operate on vectors and achieve significant im-
provement over PCM, the quantization is sti l l accomplished
on scalars and hence these systems are, in a Shannon sense,
inherently suboptimal: better performance is always achiev-
able in theory by coding vectors instead of scalars, even if the
scalars have been produced by preprocessing the original
input data so as to make them uncorrelated or independent!

4 IEEE ASSP MAGAZINE APRIL 1984 0740-7467i84iO400-0004S1.00~~1984 IEEE

This theory had a limited impact on actual system design
because I) the Shannon theory does not provide con-
structive design techniques for vector coders, and
2) traditional scalar coders often yield satisfactory per-
formance with enough adaptation and fine tuning. As a
result, few design techniques for vector quantizers were
considered in the literature prior to the late 1970’s when it
was found that a simple algorithm of Lloyd [91 for the
iterative design of scalar quantization or PCM systems ex-
tended in a straightforward way to the design of memory-
less vector quantizers, that is, of vector quantizers which
encode successive input vectors in a manner not de-
pending on previous encoder input vectors or their coded
outputs. Variations of the basic algorithm have since
proved useful for the design of vector quantizers with and
without memory for a variety of data sources including
speech waveforms, speech parameter vectors, images,
and several random process models, the latter being
useful for gauging the performance of the resulting
codes with the optimal performance bounds of informa-
tion theory.

This paper is intended as a survey of the basic design
algorithm and many of its variations and applications. We
begin with the simplest example of a memoryless vector
quantizer, a vector generalization of PCM. For con-
venience we use the shorthand VQ for both vector quan-
tization and vector quantizer. Necessary properties of
optimal quantizers are described and an algorithm given
which uses these properties to iteratively improve a code.
For concreteness, we focus on two examples of distortion
measures: the ubiquitous mean-squared error and the
Itakura-Saito distortion. The first example, which is popu-
lar in waveform coding applications, provides a geometric
flavor to the development; the second example, which is
useful in voice coding applications, helps to demonstrate
the generality and power of the technique.

Next, various techniques are described for designing
the initial codes required by the algorithm. These tech-
niques also indicate some useful structure that can be
imposed on vector quantizers to make them more imple-
mentable. Several variations of the basic VQ are de-
scribed which permit reduced complexity or memory or
both at the expense of a hopefully tolerable loss of per-
formance. These include tree-searched codes, product
codes, and multistep codes.

We then turn from memoryless vector quantizers to
those with memory: feedback vector quantizers such as
vector predictive quantizers and finite-state vector quan-
tizers. These codes are not yet well understood, but they
possess a structure highly suited to VLSl implementation
and initial studies suggest that they offer significant per-
formance gains.

For comparison, we also briefly describe trellis en-
coding systems or “lookahead” or ”delayed decision’’ or
”multipath search” codes which use the same decoder as
a feedback vector quantizer but which permit the encoder
to base i ts decision on a longer input data sequence.

A final general code structure is described which uses

vector quantization to adapt a waveform coder, which may
be another VQ.

We next present a variety of simulation results de-
scribing the performance of various VQ systems on vari-
ous data sources. Examples of all of the above VQ varieties
are tested for waveform coding applications on two
common data sources: a Gauss Markov source and real
sampled speech. One bit per sample coders for these
sources are compared on the basis of performance,
memory requirements, and c o m m i o n a l complexity.
Both memoryless and simple feedback Sector quantizers
are studied for voice coding applications at a rate of
0.062 bits/sample and less and for image coding at a rate
of 0.5 bit per sample. One example is given of a simple
adaptive predictive vector quanfizer for speech wave-
form coding.

By studying a variety of coding systems on common data
sources, the results yield some general comparisons and
trends among the various vector quantization techniques.
The reader should, however, keep two caveats in mind
when interpreting such quantitative results: First, the em-
phasis here is on low bit rate systems, e.g., speech coders
using 1 bit per sample or less and image coders 1/2 bit per
pixel. Comparisons favoring certain systems at such low
rates may not be valid for the same systems at higher rates.
Second, the numbers reported here are intended to pro-
vide comparisons for different systems used on common
data sources; they can be compared with other numbers
reported in the literature only with great care: the input
data and the system design parameters such as sampling
rate and pre- or post-filtering may be quite different.

Applications of vector quantization to real data sources
such as sampled speech waveforms and images are still
young and the algorithms do not yet incorporate the so-
phisticated ”bells and whistles’’ of many well-established
scalar quantization schemes. The preliminary experiments
described here, using fairly simple vector quantizers with
and without memory, demonstrate that the general ap-
proach holds considerable promise for some applications.
For example, good qualityvocoding systems using VQ and
the Itakura-Saito distortion have been developed at
800 bits per second, a significant reduction in the bit rate
previously required for comparable quality [IO]. While the
compression achieved so far in waveform coding and im-
age coding applications using the squared-error distor-
tion has not yet been as significant, we believe that it has
yielded comparable or better performance at low rates
than traditional scalar schemes of greater complexity. The
quality of the lh bit per pixel images shown here is prom-
ising given the simplicity of the coding scheme used.

We attempt to use the minimum of mathematics and a
maximum of English in the presentation so as to focus on
the intuitive ideas underlying the design and operation of
vector quantizers. The detailed descriptions of the vari-
ous algorithms can be found in the cited references. The
reader is also referred to a recent tutorial by Gersho and
Cuperman [Ill which presents a brief overview of
VQ applied to speech waveform coding.

APRIL 1984 IEEE ASSP MAGAZINE

MEMORYLESS VECTOR QUANTIZERS

In this section we introduce the basic definition of
memoryless vector quantizers, their properties, and an
algorithm for their design.

Quantization

Mathematically, a k-dimensional memoryless vector
quantizer or, simply, a V Q (without modifying adjectives)
consists of two mappings: an encoder y which assigns to
each input vector x = (xo,xl, , x ~ - ~) a channel symbol
y (x) in some channel symbol set M, and a decoder p as-
signing to each chanFel symbol u in M a value in a re-
production alphabet A. The channel symbol set is often
assumed to be a space of binary vectors for convenience,
e.g., M may be the set of all 2R binary R-dimensional vec-
tors. The reproduction alphabet may or may not be the
same as the input vector space; in particular, it may consist
of real vectors of a different dimension.

If M has M elements, then the quantity R = logz M is
called the rate of the quantizer in bits per vector and
r = R/k is the rate in bits per symbol or, when the input is
a sampled waveform, bits per sample.

The application of a quantizer to data compression is
depicted in the standard Fig. 1. The input data vectors
might be consecutive samples of a waveform, consecutive
parameter vectors in a voice coding system, or con-
secutive rasters or subrasters in an image coding system.
For integer values of R it is useful to think of the channel
symbols, the encoded input vectors, as binary R-
dimensional vectors. As is commonly done in informa-
tion and communication theory, we, assume that the chan-
nel is noiseless, that is, that U , = U,. While real channels
are rarely noiseless, the joint source and channel coding
theorem of information theory implies that a good data
compression system designed for a noiseless channel can
be combined with a good error correction coding system
for a noisy channel in order to produce a complete system.
In other words, the assumption of a noiseless channel is
made simply to focus on the problem of data compression
system design and not to reflect any practical model.

CHANNEL

Figure 1. Data Compression System. The data or in-
formation source {Xn; n = 0,1, , . . } is a sequence of
random vectors. The encoder produces a seqyence of
cbannel symbols {&: n = 0,1,2,, . . }, The sequence
{U,,; n = 0, 1,2, . . . } is delivered to the receiver by the
digital channel. The decoder then maps this sequence
in-to the f inal reproduction sequence o f vec to rs
{Xn: n = 0, 1,2, . . , }.

Observe that unlike scalar quantization, general V Q
permits fractional rates in bits per sample. For example,
scalar PCM must. have a bit rate of at least 1 bit per sample
while a k dimensional V Q can have a bit rate of only I l k
bits per sample by having only a single binary channel
symbol for k-dimensional input vectors.

The goal of such a quantization system is to produce the
"best" possible reproduction sequence for a given rate R.
To quantify this idea, to define the performance of a quan-
tizer, and to complete the definition of a quantizer, we
require the idea of a distortion measure.

Distortion

A distortion measure d is an assignment of a cost d(x,N
of reproducing any input vector x as a reproduction
vector 1. Given such a distortion measure, we can quantify
the performance of a system by an average distortion
€d(X,X) between the input and the final reproduction: A
system will be good if it yields a small average distortion.
In practice, the important average is the long term sample
average or time average

4 "-1

l im L.2' d(Xi,.Xi)
n-- n ,=O

provided, of course, that the limit makes sense. If the vec-
tor process is stationaryand ergodic, then, with probability
one, the limit exists and equals an expectation €(d(X,X)).
For the moment we will assume that such conditions are
met and that such long term sample averages are given by
expectations. Later remarks will focus on the general as-
sumptions required and their implications for practice.

Ideally a distortion measure should be tractable to
permit analysis, computable so that it can be evaluated in
real time and used in minimum distortion systems, and
subjectively meaningful so that large or small quantitative
distortion measures correlate with bad and good subjec-
tive quality. Here we do not consider the difficult and
controversial issues of selecting a distortion measure; we
assume that one has been selected and consider means of
designing systems which yield small average distortion.
For simplicity and to ease exposition, we focus on two
important specific examples:

(1) The squared error distortion measure: Here the in-
put and reproduction spaces are k-dimensional Euclidean
space

d(x,9) = IIX - k(12 = x (X i - 2 i) 2 ,

k - l

i = O

the square of the Euclidean distance between the vectors.
This i s the simplest distortion measure and the most
common for waveform coding. While not subjectively
meaningful in many cases, generalizations permitting
input-dependent weighting have proved useful and only
slightly more complicated. For the squared-error dis-
tortion it is common practice to measure the performance
of a system by the signal-to-noise ratio (or signal-to-
quantization-noise ratio)

6 IEEE ASSP MAGAZINE APRIL 1984

This corresponds to normalizing the average distortion
by the average energy and plotting it on a logarithmic
scale: Large (small) SNR corresponds to small (large)
average distortion.

(2) The (modified) Itakura-Saito distortion: This distor-
tion measure i s useful in voice coding applications where
the receiver is sent a linear model of the underlying voice
production process. The distortion measure i s based on
the ”error matching measure” developed in the pio-
neering work of ltakura and Saito on the PARCOR or LPC
approach to voice coding [12]. More generally, this dis-
tortion measure is a special case of a minimum relative
entropy or discrimination measure; VQ using such dis-
tortion measures can be viewed as an application of the
minimum relative entropy pattern classification technique
introduced by Kullback [I31 as an application of infor-
mation theory to statistical pattern classification. (See
also [14,15].)

