24-29 April 1993

INFERCHI Y3

SYNTHESIZING AUDITORY ICONS
William W. Gaver
Rank Xerox Cambridge EuroPARC

61 Regent Street, Cambridge CB2 1AB, UK.
gaver@europarc.Xerox.com

ABSTRACT

Auditory icons add valuable functionality to computer
interfaces, particularly when they are parameterized to
convey dimensional information. They are difficult to
create and manipulate, however, because they usually rely
on digital sampling techniques. This paper suggests that
new synthesis algorithms, controlled along dimensions of
events rather than those of the sounds themselves, may
solve this problem. Several algorithms, developed from
research on auditory event perception, are described in
enough detail here to permit their implementation. They
produce a variety of impact, bouncing, breaking, scraping,
and machine sounds. By controlling them with attributes
of relevant computer events, a wide range of parameterized
auditory icons may be created.

KEYWORDS
interface techniques, multimedia, auditory interfaces, sound

INTRODUCTION

Over the last several years, I have been developing a
strategy for creating auditory icons, everyday sounds
mapped to computer events by analogy with everyday
sound-producing events [6, 8]. Auditory icons are like
sound-effects for computers: Objects make sounds as they
are selected, dragged, bumped against one another, opened,
activated, and thrown away. But they are not designed
merely to provide entertainment; rather they convey
information about events in computer systems, allowing us
to listen to computers as we do to the everyday world.

A number of systems have been created which illustrate the
potential for auditory icons to convey useful information
about computer events. In particular, these systems suggest
that sound is well suited for providing information:

« about previous and possible interactions,
« indicating ongoing processes and modes,
» useful for navigation, and

* to support collaboration.

For instance, the SonicFinder used sound to supplement a
single-threaded, single-user graphical interface [7].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-575-5/93/0004/0228...$1.50

228

Although most of the sounds indicated simple user-
initiated actions, the system demonstrated that sound could
be incorporated in the interface in natural and useful ways.

More powerful functions for sound were demonstrated in
the ARKola system [9]. This used the SharedARK
environment [12] to create a simulation of a manufacturing
plant which participants ran with or without auditory
icons. Our observations suggested that sounds changed
both the way participants perceived the plant and the way
they worked together. These two examples, along with
several others, indicate that auditory icons can both
complement and supplement more traditional graphical cues
in interface design.

PARAMETERIZED ICONS

Auditory icons not only reflect categories of events and
objects as visual icons do, but are parameterized to reflect
their relevant dimensions as well. That is, if a file is large,
it sounds large. If it is dragged over a new surface, we hear
that new surface. And if an ongoing process starts running
more quickly, it sounds quicker.

The possibility of parameterizing icons, whether auditory
or visual, has largely been neglected in interface design
{though see 4]. But parameterized icons can serve as more
than mere labels for their referents, providing rich sources
of information about relevant dimensions such as size, age,
or speed as well, Parameterization allows single objects or
events to be assessed along a number of dimensions. In
addition, it creates families of icons that retain perceptual
similarity while allowing comparison among members [c.f,
1]. In general, parameterized icons allow a great deal of
information to be conveyed perceptually rather than
symbolically.

Creating Parameterized Auditory lcons

Unfortunately, it is difficult to parameterize auditory icons
because it is difficult to control a virtual source of a sound
along relevant dimensions. Standard synthesis techniques
have been developed for creating music, and thus afford
changes of a sound's pitch, loudness, duration and so forth.
But they do not make it easy to change a sound from
indicating a large wooden object, for instance, to one
specifying a small metal one. It is easy to create a wide
variety of beeps and hums using standard synthesis
techniques, but difficult to create and manipulate sounds
along dimensions that specify events in the world.

INFERCHI"93

24-29 April 1993

Because of the limitations of standard synthesis techniques,
interfaces using auditory icons have relied on digital
sampling in their implementations. Desired sounds are
captured by recording them on a computer, shaped by a
designer, then played back and manipulated under the
control of the interface (see Appendix A for a brief
introduction to sampling and synthesis). This enables the
use of much more complex and realistic sounds than can be
created by readily available synthesis algorithms. However,
there are several drawbacks of sampling that limit its utility
as a technique for creating and using auditory icons:

« It is difficult to capture an actual event that sounds like
what is desired, because sounds are invariably coloured
by the technologies used to record them.