We here introduce a minimum of notation to present a
definition of the ltakura-Saito distortion measure. Details
and generalizations may be found in [16,17,14,15]. Here
the input vector can again be considered as a collection of
consecutive waveform samples. Now, however, the
output vectors have the form 9 = (a, al, a2, +, ap), where
a is a positive gain or residual energy term and where the
ai with a. = 1 are inverse filter coefficients in the sense
that if

P

A(z) = aiz-‘

then the all-pole filter with z-transform I/A(z) is a stable
filter. Here the reproduction vectors may be thought of
as all-pole models for synthesizing the reproduction at
the receiver using a locally generated noise or periodic
source, in other words, as the filter portion of a linear
predictive coding (LPC) model in a vocoding (voice
coding) system. The ltakura-Saito distortion between the
input vector and the model can be defined in the time
domain as

i = O

d(x.91 = - - In - - 1. afR(x)a a,,(x)
\ , , a a

where af = (I , + , * - . , a p) , R(x) is the (p + 1) X (p + 1)
sample autocorrelation matrix of the input vector x, and
where aJx) is an input gain (residual energy) term defined
as the minimum value of brR(x)b, where the minimum is
taken over all vectors b with first component equal to 1 .
There are many equivalent forms of the distortion mea-
sure, some useful for theory and some for computation.
Frequency domain forms show that minimizing the above
distortion can be interpreted as trying to match the sample
spectrum of the input vector to the power spectral density
of the linear all-pole model formed by driving the filter
with z-transform I/A(z) by white noise with constant

power spectral density G,
The above formula for the distortion is one of the sim-

plest, yet it demonstrates that the distortion measure is
indeed complicated-it is not a simple function of an
error vector, it is not symmetric in its input and output
arguments, and it is not a metric or distance. Because of
the intimate connection of this distortion measure with
LPC vocoding techniques, we will refer to VQ‘s designed
using this distortion measure as LPC VQ‘s.

Average distortion
As the average distortion quantifies the performance of

a system and since we will be trying to minimize this quan-
tity using good codes, we pause to consider what the
average means in theory and in practice.

As previously noted, in practice it is the long term
sample average of (I) that we actually measure and which
we would like to be small. If the process is stationary and
ergodic, then this limiting time average is the same as
the mathematical expectation. The mathematical expec-
tation is useful for developing information theoretic per-
formance bounds, but it is often impossible to calculate in
practice because the required probabilitydistributions are
not known, e.g., there are no noncontroversial generally
accepted accurate probability distributions for real speech
and image data. Hence a pragmatic approach to system
design is to take long sequences of training data, estimate
the “true” but unknown expected distortion by the sample
average, and attempt to design a code that minimizes the
sample average distortion for the training sequence. If the
input source is indeed stationary and ergodic, the re-
sulting sample average should be nearly the expected
value and the same code used on future data should yield
approximately the same averages [181.

The above motivates a training sequence based design
for stationary and ergodic data sources. In fact, even if the
“true” probability distributions are known as in the case of
a Gauss Markov source, the training sequence approach
reduces to a standard Monte Carlo approach.

An immediate objection to the above approach, how-
ever, is whether or not it makes sense for real sources
which may be neither stationary nor ergodic. The answer
is an emphatic “yes” in the following sense: The desired
property is that if we design a code based on a sufficiently
long training sequence and then use the code on future
data produced by the same source, then the performance
of the code on the new data should be roughly that
achieved on the training data. The theoretical issue is to
provide conditions under which this statement can be
made rigorous. For reasonable distortion measures, a
sufficient condition for this to be true for memoryless
VQ design i s that the source be asymptotically mean
stationary, it need not be either stationary nor ergodic
[19,20,21,22,23]. Asymptotically mean stationary sources
include all stationary sources, block (or cyclo) stationary
sources, and asymptotically stationary sources. Processes
such as speech which exhibit distinct short term and long
term stationarity properties are well modeled by asymp-

APRIL 1984 IEEE ASSP MAGAZINE 7

totically mean stationary sources [211.
The key point here is that the general design approach

using long training sequences does not require either
ergodicity nor stationarity to have a solid mathematical
foundation. In fact, the mathematics suggest the follow-
ing pragmatic approach: Try to design 'a code which
minimizes the sample average distortion for a very long
training sequence. Then use the code on test sequences
produced by the same source, but not in the training se-
quence. lf the performance is reasonably close to the
design values, then one can have a certain amount of
confidence that the code will continue to yield roughly the
same performance in the future. If the training and test
performance are significantly different, then probably the
training sequence is not sufficiently long. In other words,
do not try to prove mathematically that a source is asymp-
totically mean stationary, instead try to design codes for it
and then see if they work on new data.

Henceforth for brevity we will write expectations with
the assumption that they are to be interpreted as short-
hand for long term sample averages. (A sample average
L- l d(Xi,k) is, in fact, an expectation with respect to
the sample distribution which assigns a probability of 1 / L
to each vector in the training sequence.)

Properties of optimal quantizers

A VQ is optimal if it minimizes an average distortion
Ed{X,/3[y(X)]}. Two necessary conditions for a VQ to be
optimal follow easily using the same logic as in Lloyd's [9]

b (i) = bin
of

Figure 2. VQ Encoder. The distortion between the input
vector and each stored codeword is computed. The en-
coded output is then the binary representation of the
index of the minimum distortion codeword.

classical development for optimal PCM with a mean-
squared error distortion measure. The following defini-
tion is useful for stating these properties: The collection of
possible reproduction vectors C = {all y : y = p(u), some
u in M} is called the reproduction codebook or, simply,
codebook of the quantizer and its members called
codewords (or templates). The encoder knows the struc-
ture of the decoder and hence all of the possible final
output codewords.

Property 7: Given the goal of minimizing the average
distortion and given a specific decoder p, no memoryless
quantizer encoder can do better than select the codeword
u in M that will yield the minimum possible distortion at
the output, that is, to select the channel symbol u yielding
the minimum

d{x,PCy(x)l} = min d[x,.P(v)l = min d(x,y). (2)
vEM YEC

That is, for a given'decoder in a memoryless vector quan-
tizer the best encoder is a minimum distortion or nearest
neighbor mapping

y(x) = min-' d[x,p(u)], (3)
,vEM

where the inverse minimum notation means that we select
the u giving the minimum of (2).

Gersho [24] calls a quantizer with a minimum distortion
encoder,a Voronoi quantizer since the Voronoi regions
about a set of points in a space correspond to a partition
of that space according to the nearest-neighbor rule. The
word quantizer, however, is practically always associated
with such a minimum distortion mapping. We observe
that such a vector quantizer with such a minimum dis-
tortion encoder is exactly the Shannon model for a block
source code subject to a fidelity criterion which is used in
information theory to develop optimal performance
bounds for data compression systems.

An encoder y can be thought of as a partition of the
input space into cells where all input vectors yielding a
common reproduction are grouped together. Such a
partition according to a minimum distortion rule is called
a Voronoi or Dirichlet partition. A general minimum
distance VQ encoder is depicted In Fig. 2.

A simple example of such a partition and hence of an
encoder is depicted in Fig. 3 (a more interesting example
follows shortly). Observe that this vector quantizer is just
two uses of a scalar quantizer in disguise.

As the minimum distortion rule optimizes the encoder
of a memoryless VQ for a decoder, we can also optimize
the decoder for a given encoder.
Property 2: Given an encoder y, then no decoder can do
better than that which assigns to each channel symbol u
the generalized centroid (or center of gravity or bary-
center) of all source vectors encoded into u, that is,

p(u) = cent(u) = min- l f(d(X,f) I y(X) = u), (4)
E,&

8 IEEE ASSP MAGAZINE APRIL 1984

p4

4~ x 1

X

X
- 1

X

0 x - 1
3

X

p3

0
1

X

X

1 -
X

X

O 2

p2

X = training vectors
0 = codewords
Pi = region encoded into codeword i

Figure 3 . Two-Dimensional Minimum Distort ion
Partition. The four circles are the codewords of a
two-dimensional codebook. The Voronoi regions are the
quadrants containing the circles. The x’s were produced
by a training sequence of twelve two-dimensional
Gaussian vectors. Each input vector is mapped into
the nearest-neighbor codeword, that is, the circle in the
same quadrant.

that is, p(v) i s the vector yielding the minimum conditional
average distortion given that the input vector was mapped
into v,

While minimizing such a condit ional average may
be quite difficult for an arbitrary random process and
distortion measure, it is often easy to find for a sample
distribution and a nice distortion measure. For example,
the centroid in the case of a sample distribution and a
squared-error distortion measure is simply the ordinary
Euclidean centroid or the vector sum of all input vectors
encoded into the given channel symbol, that is, given the
sample distribution defined by a training sequence
{xi; i = 0,1,. . . , L - I}, then

I
cent(v) = - C. x i ,

where i(v) i s the number of indices i for which $x i) = V .

i(v) x,:r(x,)=v

The Euclidean centroids of the example of Fig. 3 are de-
picted in Fig. 4. (The numerical values may be found in
[251.) The new codewords better represent the training
vectors mapping into the old codewords, but they yield a
different minimum distortion partition of the input alpha-
bet, as indicated by the broken line in Fig. 3. This is the key
of the algorithm: iteratively optimize the codebook for the
old encoder and then use a minimum distortion encoder
for the new codebook.

The Itakura-Saito distortion example i s somewhat
more complicated, but st i l l easi ly computable. As
with the squared error distortion, one groups all input
vectors yielding a common channel symbol. Instead of
averaging the vectors, however, the sample autocorre-
lation matrices for all of the vectors are averaged. The
centroid is then given by the standard LPC all-pole model
for this average autocorrelation, that is, the centroid
is found by a standard Levinson’s recursion run on the
average autocorrelation.

x 0
4

3 0

p3
X

X

-l

pr
1 x 01

X

I

X
0 2

\ X

\
\ P2
\
\
\

-1 \
\
\
\
\
\
\
\
\

Figure 4. Centroids of Figure 3. The new centroids of
the old Voronoi regions of Fig. 3 are drawn as circles.
Note that the centroid computation has moved the code-
words t o better represent the input vectors which yielded
those codewords, that is, if one used the same encoder
[as in Fig. 33, but replaced the reproduction codewords
produced a t the decoder by these new centroids, the
average distortion would decrease. The broken line delin-
eates the new Voronoi regions for these codewords. s

APRIL 1984 IEEE ASSP MAGAZINE 9

The generalized Lloyd algorithm

The fact that the encoder can be optimized for the
decoder and vice versa formed the basis of Lloyd’s origi-
nal optimal PCM design algorithm for a scalar random
variable with a known probability density function and a
squared error distortion. The general VQ design algo-
rithms considered here are based on the simple obser-
vation that Lloyd’s basic development i s valid for vectors,
for sample distributions, and for a variety of distortion
measures. The only requirement on the distortion mea-
sure is that one can compute the centroids. The basic
algorithm is the following:

Step 0. Given: A training sequence and an initial
decoder.

Step 1. Encode the training sequence into a sequence
of channel symbols using the given decoder
minimum distortion rule. If the average dis-
tortion is small enough, quit.

Step 2. Replace the old reproduction codeword of
the decoder for each channel symbol u by the
centroid of all training vectors which mapped
into u in Step 1. Go to Step 1.

Means of generating initial decoders will be considered
in the next section. Each step of the algorithm must either
reduce average distortion or leave it unchanged. The
algorithm is usually stopped when the relative distortion
decrease falls below some small threshold. The algorithm
was developed for vector quantizers, training sequences,
and general distortion measures by Linde, BUZO, and Gray
[25] and it is sometimes referred to as the LBG algorithm.
Previously Lloyd’s algorithm had been considered for vec-
tors and difference distortion measures in cluster analysis
and pattern recognition problems (e.g., MacQueen [261
and Diday and Simon [27]) and in two-dimensional
quantization (e.g., Chen [28] and Adoul et a/ . [291). Only
recently, however, has it been extensively studied for
vector quantization applications using several different
distortion measures.

Before continuing, it should be emphasized that such
iterative improvement algorithms need not in general
yield truly optimum codes. It is known that subject to
some mathematical conditions the algorithm will yield
locally optimum quantizers, but in general there may be
numerous such codes and many may yield poor per-
formance. (See, e.g., [30].) It is often useful, therefore, to
enhance the algorithm’s potential by providing it with
good initial codebooks and perhaps by trying it on several
different initial codebooks.

INITIAL CODEBOOKS

The basic-design algorithm of the previous section is an
iterative improvement algorithm and requires an initial
code to improve. Two basic approaches have been devel-
oped: One can start with some simple codebook of the
correct size or one can start with a simple small codebook
and recursively construct larger ones.

1 0 IEEE ASSP MAGAZINE APRIL 1984

NRandomN codes

Perhaps the simplest example of the first technique is
that used in the k-means variation of the algorithm [261:
Use the first 2R vectors in the training sequence as the
initial codebook. An obvious modification more natural
for highly correlated data is to select several widely spaced
words from the training sequence. This approach is some-
times called random code generation, but we avoid this
nomenclature because of i t s confusion with the random
code techniques of information theory which are used to
prove the performance bounds.

Product codes

Another example of the first approach is to use a scalar
code such as a uniform quantizer k times in succession
and then prune the resulting vector codebook down to
the correct size. The mathematical model for such a code
is a product code, which we pause to define for current
and later use: Say we have a collection of codebooks Ci,
i = 0 ,1 , . . . ,m - 1, each consisting of Mi vectors of di-
mension ki and having rate Ri = logz Mi bits per vector.
Then the product codebook C is defined as the collection
of all M = HiMi possible concatenations of rn words drawn
successively from the m codebooks Ci . The dimension of
the product codebook is k = Et;’ ki, the sum of the di-
mensions of the component codebooks. The product
code is denoted mathematically as a Cartesian product:

C = X Ci = {al l vectors of the form (ko ,%;** ,k , , , -d ;
m-7

i=O

k i i n Ci; i = O,l,.,.,m - I }

Thus, for example, using a scalar quantizer with rate R/k
k times in succession yields a product k-dimensional vec-
tor quantizer of rate R bits per vector, This product code
can be used as an initial code for the design algorithm. The
scalar quantizers may be identical uniform quantizers with
a range selected to match the source, or they may be
different, e.g., a positive codebook for a gain and uniform
quantizers for [-1,1] for reflection coefficients in an
LPC VQ system.

In waveform coding applications where the reproduc-
tion and input alphabets are the same-k-dimensional
Euclidean space-an alternative product code provides
a means of growing better initial guesses from smaller
dimensional codes [31]. Begin with a scalar quantizer Co
and use a two-dimensional product code Co X Co as an
initial guess for designing a two-dimensional VQ. O n com-
pletion of the design we have a two-dimensional code, say
C2. Form an initial guess for a three dimensional code as
all possible pairs from C2 and scalars from Ca, that is, use
the product code Cz x Co as an initial guess. Continuing in
this way, given a good k - 1 dimensional VQ described by
a codebook Ck- l , an initial guess for a k-dimensional code
design is the product code Ck-’ x Co. One can also use
such product code constructions with a different initial
scalar code Co, such as those produced by the scalar ver-
sion of the next algorithm.

r------

el

Figure 5. Splitting. A large code is defined in stages: at
each stage each codeword of a small code is split into two
new codewords, giving an initial codebook of twice the
size. The algorithm is run t o get a new better codebook.
tal Rate 0: The centroid of the entire training sequence.
[bl Initial Rate 1: The one codeword is split t o form an
initial guess for a two word code. [cl Final Rate 1: The
algorithm produces a good code with two words. The
dotted line indicates the Voronoi regions, [d l Initial
Rate 2: The two words are split to form an initial guess for
a four word code. [e l Final Rate 2: The algorithm is run t o
produce a final four word code.

Splitting

Instead of constructing long codes from smaller dimen-
sional codes, we can construct a sequence of bigger codes
having a fixed dimension using a “splitting” technique
[25,16]. This method can be used for any fixed dimension,
including scalar codes. Here one first finds the optimum 0
rate code-the centroid of the entire training sequence,
as depicted in Fig. 5a for a two-dimensional input alpha-
bet. This single codeword is then split to form two code-
words (Fig. 5b). For example, the energy can be perturbed
slightly to form a second distinct word or one might pur-
posefullyfind aword distant from the first. It i s convenient
to have the original codeword a member of the new pair
to ensure that the distortion will not increase. The algo-
rithm is then run to get a good rate 1 bit per vector code
as indicated in Fig. 5c. The design continues in this way in
stages as shown: the final code of one stage is split to form
an initial code for the next.

VARIATIONS OF MEMORYLESS VECTOR QUANTIZERS

In this section we consider some of the variations of
memoryless vector quantization aimed at reducing the
computation or memory requirements of a full search
memoryless VQ.

Tree-searched V Q
Tree-searched vector quantizers were first proposed by

Buzo et a/. [I61 and are a natural byproduct of the splitting
algorithm for generating initial code guesses. We focus on
the case of a binary tree for simplicity, but more general
trees will provide better performance while retaining a
significant reduction in complexity.

Say that we have a good rate 1 code as in Fig. 5c and we
form a new rate two code by splitting the two codewords
as in Fig. 5d. Instead of running a full search VQ design on
the resulting 4-word codebook, however, we divide the
training sequence into two pieces, collecting together all
those vectors encoded into a common word in the 1 bit
codebook, that is, all of the training sequence vectors in
a common cell of the Voronoi partition. For each of these
subsequences of training vectors, we then find a good
I -b i t code using the algorithm. The final codebook (so far)
consists of the four codewords in the two I-bit codebooks
designed for the two subsequences. A tree-searched en-
coder selects one of the words not by an ordinary full
search of this codebook, but instead it uses the first one
bit codebook designed on the whole sequence to select a
second code and it then picks the best word in the second
code. This encoder can then be used to further subdivide
the training sequence and construct even better code-
books for the subsequences. The encoder operation can
be depicted as a tree in Fig. 6.

The tree is designed one layer at a time; each new layer
being designed so that the new codebook available from
each node is good for the vectors encoded into the node.
Observe that there are 2R possible reproduction vectors as
in the full search VQ, but now R binary searches are made
instead of a single 2’?-ary search. In addition, the encoder

APRIL 1984 IEEE ASSP MAGAZINE 1 1

-
k = R = 3 reconstruction

code book
Figure 6. Tree-Searched VCI. A binary encoder tree is
shown for a three-dimensional one bit per sample VQ. The
encoder makes a succession of R minimum distortion
choices from binary codebooks, where the available code-
book at each level consists of labels of the nodes in the
next level. The labels of the nodes of the final layer are the
actual reproduction codewords. A t each node the en-
coder chooses the minimum distortion available label and,
if the new index is a 0 (1 3 , sends a channel symbol of 0 [I I
and advances up [down) to the next node. After R binary
selections the complete channel codeword has been sent
and the reproduction codeword specified to the decoder.

storage requirements have doubled. The encoder is no
longer optimal for the decoder in the sense of Property 1
since it no longer can perform an exhaustive search of the
codebook. The search, however, is much more efficient if
done sequentiallythan is a full search. Thus one may trade
performance for efficiency of implementation.

12 IEEE ASSP MAGAZINE APRIL 1984

Nonbinary trees can also be used where at the i th layer
codebooks of rate Ri are used and the overall rate is then
ZjRi . For example, a depth three tree for VQ of LPC pa-
rameter vectors using successive rates of 4, 4, and 2 bits per
vector yields performance nearly as good as a full search VQ
of the same total rate of 10 bits per vector, yet for the tree
search one need only compute 24 + 24 + z2 = 36 distortions
instead of 2’’ = 1028 distortions [IO].

Other techniques can be used to design tree-searched
codes. For example, Adoul et a/ . [32] use a separating hyper-
plane approach. Another approach is to begin with a full
search codebook and to design a tree-search into the code-
book. One technique for accomplishing this is to first group
the codewords into close disjoint pairs and then form the
centroids of the pairs as the node label of the immediate
ancestor of the pair. One then works backwards through the
tree, always grouping close pairs. Ideally, one would like a
general design technique for obtaining a tree search into an
arbitrary VQ codebook with only a small loss of average
distortion. Gersho and Cheng [33] have reported preliminary
results for designing a variable-length tree search for an arbi-
trary codebook and have demonstrated its implementability
for several small dimensional examples.

Multistep VQ

A multistep VQ is a tree-searched VQ where only a single
small codebook is stored for each layer of the tree instead of
a different codebook for each node of each layer. Such codes
provide the computation reduction of tree-searched codes
while reducing the storage requirements below that of even
ordinary VQ‘s. The first example of such a code was the
multistage codebook [34]. For simplicity we again confine
interest to codes which make a sequence of binary decisions.
The first layer binary code is designed as in the tree-searched
case. This codebook is used to encode the training sequence
and then a training sequence of error or residual vectors is
formed. For waveform coding applications the error vectors
are simply the difference of the input vectors and their code-
words. For vocoding applications, the error vectors are
residuals formed by passing the input waveform through the
inverse filter A(z) /a . The algorithm is then run to design a
binary VQ for this vector training sequence of coding errors.
The reconstruction for these two bits i s then formed by
combining the two codewords: For waveform coding this is
accomplished by adding the first codeword to the error
codeword. For voice coding this is accomplished by using the
cascade of two all-pole filters for synthesis. This reproduction
can then be used to form a “finer” error vector and a code
designed for it. Thus an input vector is encoded in stages as
with the tree-searched code, but now only R binary code-
books and hence 2R total codewords need to be stored.
Observe that there are still 2R possible final codewords, but
we have not needed this much storage because the code can
be constructed by adding different combinations of a smaller
set of words. A multistage VQ is depicted in Fig. 7.

Product codes

Another useful structure for a memoryless VQ is a prod-

ENCODER

DECODER

Figure 7 . Multistage VQ with 2 Stages. The input
vector is first encoded by one VQ and an error vector is
formed. The second VQ then encodes the error vector.
The two channel symbols from the two VQ’s together
form the complete channel symbol for the entire encoder.
The decoder adds together the corresponding re -
production vectors.

uct code, In one extreme, multiple use of scalar quantizers
is equivalent to product VQ’s and are obviously simple to
implement. More general product VQ‘s, however, may
permit one to take advantage of the performance achiev-
able by VQ’s while st i l l being able to achieve the higher
rates required for good fidelity. In addition, such codes
may yield a smaller computational complexity than an or-
dinary VQ of the same rate and performance (but different
dimension). The basic technique is useful when there are
differing aspects of the input vector that one might wish to
code separately because of different effects, e.g., on dy-
namic range or finite word length implementation.