« Shaping recorded sounds along dimensions relevant for
auditory icons is difficult because available software is
designed for making music.

» Real-time modification of sounds on playback is even
more limited.

» The amount of memory needed for complex auditory
interfaces is often prohibitive (on the order of 10K bytes
per second of sound).

These factors constrain the possibilities for designing
auditory icons, and make their creation difficult and time-
consuming.

In this paper, I suggest an alternative in the form of a new
type of synthesis algorithm developed as a result of basic
research on auditory event perception [6, 81, and describe
several examples in sufficient detail to allow readers to
implement and explore them. These algorithms allow
sounds to be specified in terms of their sources rather than
their acoustic attributes. They promise to overcome both
the limitations of traditional synthesis algorithms and of
sampling by allowing parameterized auditory icons to be
specified along dimensions of virtual source events.

ACOUSTIC INFORMATION FOR EVENTS

Creating algorithms that allow synthesis of virtual events
implies an understanding of the acoustic information for
event attributes — how sounds indicate the material or size
of an object, for instance. Such attributes often have very
complex effects on sounds, effects that must be described as
functions of frequencies and amplitudes over time that
describe the partials, or frequency components, that make
up a sound. If these functions are understood, source
attributes can be specified directly, instead of via separate
controls over partial frequencies, amplitudes, and durations,
But how can we determine what these functions are?

Analysis and Synthesis of Events

One approach to this problem is suggested by the analysis
and synthesis methods [11] used by computer musicians to
capture the relevant properties of traditional instrument
sounds (Figure 1). This approach involves recording
sounds that vary along dimensions of interest and
analyzing their acoustic structure using Fourier analysis or
similar techniques. Hypotheses about acoustic information
suggested by the analysis can be tested by synthesizing

sounds based on simplified

versions of the data. For simplify
instance, if one supposes that Ivsi thesi
the temporal features of a sound 2™2 Cs synihesis
indicates the event that caused sva/uate/

it, but that its frequency makeup

is irrelevant, one might use the Figure 1: Traditional
amplitude contour from the analysis and synthesis.
original sound to modify a noise

burst. The hypothesis can then be assessed simply by
listening to the result.

In practice, however, it is often difficult to identify the
acoustic information for events in the mass of data
produced by acoustic analyses. Thus it is useful to
supplement them with analyses of the mechanical physics
of the event itself (see Figure 2). Studying the physics of
sound-producing events is useful both in suggesting
perceptible source attributes and in indicating the acoustic
information for these attributes. Acoustic analyses help
both in checking the adequacy of physical models and in
evaluating particular parameters. Finally, the resulting
models can provide the basis for synthesis algorithms that
allow sounds to be specified in terms of sources attributes.

simplify
guide
acoustic physical

synthesis

analysis analysis
evaluate

Figure 2. Analyzing and synthesizing events requires
physical as well as acoustic analyses.

In the following sections, I discuss several case studies of
events that have been studied in this manner and describe
the synthesis algorithms that have resulted. The algorithms
have been chosen for their utility in creating auditory
icons, and are described in order of their complexity. I start
with the sounds made by mechanical impacts, which
involve a simple interaction of objects. Next I describe
how more complex bouncing, breaking, and spilling sounds
can be produced by specifying the temporal patterning of a
series of impacts. A third algorithm distinguishes objects
from the interactions that cause them to make sound,
allowing the same virtual object to be hit and then scraped.
Finally, I describe an algorithm for producing machine-like
sounds, showing that high-level attributes of complex
events may be synthesized directly.

IMPACT SOUNDS

Many of the sounds we hear in the everyday world involve
one solid impacting against another. Tapping on an object,
placing it against another, letting it fall — all involve
impact sounds. In the interface, impact sounds are useful in
the design of a variety of auditory icons that indicate
events such as selecting a file, moving it over another, or
attaching one object to another.

229

24-29 April 1993

INFERCHI 93

Several studies have explored the perceptible attributes of
impact events and the acoustic information about them. In
this section, I briefly review these studies, then show how
the information they provide can be used to create a
synthesis algorithm that allows impact sounds to be
specified along dimensions of the virtual source.