Gainlshape VQ

One example of a product code is a gainishape VQ
where separate, but interdependent, codes are used to
code the “shape” and ”gain” of the waveform, where the
”shape” is defined as the original input vector normalized
by removal of a “gain” term such as energy in a waveform
coder or LPC residual energy in a vocoder. Gainishape
encoders were introduced by Buzo et a/ . [I61 and were
subsequently extended and optimized by Sabin and
Gray [35,36]. A gain/shape VQ for waveform coding with
a squared-error distortion is illustrated in Fig. 8.

Figure 8 sketches the surprising fact that for the squared
error case considered, the two-step selection of the
product codeword is an optimal encoding for the given
product codebook. We emphasize that here the encoder
is optimal for the given product codebook or decoder, but
the codebook itself is in general suboptimal because of
the constrained product form. A similar property holds
for the Itakura-Saito distortion gainhhape VQ. Thus in this
case if one devotes R, bits to the shape and R, bits to the
gain, where R, + R, = R, then one need only compute 2RS
vector distortions and an easy scalar quantization. The
full search encoder would require 2R vector distortions,
yet both encoders yield the same minimum distortion
codeword!

ENCODER

DECODER

Figure 8. GainiShape VQ. First a unit energy shape
vector is chosen to match the input vector by maximizing
the inner product over the codewords. Given the resulting
shape vector, a scalar gain codeword is selected so as t o
minimize the indicated quantity. The encoder yields the
product codeword aiyi with the minimum possible squared
error distortion from the input vector. Thus this multistep
encoder is optimum for the product codebook.

APRIL 1984 IEEE ASSP MAGAZINE 1 3

Variations of the basic VQ algorithm can be used to
iteratively improve a gain shape code by alternately opti-
mizing the shape for the gain and vice versa. The resulting
conditional centroids are easy to compute. The centroid
updates can be made either simultaneously or alternately.
after each iteration [36].

One can experimentally determine the optimal bit allo-
cation between the gain and the shape codebooks.

Separating mean V Q
Another example of a multistep product code is the

separating mean VQ where a sample mean instead of an
energy term i s removed [37]. Define the sample mean (x)
of a k-dimensional vector by k-’ XFIi xi . In a separated
mean VQ one first uses a scalar quantizer to code the
sample mean of a vector, then the coded sample mean is
subtracted from all of the components of the input vector
to form a new vector with approximately zero sample
mean. This new vector is then vector quantized. Such a
system is depicted in Fig. 9. The basic motivation here is
that in image coding the sample mean of pixel intensities
in a small rectangular block represents a relatively slowly
varying average background value of pixel intensity
around which there are variations.

To design such a VQ, first use the algorithm to design a
scalar quantizer for the sample mean sequence (x,),
j = 0,1 , . . ., L - 1. Let $(x)) denote the reproduction for
(x) using the quantizer. Then use the vector training se-
quence x, - q ((x j }) l , where 1 = (1, l f . . . , I) , to design a
VQ for the difference. Like the gainishape VQ, a product
codebook and a multistep encoder are used, but unlike
the gainishape VQ it can be shown that .the multistep
encoder here does not select the best possible mean,
shape pair, that is, the multistep encoder is not equivalent
to a full search encoder.

Lattice VQ

A final VQ structure capable of efficient searches and
memory usage is the lattice quantizer, a k-dimensional
generalization of the scalar uniform quantizer. A lattice in
k-dimensional space is a collection of all vectors of the
form y = E;=-; aiei, where n I k , where eo,. . . e,-1 are a
set of linearly independent vectors in Rk, and where the ai
are arbitrary integers. A lattice quantizer is a quantizer
whose codewords form a subset of a lattice. Lattice quan-
tizers were introduced by Gersho [38] and the per-
formance and efficient coding algorithms were developed
for many particular lattices by Conway and Sloane
[39,40f41] and Barnes and Sloane [42]. The disadvantage
of lattice quantizers is that they cannot be improved by a
variation of the Lloyd algorithm without losing their struc-
ture and good quantizers produced by the Lloyd algorithm
cannot generally be well approximated by lattices. Lattice
codes can work well on source distributions that are ap-
proximately uniform over a bounded region of space. In
fact, lattices that are asymptotically optimal in the limit of
large rate are known for this case in two and three dimen-
sions and good lattices are known for dimensions up to 16.

14 IEEE ASSP MAGAZINE APRIL 1984

Ideaily, one would like to take a full search, uncon-
strained VQ and find some fast means of encoding having
complexity more like the above techniques than that of
the full search. For example, some form of mul t i -
dimensional companding followed by a lattice quantizer
as suggested by Gersho [24] would provide both good
performanceand efficient implementation. Unfortunately,
however, no design methods accomplishing this goal have
yet been found.

FEEDBACK VECTOR QUANTIZERS

Memory can be incorporated into a vector quantizer in
a simple manner by using different codebooks for each
input vector, where the codebooks are chosen based on
past input vectors. The decoder must know which code-
book is being used by the encoder in order to decode
the channel symbols. This can be accomplished in two
ways: 1) The encoder can use a codebook selection proce-
dure that depends only on past encoder outputs and
hence the codebook sequence can be tracked by the
decoder. 2) The decoder is informed of the selected code-
book via a special low-rate side channel. The first ap-
proach is called feedback vector quantization and is the

t

ENCODER

DECODER

Figure 9. Separating Mean VQ. The sample mean of the
input vector is computed, scalar quantized, and then sub-
t rac ted from each component of the input vector. The
resulting vector with approximately zero sample mean is
then vector quantized. The decoder adds the coded
sample mean t o all components of the coded shape vector.

topic of this section. The name follows because the en-
coder output is "fed back" for use in selecting the new
codebook. A feedback vector quantizer can be viewed as
the vector extension of a scalar adaptive quantizer with
backward estimation (AQB) [31. The second approach is
the vector extension of a scalar adaptive quantizer with
forward estimation (AQF) and is called simply adaptive
vector quantization. Adaptive VQ will be considered in a

ENCODER

DECODER
Figure 10. Feedback VQ. A t time n both encoder and
decoder are in a common state S,, The encoder uses a
state VGI ys, t o encode the input vector and then selects
a new state for the next input vector. Knowing the VQ
used and the resulting channel symbol, the decoder can
produce the correct reproduction. Note that the state
VQ's may be computed at each time from some rule or, if
they are small in number, simply stored separately.

later section. Observe that systems can combine the two
techniques and use both feedback and side information.
We also point out that unlike most scalar AQB and AQF
systems, the vector analogs considered here involve no
explicit estimation of the underlying densities.

It should be emphasized that the results of information
theory imply that VQ's with memory can do no better than
memoryless VQ's in the sense of minimizing average
distortion for a given rate constraint. In fact, the basic
mathematical model for a data compression system in
information theory is exactly a memoryless VQ and such
codes can perform arbitrarily close to the optimal per-
formance achievable using any data compression system.
The exponential growth of computation and memory with
rate, however, may result in nonimplementable VQ's. A
VQ with memory may yield the desired distortion with
practicable complexity.

A general feedback VQ can be described as follows [221:
Suppose now that we have a space S whose members we
shall call states and that for each state s in S we have a
separate quantizer: an encoder ys, decoder ps, and code-
book C,. The channel codeword space M is assumed to
be the same for all of the VQ's. Consider a data com-
pression system consisting of a sequential machine such
that if the machine is in state s, then it uses the quantizer
with encoder ys and decoder pS. It then selects i ts next
state by a mapping called a next-state function or state-
transition function f such that given a state s and a channel
symbol u, then f(v,s) is the new state of the machine.
More precisely, given a sequence of input vectors
{x,,; n = 0 , 1 , 2 , . . . } and an initial state so, then the sub-
sequent state sequence s,,, channel symbol sequence v,,
and reproduction sequence 2,, are defined recursively for
n = 0 , 1 , 2 , . . . as

un = 3/s,,(Xn), 2 n = ps, (vn) , sn+1 = f (u n , s n) . (5)

Since the next state depends only on the current state and
the channel codeword, the decoder can track the state if
it knows the initial state and the channel sequence. A
general feedback vector quantizer is depicted in Fig. IO.
The freedom to use different quantizers based on the past
without increasing the rate should permit the code to per-
form better than a memoryless quantizer of the same di-
mension and rate.

An important drawback of all feedback quantizers is that
channel errors can accumulate and cause disastrous
reconstruction errors. As with scalar feedback quantizer
systems, this must be handled by periodic resetting or by
error control or by a combination of the two.

If the state space is finite, then we shall call the resulting
system a finite-state vector quantizer or FSVQ. For an
FSVQ, all of the codebooks and the next-state transition
table can all be stored in ROM, making the general FSVQ
structure amenable to LSI or VLSl implementation [43].

Observe that a memoryless vector quantizer is simply a
feedback vector quantizer or finite-state vector quantizer
with only a single state. The general FSVQ is a special case

APRIL 1984 IEEE ASSP MAGAZINE 1 5

of a tracking finite state source coding system [441 where
the encoder is a minimum distortion mapping.

Three design algorithms for feedback vector quantizers
using variations on the generalized Lloyd algorithm have
been recently developed. The remainder of this section is
devoted to brief descriptions of these techniques.

Vector predictive quantization

Cuperman and Gersho [45,46] proposed a vector pre-
dictive coder or vector predictive quantizer (VPQ) which is
a vector generalization of DPCM or predictive quanti-
zation. A VPQ is sketched in Fig. 11, For a fixed predictor,
the VQ design algorithm is used to design a VQ for the
prediction error sequence. Cuperman and Gersho consid-
ered several variations on the basic algorithm, some of
which will be later mentioned.

Chang [471 developed an extension to Cuperman and

I I E ;

R" + 1

ENCODER

DECODER

Figure 1 ' i . Vector Predictive Quantization. A linear
vector predictor for the next input vector of a process
given the previous input vector is applied t o the previous
reproduction of the input vector. The resulting prediction
is subtracted from the current input vector t o form an
error vector which is vector quantized. The decoder uses
a copy of the encoder and the received encoded error
vectors to construct the reproduction,

Gersho's algorithm which begins with their system and
then uses a stochastic gradient algorithm to iteratively im-
prove the vector linear predictor coefficients, that is, to
better match the predictor to the quantizer. The stochastic
gradient algorithm is used only in the design of the sys-
tem, not as an on line adaptation mechanism as in the
adaptive gradient algorithms of, e.g., Gibson et a/. [481
and Dunn [49]. A scalar version of this algorithm for im-
proving the predictor for the quantizer was developed in
unpublished work of Y. Linde.

Productlmultistep FVQ

A second basic approach for designing feedback vector
quantizers which is quite simple and works quite well is to
use a product multistep VQ such as the gainishape VQ or
the separating mean VQ and use a simple feedback quan-
tizer on the scalar portion and an ordinary memoryless VQ
on the remaining vector. This approach was developed in
[IO] for gainishape VQ of LPC parameters and in [37] for
separating mean VQ of images. Both efforts used simple
scalar predictive quantization for the feedback quan-
tization of the scalar terms.

FS V Q

The first general design technique for finite-state vector
quantizers was reported by Foster and Gray [50,51]. There
are two principal design components: 1, Design an initial
set of state codebooks and a next-state function using an
ad hoc algorithm. 2. Given the next-state function, use a
variation of the basic algorithm to attempt to improve the
state codebooks. The second component is accomplished
by a slight extension of the basic algorithm that is similar
to the extension of [52] for the design of trellis encoders:
Encode the data using the FSVQ and then replace all of the
reproduction vectors by the centroids of the training vec-
tors which map into those vectors; now, however, the
centroids are conditioned on both the channel symbol
and the state. While such conditional averages are likely
impossible to compute analytically, they are easily com-
puted for a training sequence. For example, in the case of
a squared error distance one simply forms the Euclidean
centroid of all input vectors which correspond to the
state s and channel symbol v i n an encoding of the
training sequence.

As with ordinary VQ, replacing the old decoder or code-
book by centroids cannot yield a code with larger dis-
tortion. Unlike memoryless VQ, however, replacing the
old encoder by a minimum distortion rule for the new
decoder can in principal cause an increase in distortion
and hence now the iteration is somewhat different: Re-
place the old encoder (which is a minimum distortion rule
for the old decoder) by a minimum distortion rule for the
new decoder. If the distortion goes down, then continue
the iteration and find the new centroids. If the distortion
goes up, then quit with the encoder being a quantizer for
the previous codebook and the decoder being the cen-
troids for the encoder. By construction this algorithm can
only improve performance. It turns out, however, that in

1 6 IEEE ASSP MAGAZINE APRIL 1984

practice it is a good idea to not stop the algorithm if the
distortion increases slightly, but to let it continue: it will
almost always eventually drop back down in distortion and
converge to something better.

The first design component is more complicated. We
here describe one of the more promising approaches of
[511 called the omniscient design approach. Say that we
wish to design an FSVQ with K states and rate R bits per
vector. For simplicity we label the states as 0 through K-I.
First use the training sequence to design a memoryless VQ
with K codewords, one for each state. We shall call these
codewords state labels and this VQ the state quantizer. We
call the output of the state VQ the “ideal next state” in-
stead of a channel symbol. Next break up the training
sequence into subsequences as follows: Encode the train-
ing sequence using the state VQ and for each state s col-
lect all of training vectors which follow the occurrence of
this state label. Thus for s the corresponding training sub-
sequence consists of all input vectors that occur when the
current ideal state is s. Use the basic algorithm to design
a rate R codebook C, for the corresponding training se-
quence for each s.

The resulting state VQ and the collection of codebooks
for each state have been designed to yield good per-
formance in the following communication system: The
encoder is in an ideal state s chosen by using the state VQ
on the last input vector. The encoder uses the correspond-
ing VQ encoder ys described by the codebook C,. The
output of y, i s the channel symbol. In order to decode the
channel symbol, the decoder must also know the ideal
state. Unfortunately, however, this ideal state cannot be
determined from knowledge of the initial state and all of
the received channel symbols. Thus the decoder must be
omniscient in the sense of knowing this additional side
information in order to be able to decode. In particular,
this system is not an FSVQ by our definition. We can use
the state quantizer and the various codebooks, however,
to construct an FSVQ by approximating the omniscient
system: Instead of forming the ideal next state by using
the state VQ on the actual input vector (as we did in the
design procedure), use the state VQ on the current re-
production vector in order to choose the next state. This
will yield a state sequence depending only on encoder
outputs and the original state and hence will be trackable
by the decoder. This is analogous to the scalar practice of
building a predictive coder and choosing the predictor as
if it knew the past inputs, but in fact applying it to past
reproductions.

Combining the previously described steps of (I) initial
(state label) codebook design, (2) state codebooks and
next-state function design, and (3) iterative improvement
of code for given next-state function, provides a complete
design algorithm.

In addition to the above design approach, techniques
have been developed for iterating on (2) and (3) above in
the sense of optimizing the next-state function for a given
collection of codebooks. These algorithms, however, are
more complicated and require ideas from the theory of

adaptive stochastic automata. The reader is referred to [531
for a discussion of these improvement algorithms.

VECTOR TREE AND TRELLIS ENCODERS

As with scalar feedback quantizers, the actions of the
decoder of a feedback VQ can be depicted as a directed
graph or tree. A simple example is depicted in Fig. 12,
where a merged tree or trellis can be drawn since the
feedback VQ has only a finite number of states.

Instead of using the ordinary VQ encoder which is only
permitted to look at the current input vector in order
to decide on a channel symbol, one could use algo-
rithms such as the Viterbi algorithm, M-algorithm or
M,L-algorithm, Fano algorithm, or stack algorithm for a
minimum cost search through a directed graph and search
several levels ahead into the tree or trellis before choosing
a channel symbol. This introduces an additional delay into
the encoding of several vectors, but it ensures better long
run average distortion behavior. This technique is called
tree or trellis encoding and is also referred to as look-
ahead coding, delayed decision coding, and multipath
search coding. (See, e.g., [54,52] for surveys.) We point
out that a tree encoding system uses a tree to denote the -F (01-1)

(-1, -1) I

(a) DECQDER (b) NEXT-STATE
FUNCTION

STAT E
0

1

CODE WORD

STATE CHANNEL STATE
SYMBOL

(c) TRELLIS

Figure 12. Decoder trellis for a two state 1 bit per
vector two dimensional waveform coder. The trellis
depicts the possible state transitions for the given next-
state function. The transitions are labeled by the corre-
sponding decoder output [in parentheses1 and channel
symbol produced by the encoder.

operation on successive vectors by the decoder at succes-
sive times while a tree-searched VQ uses a tree to con-
struct a fast search for a single vector at a single time.

A natural variation of the basic algorithm for designing
FSVQ’s can be used to design trellis encoding systems:
Simply replace the FSVQ encoder which finds the mini-
mum distortion reproduction for a single input vector by
a Viterbi or other search algorithm which searches the
decoder trellis to some fixed depth to find a good long
term minimum distortion path. The centroid computation
is accomplished exactly as with an FSVQ: each branch or
transition label is replaced by the centroid of all training
vectors causing that transition, that is, the centroid condi-
tioned on the decoder state and channel symbol. Scalar
and simple two dimensional vector trellis encoding sys-
tems were designed in [52] using this approach.

Trellis encoding systems are not really vector quan-
tization systems as we have defined them since the en-
coder is permitted to search ahead to determine the effect
on the decoder output of several input vectors while a
vector quantizer is restricted to search only a single vector
ahead. The two systems are intimately related, how-
ever, and a trellis encoder can always be used to im-
prove the performance of a feedback vector quantizer.
Very l itt le work has yet been done on vector trellis
encoding systems.

X ” -

ENCODER

Figure 13. A d a ~ t i ~ ~ UB. The model VQ uses the Itakura-
Saito distortion t o select an LPG model t o fit the input
frame ef many sample vectors. This selection in turn de-
termines the waveform coder used t o digitize the sample
vectors. A side channel then informs the receiver which
decoder t o use on the channel symbols produced by the
waveform coder.

ADAPTIVE VQ
As a final class of VQ we consider systems that use one

VQ to adapt a waveform coder, which might be another
VQ. The adaptation information is communicated to the
receiver via a low rate side information channel.

The various forms of vector quantization using the
Itakura-Saito family of distortion measures can be consid-
ered as model classifiers, that is, they fit an all-pole model
to an observed sequence of sampled speech. When used
alone in an LPC VQ system, the model is used, to syn-
thesize the speech at the receiver. Alternatively, one could
use the model selected to choose a waveform coder de-
signed to be good for sampled waveforms that produce
that model. For example, analogous to the omniscient
design of FSVQ one could design separate VQ‘s for the
subsequences of the training sequence encoding into
common models. Both the model index and the waveform
coding index are then sent to the receiver. Thus LPC VQ
can be used to adapt a waveform coder, possibly also a VQ
or related system. This will yield a system typically of much
higher rate, but potentially of much better quality since
the codebooks can be matched to local behavior of the
data. The general structure is shown in Fig. 13. The model
VQ typically operates on a much larger vector of samples
and at a much lower rate in bits per sample than does the
waveform coder and hence the bits spent on specifying
the model through the side channel are typically much
fewer than those devoted to the waveform coder.

There are a variety of such possible systems since both
the model quantizer and the waveform quantizer can take
on many of the structures so far considered. In addition,
as in speech recognition applications [5 5] the gain-
independent variations of the Itakura-Saito distortion
measure which either normalize or optimize gain may be
better suited for the model quantization than the usual
form. Few such systems have yet been studied in detail.
We here briefly describe some systems of this type that
have appeared in the literature to exemplify some typical
combinations. All of them use some form of memoryless
VQ for the model quantization, but a variety of waveform
coders are used.

The first application of VQ to adaptive coding was by
Adoul, Debray, and Dalle [32] who used an LPC VQ to
choose a predictor for use in a scalar predictive waveform
coder. Vector quantization was used only for the adap-
tation and not for the waveform coding. An adaptive
VQ generalization of this system was later developed by
Cuperman and Gersho [45,461 who used an alternative
classification technique to pick one of three vector predic-
tors and then used those predictors in a predictive vector
quantizer. The predictive vector quantizer design algo-
rithm previously described was used, except now the
training sequence was broken up into subsequences cor-
responding to the selected predictor and a quantizer was
designed for each resulting error sequence. Chang t471
used a similar scheme with an ordinary LPC VQ as the
classifier and with a stochastic gradient algorithm run on
each of the vector predictive quantizers in order to im-

1 IEEE ASSP MAGAZINE APRIL 1984

ENCODER

DECODER

Figure 14. RELP VQ. An LPC VQ is used for model se-
lection and a single VQ t o waveform encode the residuals
formed by passing the original waveform through the in-
verse filter A/*, The side information specifies t o the
decoder which of the model filters */A should be used
for synthesis.

prove the prediction coefficienrs for the corresponding
codebooks.

Rebolledo et a/. [561 and Adoul and Mabilleau [571 de-
veloped vector residual excited linear predictive (RELP)
systems. (See Fig. 14.) A similar system employing either a
scalar or a simple vector trellis encoder for the waveform
coder wa.s developed by Stewart et a/ . [52]. Both of these
systems used the basic algorithm to design both the model
VQ and the waveform coders.

The RELP VQ systems yielded disappointingly poor per-
formance at low bit rates. Significantly better performance
was achieved by using the residual codebooks produced
in the RELP design to construct codebooks for the original
waveform, that is, instead of coding the model and the
residual, code the model and use the selected model to
construct a waveform coder for the original waveform as
depicted in Fig. 15 [521. For lack of a better name, this
system might be called an inverted RELP because it uses
residual codebooks to drive an inverse model filter in or-
der to get a codebook for the original waveform.

Yet another use of LPC VQ to adapt a waveform coder
was reported by Heron, Crochiere, and Cox 1581 who used

a subbanditransform coder for the waveform coding and
used the side information to adapt the bit allocation for
the scalar parameter quantizers.

Many other variations on the general theme are possible
and the structure is a promising one for processes such as
speech that exhibit local stationarity, that is, slowly varying
short term statistical behavior. The use of one VQ to par-
tition a training sequence in order to design good codes
for the resulting distinct subsequences is an intuitive ap-
proach to the computer-aided design of adaptive data
compression systems.

EXAMPLES

We next consider the performance of various forms of
vector quantizers on three popular guinea pigs: Gauss
Markov sources, speech waveforms, and images. For
the speech coding example we consider both waveform
coders using the squared error distortion measure and
vocoders using the Itakura-Saito distortion. The caveats
of the introduction should be kept in mind when inter-
preting the results.