Mallet Hardness, Material, and Size

Freed (5] studied people’s perception of the hardness of
mallets used to strike objects. He recorded the sounds
made by hitting cooking pans with mallets of various
hardnesses, asked people to judge hardness from the
sounds, and used a model of the peripheral auditory system
to analyze the acoustic correlates of their judgements. He
found that the ratio of high to low frequency energy in the
sounds and its change over time served as the most
powerful predictors of subjects’ hardness judgements. To a
good approximation, then, mallet hardness is conveyed by
the relative presence of high and low frequency energy.

I studied the acoustic information available for the length
and material of struck wood and metal bars and people's
abilities to perceive these attributes {6]. I recorded and
analyzed the sounds made by wood and metal bars of
several different lengths, and developed a model of the
physics of impacts that combined analytical solutions to
the wave equation for transverse vibrations in a bar {¢.g.,
10] with empirical measurements of damping and resonance
amplitudes. This model was used both to aid interpretation
of the acoustic analyses and to synthesize new tokens.

The material of the bars made several effects on the sounds
they made. Perhaps most important, materials have
characteristic frequency-dependent damping functions: the
sounds made by vibrating wood decay quickly, with low-
frequency partials lasting longer than high ones, while the
sounds made by vibrating metal decay slowly, with high-
frequency partials lasting longer than low ones. In
addition, metal sounds have partials with well-defined
frequency peaks, while wooden sound partials are smeared
over frequency space. These results accord with Wildes
and Richards' [14] physical analyses of the audible effects
of the internal friction characterizing different materials,
which show that internal friction determines both the
damping and definition of frequency peaks.

Changing the length of a bar, on the other hand, simply
changes the frequencies of the sound it produces when
struck, so that short bars make high-pitched sounds and
long bars make low ones. However, the effects of length
may interact with the effects of material. For instance,
frequencies change monotonically with length, but the
frequency of the partial with the highest amplitude depends
on material and thus may change nonlinearly with length
[6]. These nonlinearities — and the perceptual confusion
they cause — may be avoided by simplifying the model so
that partial amplitudes do not depend on material.

230

A Synthesis Algorithm for impact Sounds

These results may be captured in a synthesis model that
uses frequency and amplitude functions to constrain a
formula for describing exponentially decaying sounds.
This formula describes a complex wave created by adding
together a number of sine waves with independent initial
amplitudes and exponential decay rates:

G(t) = T, ®p e-Ont coswpt 1)

where G(t) describes the waveform over time, &y, is the
initial amplitude, 8, the damping constant, and ®, the
frequency of partial n.

This formula has two properties that make it a useful
foundation for synthesizing auditory icons. First, its
components map well to event attributes. Second, it can be
made computationally efficient using trigonometric
identities.

Mapping Synthesis Parameters to Source Attributes

By constraining the values used in this formula, useful
parameters can be defined which correspond well to the
attributes of impact sounds discussed above. The formula
involves three basic components: _the initial amplitudes of
the partials @, their damping e-Ont, and their frequencies
coswnt. These can be set separately for each partial.
However, these three components also correspond to
information for mallet hardness and impact force, material,
and size and shape respectively (see Table 1). Thus it is
more useful to define patterns of behaviour over the partials
for each component.

Table 1: Mapping Parameters to Events

Term Effect Event Attribute

&, initial amplitudes | Mallet hardness;
force or proximity

e-Ont damping material

cosmpt partial frequencies | 1267
configuration

For example, the partial frequencies wy, can be constrained
to patterns typical of various object configurations. The
sounds made by struck or plucked strings, for example, are
harmonic, so that 0, = nw1. The sounds made by solid
plates, in contrast, are inharmonic and can be approximated
by random frequency shifts made to a harmonic pattern.
The sounds made by solid bars can be approximated by the
formula 0y = @n + 1)2/9. Finally, the sounds made by
rectangular resonators are given by the formula 0p g r) =
/2 V@212 + q2/w? + r2/h2), where ¢ is the velocity of
sound, I, w, and A are the length, width and height of the
box respectively, and p, ¢, and r are indexed from 0 [14].
An algorithm based on Formula 1, then, can be constrained
so that one of these patterns is used to control the partial
frequencies ®,. In addition, ®; can be specified such that
w1 «< 1/size to reflect the size of the object (this affects all
the other partial frequencies).