ENCODER

I CODEBOOK

DECODER

Figure 15. Inverted RELP. An LPG VQ is used t o select
a model filter u/A. A waveform codebook is then formec
by driving the model filter with all possible residual code-
words from a RELP VQ design. Thus, unlike a RELP sys-
tem, the original waveform [and not a residual1 is matched
by possible reproduction codewords.

APRIL 1984 IEEE ASSP MAGAZINE 1 9

The performance of the systems are given by SNR’s for
squared error and by an analogous quantity for the
Itakura-Saito distortion: In both cases we measure nor-
malized average distortion on a logarithmic scale, where
the normalization is by the average distortion of the opti-
mum zero rate code-the average distortion between the
input sequence and the centroid of the entire input se-
quence. This quantity reduces to an SNR in the squared
error case and provides a useful dimensionless normal-
ized average distortion in general. We call this quantity
the SNR in both cases, The SNR is given in tables instead
of graphs in order to facilitate quantitative comparisons
among the coding schemes.

Gauss Markov sources

We first consider the popular guinea pig of a Gauss
Markov source. This source is useful as a mathematical
model for some real data sources and its information the-
oretic optimal performance bounds as described by
the distortion-rate function are known. For this example
we consider only the squared error distortion. A Gauss
Markov source or a first order Gauss autoregressive
source (X,} i s def ined by the d i f ference equat ion
Xn+l = ax,, + W n , where {W,} is a zero mean, unit vari-
ance, independent and identically distributed Gaussian
source. We here consider the highly correlated case of
a = 0.9 and vector quantizers of 1 bit/sample. The maxi-
mum achievable SNRas given by Shannon’s distortion-rate
function for this source and rate is 13.2 dB [7].

Various design algorithms were used to design vector
quantizers for several dimensions for this source. Table I
describes the results of designing several memoryless vec-

TABLE I
MEMORYLESS VQ FOR A GAUSS MARKOV SOURCE.

VQ TSVQ MVQ W V Q
k SNR n M SNR n M SNR n M SNR n M
1 4.4 2 2 4.4 2 2 4.4 2 2
2 7.9 4 8 7.9 4 12 7.6 4 8 7.9 1 3
3 9.2 8 24 9.2 6 42 8.6 6 18 9.3 1 5
4 10.2 16 64 10.2 8 120 8.4 8 32 9.4 2 10
5 10.6 32 160 10.4 10 310 9.3 10 50 9.8 3 17
6 10.9 64 384 10.7 12 756 9.1 12 72 9.9 4 26
7 11.2 128 896 11.0 14 1778 9.4 14 98 10.2 4 31
8 9.9 16 128 10.6 5 43
9 10.9 6 57

Signal t o Noise Ratios [SNRI, number of multiplications per
sample [nl, and storage requirements of memoryless vec-
tor quantizers: full search memoryless VQ IVQI, binary
tree-searched [TSVQI, binary multistage VQ [MVQI, and
gainishape VQ (G/SVQI. Rate = 1 bit/sample. k = vec-
to r dimension. Training Sequence = 60000 samples from
a Gauss Markov Source with correlation coefficient 0.9,

20 IEEE ASSP MAGAZINE APRIL 1984

TABLE I I
FEEDBACK VQ OF A GAUSS MARKOV SOURCE,

FSVQI FSVQ2 VPQ

k SNR K n M SNR K n M SNR n M
1 10.0 64 2 64 9.5 16 2 16 10.0 2 2

3 11.4 512 8 1536 11.1 64 8 192 11.6 8 24
2 10.8 256 4 512 10.8 32 4 64 11.2 4 a

4 12.1 5-12 16 2048 11.3 128 16 5-12 11.6 16 64

Signal t o Noise Ratios (SNR), number of states (K),
number of multiplications per sample (nl, and storage
[MI for feedback quantizers: FSVQ with number of states
increased until negligible change lFSVQl1, FSVQ with
fewer states [FSVQ21, VPQ. Rate = 1 bit/sample,
k = vector dimension. Training Sequence = 60000
samples from a Gauss Markov Source with correlation
coefficient 0.9,

tor quantizers for a training sequence of 60,000 samples.
Given are the design SNR (code performance on the train-
ing sequence), the number of multiplications per sample
required by the encoder, and the number of real scalars
that must be stored for the encoder codebook. The num-
ber of multiplications is used as a measure of. encoder
complexity because it is usually the dominant compu-
tation and because the number of additions required is
usually comparable. It is given by n = (the number of
codewords searched) X (dimension)/(dimension) = the
number of codewords searched. The actual storage re-
quired depends on the number of bytes used to store each
floating point number. Many (but not all) of the final codes
were subsequently tested on different test sequences of
60,000 samples. In all cases the open test SNR’s were with-
in -25 dB of the design distortion. The systems considered
are full search VQ’s [251, binary tree-searched VQ‘s [591,
binary multistage VQ’s [47], and gainishape VQ‘s [36]. The
gain and codebook sizes for the gainishape codes were
experimentally optimized.

As expected, the full search VQ yields the best per-
formance for each dimension, but the tree-searched VQ is
not much worse and has a much lower complexity. The
multistage VQ is noticeably inferior, losing more than 1 dB
at the higher dimensions, but i t s memory requirements
are small. The gainishape VQ compares poorly on the
basis of performance vs. rate for a fixed dimension, but it
is the best code in the sense of providing the minimum
distortion for a fixed complexity and rate.

For larger rates and lower distortion the relative merits
may be quite different. For example, the multistage VQ is
then capable of better performance relative to the ordi-
nary VQ since the quantization errors in the various stages
do not accumulate so rapidly. (See, e.g., [341.) Thus in this

9 1

TABLE I l l
MEMORYLESS VQ DF SAMPLED SPEECH.

k SNRin SNRout n M SNRin SNRout n M
’

1 2.0 2.1 2 2 2.0 2.1 2 2
2 5.2 5.3 4 8 5.1 5.1 4 12
3 6.1 6.0 8 24 5.5 5.5 6 42
4 7.1 7.0 16 64 6.4 6.4 8 120
5 7.9 7.6 32 160 7.1 6.9 10 310
6 8.5 8.1 64 384 7.9 7.5 12 756
7 9.1 8.4 128 896 8.3 7.8 14 1778
8 9.7 8.8 256 2048 8.9 8.0 16 4080

MVQ W V Q
k SNRin SNRout n M SNRin SNRout n M
1 2.0 2.1 2 2
2 4.3 4.4 4 8
3 4.3 4.4 6 18 4.5 4.6 4 14
4 4.4 4.5 8 32 6.0 6.1 4 20
5 5.0 5.0 10 50 7.2 6.9 8 4 4
6 5.0 4.9 12 72 7.7 7.4 16 100
7 5.3 5.1 14 98 8.2 7.7 16 120
8 5.6 5.5 16 128 8.8 8.1 32 264
9 9.3 8.5 64 584
IO 9.8 8.9 128 1288
11 10.4 9.3 256 2824

Signal t o Noise Ratios inside training sequence ISNRin3 of
640000 speech samples, Signal to Noise Ratios outside
training sequence [SNRoutI of 76800 speech samples,
number of multiplications per sample [nl, and storage re-
quirements of memoryless vector quantizers: full search
memoryless VQ [VQI, binary tree-searched [TSVQI,
binary multistage VQ [MVQI, and gain/shape VQ
(G/SVQI. Rate = 1 bit/sample. k = vector dimension,

case multistage VQ may be far better because if i ts much
smaller computational requirements.

Table II presents results for three feedback VQ’s for the
same source. In .addition to the parameters of Table I,
the number of states for the FSVQ‘s are given. The first
FSVQ and the VPQ were designed for the same training
sequence of 60,000 samples. Because of the extensive
computation required and the shortness of the training
sequence for a feedback quantizer, only dimensions
1 through 4 were considered. The first FSVQ was designed
using the omniscient design approach for 1 bit per
sample, dimensions 1 through 4, and a variety of numbers
of states. For the first example, the number of states was
chosen by designing FSVQ‘s for more and more states
until firther increases yielded negligible improvements
[SI]. It was found, however, that the performance outside

of the training sequence for these codes was significantly
inferior, by 1 to 2 dB for the larger dimensions. From the
discussion of average distortion, this suggests that the
training sequence was too short. Hence the second FSVQ
design (FSVQ2) was run with a larger training sequence of
128,000 samples and fewer states. The test sequence for
these codes always yielded performance within .3 dB of
the design value. The VPQ test performance with within
.I dB of the design performance. The scalar predictive
quantizer performance and the codebook for the predic-
tion error quantizer are the same as the analytically opti-
mized predictive quantization system of Arnstein [60] run
on the same data.

Observe that the scalar FSVQ in the first experiment
with 64 states yielded performance quite close to that of
the scalar VPQ, which does not have a finite number of
states. Intuitively the FSVQ is trying to approximate the
infinite state machine by using a large number of states.
The VPQ, however, i s less complex and requires less
memory and hence for this application is superior.

For comparison, the best I bit/sample scalar trellis en-
coding system for this source yields 11.25 dB for this
source [52]. The trellis encoding system uses a block
Viterbi algorithm with a search depth of 1000 samples for
the encoder. It is perhaps surprising that in this example
the VPQ and the FSVQ with the short delay of only 4 sam-
ples can outperform a Viterbi algorithm with a delay of
1000 samples. It points out, however, two advantages of
feedback VQ over scalar trellis encoding systems: 1. The
decoder is permitted to be a more general form of finite-
state machine than the shift-register based nonlinear filter
usually used in trellis encoding systems; and 2. the en-
coder performs a single full search of a small vector
codebook instead of a Viterbi algorithm consisting of a
tree search of a sequence of scalar codebooks. In other
words, single short vector searches may yield better per-
formance than a “look ahead” sequence of searches of
scalar codebooks.

Speech waveform coding

The second set of results considers a training sequence
of 640,000 samples of ordinary speech from four different
male speakers sampled at 6.5 kHz. The reader is reminded
that squared error is not generally a subjectively good
distortion measure for speech. Better subjective quality
may be obtained by using more complicated distortion
measures such as the general quadratic distortion mea-
sures with input dependent weighting such as the arith-
metic segmented distortions. The VQ design techniques
extend to such distortion measures, but the centroid com-
putations are more complicated. (See [301 for the theory
and [45,461 for the application of input-weighted quadratic
distortion measures,)

Tables Ill and IV are the counterparts of Tables I and I I
for this source. Now, however, the SNR’s of the codes on
test sequences of samples outside of the training se-
quence (and by a different speaker) are presented for
comparison. In addition, some larger dimensions are con-

APRIL 1984 IEEE ASSP MAGAZINE 2 1

FEEDBACK VQ OF SAMPLED SPEECH.

I SNRin SNRout K n M SNRin SNRout n M
I 2.0 2.0 2 2 2 2.1 2.6 2 2
! 7.8 7.5 32 4 64 6.4 6.2 4 8
! 9.0 8.3 64 10 192 7.3 6.8 8 24
I 10.9 9.4 512 16 2048 , 8.0 7.6 16 64
; 12.2 10.8 512 32 2560

Signal t o Noise Ratios inside training sequence [SNRinI
of 640000 speech samples, Signal t o Noise Ratios out-
side training sequence [SNRouel of 76800 speech sam-
ples, number of states (Kl, number of multiplications per
sample (nl, and storage [MI for feedback quantizers:
Rate = 1 bit/sample. k = vector dimension,

idered because the longer training sequence made them
more trustworthy. Again for comparison, the best known
(nonadaptive) scalar trellis encoding system for this
source yields a performance of 9 dB [521. Here the trellis
encoder uses the M-algorithm with a search depth of
31 samples. The general comparisons are similar to those
of the previous source, but there are several differences.
The tree-searched VQ is now more degraded in com-
parison to the full search VQ and the multistage VQ is
even worse, about 3 dB below the full search at the largest

TABLE V
LPC VQ AND FSVQ WITH AND WITHOUT NEXT STATE

FUNCTION IMPROVEMENT.

VQ FSVQl FSVQZ
R r SNRin SNRout SNRin SNRout SNRin SNRout K
1 .008 3.7 2.9
2 .016 6.1 5.2 7.2 4.3 7.5 6.1 1 6
3 ,023 7.3 6.2 8.4 5.9 9.0 7.5 16
4 .031 8.8 7.9 9.5 7.8 9.6 8.7 4
5 .039 9.7 8.8 10.6 8.9 10.7 9.3 4
6 ,047 10.5 9.5
7 .055 11.6 10.1
8 ,062 12.6 10.7

Signal to Noise Ratios inside training sequence [SNRin)
of 5000 vectors of 128 samples each, Signal t o Noise
Ratios outside training sequence [SNRoutl of 600 vec-
tors of 128 samples each: memoryless VQ, omniscient
FSVQ design [FSVQI I, and for omnisicient FSVQ design
with next-state function improvement [FSVQ2). K = num-
ber of states in FSVQ, R = rate in bits/vector, r = rate
in bits/sample. Itakura-Saito distortion measure.

dimension in comparison to about I dB for the Gauss
Markov case. The complexity and storage requirements
are the same except for the shapeigain VQ where different
optimum selections of gain and shape codebook size yield
different complexity and storage requirements. The VPQ
of dimension 4 is inferior to the trellis encoder and the
FSVQ of the same dimension. The four dimensional FSVQ,
however, still outperforms the scalar trellis encoder.

Observe that an FSVQ of dimension 4 provides better
performance inside and outside the training sequence
than does a full search memoryless vector quantizer of
dimension 8, achieving better performance with 16
4-dimensional distort ion evaluations than with 512
8-dimensional distortion computations. The cost, of
course, is a large increase in memory. This, however, is a
basic point of FSVQ design-to use more memory but
less computation.

LPC VQ (vocoding)
Table V presents a comparison of VQ and FSVQ for vec-

tor quantization of speech using the ltakura-Saito dis-
tortion measure or, equivalently, vector quantization of
LPC speech models [16,14,53]. The training sequence and

TABLE VI
ADAPTIVE VPQ.

VPQ
k SNRin SNRout

1 4.12 4.34
2 7.47 7.17
3 8.10 7.67
4 8.87 8.30

Signal t o Noise Ratios inside training sequence [SNRinI
of 5000 vectors, and Signal t o Noise Ratios in tes t
sequence [SNRoutl of 600 vectors, rate = 1.023 bits/
sample.

test sequence are as above, but now the input dimension
is 128 samples and the output vectors are 10th order all-
pole models. The training sequence i s now effectively
shorter since it contains only 5000 input vectors of this
dimension. As a result the test results are noticeablydiffer-
ent than the design results. Because of the shortness of
the training sequence, only FSVQ’s of small dimension
and few states were considered.

The table summarizes memoryless VQ and two FSVQ
designs: the first FSVQ design used was a straightforward
application of the design technique outlined previously
and the second used the stochastic iteration next-state
improvement algorithm of [53]. Observe that the next-
state function improvement yields codes that perform bet-
ter outside of the training sequence then do the ordinary
FSVQ codes.

22 IEEE ASSP MAGAZINE APRIL 1984

Figure 16. Image Training Sequence. The training se-
quence consisted of the sequence of 3 x 4 subblocks of
the five 256 x 256 images shown.

Gainishape VQ's for this application are developed in
[I61 and [361. Tree-searched LPC VQ is considered for bi-
nary and nonbinary trees in combination with gain/shape
codes in [I61 and [IO].

Adaptive coding

Table VI presents the results of a simple example of an
adaptive VQ, here consisting of an LPC VQ with 8 code-
words every 128 samples combined wi th VPQs of
dimensions 1-4. Each' of-the 8 VPQs is designed for the
subsequence of training vectors mapping into the corre-
sponding LPG VQ model [47]. The rate of this system is
1 f 3/128 = 1.023 bits/sample. The performance is sig-
nificantly worse than the 10 dB achieved by a hybrid scalar
trellis encoder of the same rate [5 2] , but it improves on the
nonadaptive VPQ by about 3/4 dB. Adaptive vector quan-
tizers are still quite new, however, and relatively little work
on the wide variety of possible systems has yet been done.

Image coding
In 1980-1982 four separate groups developed success-

ful applications of VQ techniques to image coding [61, 62,
63,64,65,66,67,371. The only real difference from wave-
form coding is that now the VQ operates on small rec-
tangular blocks of from 9 to 16 pixels, that is, the vectors
are really 2-dimensional subblocks of images, typically
squares with 3 Or4 pixels on a side or 3 by4 rectangles. We
here consider both the basic technique and one variation.
We consider only small codebooks of 6 bits per 4 X 3
block of 12 pixels for purposes of demonstration. Better
quality pictures could be obtained at the same rate of 1h bit
per pixel by using larger block sizes and hence larger rates
of, say, 8 to 10 bits per block. Better quality could also
likely be achieved with more complicated distortion
measures than the simple squared error used.

Fig. 16 gives the training sequence of five images.
Fig. 17a shows a small portion of the fifth image, an eye,
magnified. Fig. 17b is a picture of the 26 = 64 codewords.
Fig. 17c shows the decoded eye. Fig. 18 shows the origi-
nal, decoded image, and error image for the complete
picture. The error image is useful for highlighting the
problems encountered with the ordinary memoryless VQ.
In particular, edges are poorly reproduced and the code-
word edges make the picture appear "blocky." This prob-
lem was attacked by Ramamurthi and Gersho [62,671 by
constructing segmented (or union or composite) codes-
separate codebooks for the edge information and the
texture information where a simple classifier was used
to distinguish the two in design. In [371 a feedback vector
quantizer was developed by using a separating mean VQ
with a predictive scalar quantizer to track the mean. Fig. 19
shows the original eye, ordinary VQ, and the feedback
VQ. The improved ability to track edges is clearly discern-
ible. Fig. 20 shows the full decoded image for feedback
VQ together with the error pattern.

Although image coding using VQ is still in i ts infancy,

APRIL 1984 IEEE ASSP MAGAZINE 23

a3

b l

C I

‘igure 17. Basic Image V&l Example a t 1/2 bit per pixel.
a1 Original Eye Magnified [bl 6 bit codebook VQ code-
look for 4 x 3 blocks [GI Decoded Image.

these preliminary experiments using only fairly simple
memoryless and feedback V Q techniques with small
codebooks demonstrate that the general approach holds
considerable promise for such applications.

COMMENTS

We have described Lloyd’s basic iterative algorithm and
how it can be used to improve the performance of a variety
of vector quantization systems, ranging from the funda-
mental memoryless full search VQ that serves as the basic
model for data compression in information theory to a
variety of feedback and adaptive systems that can be
viewed as vector extensions of popular scalar com-
pression systems. By a variety of examples of systems and
code design simulations we have tried to illustrate some of

the tradeoffs among performance, rate, complexity, and
storage for these codes.

The basic structure of all of the V Q systems is well suited
to VLSl implementation: a minimum distortion search al-
gorithm on a chip communicating with off-board storage
for codebooks and next-state-transition functions. As new
and better design algorithms are developed, the chips can
be updated by simply reburning the codebook and transi-
tion ROM’s.

The basic approach can also be incorporated into the
design of some traditional scalar data compression
schemes, an approach which Gersho calls “imbedded

bJ

cl

Figure 18. Full Image for Basic Example (a3 Original
[bl Decoded Image [cl Error Image.

24 IEEE ASSP MAGAZINE APRIL 1 s t ~

a3

C l

Figure 19. VQ vs. Separating Mean VQ at Rate V2 bit
per pixel (a1 Original Eye Magnified [b l VQ Decoded
Image [cl Separating Mean VQ with DPCM Mean Coding
Decoded Image.

1

a1

b l

Figure 20. Full Image for Separating Mean Example
(a) Decoded Image using Separating Mean VQ with
DPCM Mean Coding [bl Error Image.

VQ" [Il l . Such schemes typically enforce additional struc-
ture on the code such as preprocessing, transforming,
splitting into subbands, and scalar quantization, however,
and hence the algorithms may not have the freedom to
do as well as the more unconstrained structures consid-
ered here. Even if the traditional schemes prove more
useful because of existing DSP chips or intuitive variations
well matched to particular data sources, the vector
quantization systems can prove a useful benchmark
for comparison.

Recently VQ has also been successfully used in isolated
word recognition systems without dynamic time warping
by using either separate codebooks for each utterance or
by mapping trajectories through one or more codebooks
[68,69,70,71,55,721. Vector quantization has also been
used as a front end acoustic processor to isolated utter-

APRIL 1984 IEEE ASSP MAGAZINE

ance and continuous speech recognition systems which
then do approximately maximum likelihood linguistic de-
coding based on probabilities estimated using ”hidden
Markov’’ models for the VQ output data. [73,74,751.

Variations of the basic VQ design algorithm have been
tried for several distortion measures, including the
squared error, weighted squared error, the ltakura-Saito
distortion, and an (arithmetic) segmented signal to noise
ratio. (See, e.g., [30,45,461). Other distortion measures
are currently under study.

The algorithm has not yet been extended to some of the
more complicated distortion measures implicit in noise
masking techniques for enhancing the subjective per-
formance of scalar quantization speech coding systems.
Whether scalar systems designed by sophisticated tech-
niques matched to subjective distortion measures will
sound or look better than vector systems designed for
mathematically tractable distortion measures remains to
be seen. Whenever the subjective distortion measures can
be quantified and a means found to compute centroids,
however, the vector systems will yield better quantitative
performance. Since the centroid computation is only
done in design and not in implementation, it can be quite
complicated and still yield useful results.

The generalized Lloyd algorithm is essentially a clus-
tering algorithm and we have attempted to demonstrate i ts
applicability to the design of a variety of data compression
systems. Other clustering algorithms may yield better
codes in some applications. For example, Freeman [76]
proposed a design algorithm for scalar trellis encoding
systems using the squared error distortion measure which
replaced the Lloyd procedure by a conjugate gradient pro-
cedure for minimizing the average distortion for a long
training sequence. He found that for a memoryless Gaus-
sian source the resulting codes were superior to those
obtained by the Lloyd procedure. It would be interesting
to characterize the reasons for this superiority, e.g., the
procedure may find a better local minimum or it may sim-
ply be numerically better suited for finding a continuous
local minimum on a digital computer. It would also be
interesting to consider variatiqns of this approach for the
design of some of the other systems considered here.

A survey article with many topics cannot provide com-
plete descriptions or exhaustive studies of any of systems
sketched. It i s hoped, however, that these examples
impart the flavor of vector quantizer design algorithms
and that they may interest some readers to further delve
into the recent and current work in the area.

ACKNOWLEDGMENT

The author gratefully acknowledges the many helpful
comments from students and colleagues that aided the
preparation of this paper.

Portions of the research described here were supported by the
Army Research Office, the Air Force Office of Scientific Research,
the National Science Foundation, the John Simon Guggenheim
Memorial Foundation, and the Joint Services Electronics Program at
Stanford University.

26 IEEE ASSP MAGAZINE APRIL 1984

REFERENCES

[I] Davisson, L. D. and Gray, R. M., Data Compression,
Dowden, Hutchinson, & Ross, Inc., Stroudsbug, PA
(1976). Benchmark Papers in Electrical Engineering
and Computer Science, Volume 14.

[2] Jayant, N. S., Editor, Waveform coding quantization
and Coding, IEEE Press, NY (1976).

[3] Jayant, N.S. and Noll, P., Digital Coding of Wave-
forms, Prentice-Hall, Englewood Cliffs, NJ (1984).

[4] Shannon, C. E., “A mathematical theory of commu-
n icat ion, ” Bel l Systems Technica l journal 27

[5] Shannon, C. E., ”Coding theorems for a discrete
source with a fidelity criterion,” IRE National Con-
vention Record, Part 4, pp. 142-163 (1959).

[6] Gallager, R. G., Information theory and reliable com-
munication, John Wiley & Sons, NY (1968).

[7] Berger, T., Rate Distortion Theory, Prentice-Hall Inc.,
Englewood Cliffs, NJ (1971).

[8] Viterbi, A. J. and Omura, J. K., Principles o f Digital
Communication and Coding, McGraw-Hill Book
Company, New York (1979).

[91 Lloyd, S. P., Least squares quantization in PCM, Bell
Laboratories Technical Note (1957). (Published in the
March 1982 special issue on quantization).

[IO] Wong, D., Juang, B.-H., and Gray, A. H., Jr., “An
800 bit/s vector quantization LPC vocoder,” I€€€
Transactions on Acoustics Speech and Signal Process-
ing ASSP-30 pp. 770-779 (October 1982).

[Il l Gersho, A. and Cuperman, V., ‘Vector Quantization:
A pattern-matching technique for speech coding,”
I€€€ Communications Magazine, (December 1983).

[I21 Itakura, F. and Saito, S., “Analysis synthesis telephony
based on the maximum l ikl ihood method,” Pro-
ceedings of the 6th International Congress o f Acous-
tics, pp. C-17-C-20 (August 1968).

[I31 Kullback, S., Informat ion Theory and Statistics,
Dover, New York (1969).

[I41 Gray, R. M., Gray, A. H., Jr., Rebolledo, G., and Shore,
J . E., “Rate distortion speech coding with a minimum
discrimination information distortion measure,” I€€€
Transact ions on In format ion Theory IT-27 (6)

[IS] Shore, J. E. and Gray, R. M., ”Minimum-cross-entropy
pattern classification and cluster analysis,” I€€€ Trans-
actions on Pattern Analysis and Machine Intelligence
PAMI-4 pp. 11-17 (Jan. 1982).

[I61 Buzo, A., Gray, A. H., Jr., and Gray, R. M., and Markel,
J.D., “Speech coding based upon vector quan-
tization,” / € € E Transactions on Acoustics Speech and
Signal Processing ASSP-28 pp. 562-574. (October
1980).

[I71 Gray, R. M., BUZO, A,, Gray, A. H., Jr., and Matsuyama,
Y., “Distortion measures for speech processing,” I€€€
Transactions on Acoustics, Speech, and Signal Pro-
cessing, ASSP-28 pp. 367-376 (August 1980).

[I81 Gray, R. M., Kieffer, J. C., and Linde, Y., “Locally opti-

pp. 379-423, 623-656 (1948).

pp. 708-721 (Nov. 1981).

posium on lnformation Theory, (June 1982).
Foster, I . , Gray, R. M., and Ostendouf, M., Finite-state
vector quantization for waveform coding, IEEE Trans.
Info. Theory, to appear.
Stewart, L. C., Gray, R. M., and Linde, Y., ”The design
of trellis waveform coders,” I€€€ Transactions on
Communications COM-30 pp. 702-710 (April 1982).
Ostendorf, M. and Gray, R. M., An algorithm for the
design o f labeled-transition finite-state vector quan-
tizers, submitted for publication 1983.
Fehn, H.G. and Noll, P., ”Multipath search coding
of stationary signals with applications to speech,”
I€€€ Transactions on Communications COM-30
pp. 687-701 (April 1982).
Shore, J. E. and Burton, D. K., “Discrete utterance
speech recognition without time alignment,’’ I€€€
Transactions on Information Theory IT-29 pp. 473-491
(July 1983).
Rebolledo, G., Gray, R. M., and Burg, J . P., “A multi-
rate voice digitizer based upon vector quantization,’’
/ E € € Transactions on Communications COM-30
pp. 721-727 (April 1982).
Adoul, J.-P. and Mabilleau, P., “4800 bps RELP vo-
coder using vector quantization for both filter and
residual representation,” Proceedings o f the I€€€ In-
ternational Conference on Acoustics Speech and Sig-
nal Processing 1 p. 601 (April 1982).
Heron, C. D., Crochiere, R. E., and Cox, R.V., “A
32-band subbanditransform coder incorporating vec-
tor quantization for dynamic bit allocation,” Pro-
ceedings ICASSP, pp. 1276-1279 (April 1983).
Gray, R. M. and Linde, Y., ”Vector quantizers and
predictive quantizers for Gauss-Markov sources,”
I € € € Transactions on Communications COM-30
pp, 381-389 (Feb. 1982).
Arnstein, D. S . , “Quantization error in predictive
coders,” I€€€ Transactions on Communications
COM-23 pp. 423-429 (April 1975).

[611 Yamada, Y.., Fujita, K., and Tazaki, S., “Vector quan-
tization of video signals,’’ Proceedings of Annual
Conference o f I€C€, p, 1031 (1980).

[621 Gersho, A. and Ramamurthi, B., ’‘Image coding using
vector quantization,” Proceedings o f the / € E € Inter-
national Conference on Acoustics Speech and Signal
Processing 1 pp. 428-431 (April 1982).

[631 Baker, R. L. and Gray, R. M., ”Image compression
using non-adaptive spatial vector quantization,” Con-
ference Record of the Sixteenth Asilomar Conference
on Circuits Systems and Computers, (October 1982).

[M I Murakami, T., Asai, K., and Yamazaki, E., Vector
quantizer of video signals,’’ Electronic Letters 7

[651 Yamada, Y. and Tazaki, S., “Vector quantizer design
for video signals,” l€CE Transactions J66-B pp. 965-
972 (1983). (in Japanese)

[661 Yamada, Y. and Tazaki, S., “A method for constructing
successive approximation vector quantizers for
video signals,” Proceedings ofthe Annual Conference

pp. 1005-1006 (Nov. 1982).

28 IEEE ASSP MAGAZINE APRIL 1984

of the lnst i tute of Television Engineers o f Japan,

[67] Ramamurthi, B. and Gersho, A,, “Image coding using
segmented codebooks,” Proceedings International
Picture Coding Symposium, (Mar. 1983).

[68] Hamabe, R., Yamada, Y., Murata, M., and Namekawa,
T., “A speech recognition system using inverse filter
matching technique,’’ Proceedings o f the Ann. Conf.
Inst. o f Television Engineers, (June 1981). (in Japanese)

[69] Shore, J . E. and Burton, D. K., “Discrete utterance
speech recogni t ion wi thout t ime al ignment, ’ ’
Proceedings 1982 / € E € International Conference on
Acoustics Speech and Signal Processing, p. 907
(May 1982).

[70] Martinez, H. G., Riviera, C., and Buzo, A,, ”Discrete
utterance recognition based upon source coding
techniques,” Proceedings /E€€ International Confer-
ence on Acoustics Speech and Signal Processing,
pp. 539-542 (May 1982).

[71] Rabiner, L., Levinson, S. E., and Sondhi, M. M., “On
the application of vector quantization and hidden
Markov models to speaker-independent isolated
word recognition,” Bell System Technical Journal 62
pp. 1075-1106 (April 1983).

[72] Shore, J. E., Burton, D., and Buck, J., “A generali-
zation of isolated word recognition using vector
quantization,’’ Proceedings 1983 International Confer-
ence on Acoustics Speech and Signal Processing,
pp. 1021-1024 (April 1983).

[73] Jelinek, F., Mercer, R. L., and Bahl, L. R., “Continuous
speech recognition: statistical methods,’’ in Hand-
book of Statistics, Vol. 2, P. R. Khrishaieh and L. N.
Kanal, eds., North-Holland, pp, 549-573. (1982).

[74] Billi, R., “Vector quantization and Markov models
applied to speech recognition,” Proc. ICASSP 82,
pp. 574-577, Paris (May 1982).

[75] Rabiner, L. R., Levinson, S. E., and Sondhi, M. M.,
”On the application of vector quantization and hid-
den Markov models to speaker-independent isolated
word recognition,’’ BSTJ, Vol. 62, pp. 1075-1105,
(April 1983).

[76] Freeman, G. H., “The design of time-invariant trellis
source codes,” Abstracts o f the 1983 /€E€ International
Symposium on Informat ion Theory, pp . 42-43
(September 1983).

[77] Haoui, A. and Messerschmidt, D., “Predictive Vector
Quantization,” Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing (1984).

pp. 6-2 (1983).

Robert M. Gray was born in San Diego, CA, on November 1,1943. He
received the B.S. and M.S. degrees from M.I.T. in 1966 and the Ph.D.
degree from U.S.C. in 1969, all in Electrical Engineering. Since 1969 he
has been with the Information Systems Laboratory and the Electrical
Engineering Department of Stanford University, CA, where he is
currently a Professor engaged in teaching and research in com-
munication and information theory with an emphasis on data com-
pression. He was Associate Editor (1977-1980) and Editor (1980-1983)

of the IEEE Transactions on Information Theory and was a member of
the IEEE Information Theory Group Board of Governors (1974-1980). Notes added i n proof: A similar design technique for
Hewas corecipientwith Lee D. Davisson of the1976 IEEE Information FsVQ was independently developed by Haoui and
Theory Group PaperAward. He has been afellowof the Japan Society Messerschmidt 1771. It should be Dointed out that the
for the Promotion of Science (1981) and the John Simon Guggenheim FSVQ design algorithm described iere is incomplete in
Memorial Foundation (1981-1982). He is a fellow of the IEEE and a that it does not describe the methods used to avoid
member of SigmaXi, Eta Kappa N u , SIAM, IMS, AAAS, and the Societe
des Ingenieurs et Scientifiaues de France. He holds an Advanced communicating collection Of states and wasted states-

. -

Class imateur Radio License (KB6XQ). These issues are discussed in [51].

APRIL 1984 IEEE ASSP MAGAZINE 29