INFERCHI 93

24-29 April 1993

The initial amplitude of the partials, ®y, can be controlled
by a single parameter corresponding to mallet hardness.
Recalling that Freed's [5] results identified the ratio of
high to low-frequency energy as a predictor of perceived
mallet hardness, we might maintain a linear relationship
among the partial's initial amplitudes, and use the slope
from ®1 to control perceived hardness. Thus @, = @1 +
h(wy, - 1), where h is the slope — note that h should often
be negative, so that higher partials have less amplitude than
low ones; thus a useful range of amplitude slopes might
range from about -0.001 to 0.001. <&; (and thus all the
amplitudes) may also be changed to indicate impact force
or proximity.

Finally, the damping constants for each partial (3;,) can be
controlled by a parameter corresponding to material. A
useful heuristic is to set 8, = w,8p, with 8¢ ranging
between about .001 for metal and about .5 for a highly-
damped material like plastic. This means that high
harmonics will die out relatively quickly for highly
damped materials and last longer for less damped materials
(e.g., metal, which has low damping, tends to ring; wood,
which is highly damped, tends to thunk). This strategy is
suggested both by Wildes and Richards [14], and by my
own research [6].

In sum, Formula 1 can be controlled by parameters that
make effects corresponding to attributes of impact events.
Controlling overall frequency corresponds to the object's
size, while the pattern of partial frequencies corresponds to
its configuration. The overall initial amplitude corresponds
to the force or proximity of the impact, while the pattern of
partial amplitudes corresponds to mallet hardness. Finally,
the degree of damping corresponds well to the virtual
object's material. By controlling these five parameters,
then, a wide range of sounds can be created which vary
over several useful dimensions.

An Efficient Algorithm for Synthesis

Formula 1 is useful in allowing parameters to be defined in
terms of source events. It is also attractive because it can
be implemented in a computationally efficient way.

An efficient implementation of this formula relies on
Euler’s relationship '@t = coswt + isinmt to rewrite

Formula 1 as:
Sn = Rel(an + iby)(p + iq)]
= Rel(app - bnq) + i(bnp + anq)] (2)

where S;, is the nth sample, ag is the initial amplitude,
bp=0,i = -1, p=ecosot and q = e-dsinwt. (A full
derivation is available upon request.)

Samples can thus be generated by calculating p and q,
setting a and b to the initial amplitude and 0, and applying
equation 2. The output sample is the real part of the result,
and a and b are updated to the real and imaginary parts
respectively (see pseudocode in Figure 3).
Computationally expensive sine and cosines need only be
calculated once, and only four multiplications, one addition
and one subtraction are needed for each partial for a given

sample. The efficiency of this implementation allows fairly
complex impact sounds to be generated in realtime on many
computers.

p = cos(freq * 1/samplerate) * power(e, -1 * damping.rate
* 1/samplerate);

q = sin(freq * 1/samplerate) * power(e, -1 * damping.rate
* 1/samplerate);

a = initial. amplitude;

b =0;

repeat for duration.in.secs / samplerate:
realpart =a *p-b *q;
imaginary.part =b*p +a*q;
a = real.part;
b = imaginary.part;
output = real.part;

end repeat;

Figure 3. Pseudocode for efficient generation of a
exponentially-decaying cosine wave (equation 5).

BREAKING, BOUNCING, AND SPILLING

The impact algorithm can serve as a fundamental element in
algorithms used to synthesize more complex sounds. For
instance, an early example of analysis and synthesis of
sound-producing events is Warren and Verbrugge’s [13]
study of breaking and bouncing sounds. In this study,
they used acoustic analyses and a qualitative physical
analysis to examine the auditory patterns that characterize
these events, and verified their results by testing subjects
on synthetic sounds.

Consider the mechanics of a bottle bouncing on a surface
(Figure 4A). Each time the bottle hits the surface, it makes
an impact sound that depends on its shape, size, and
material (as discussed above). Energy is dissipated with
each bounce so that, in general, the time between bounces
and the force of each impact becomes less. Thus bouncing
sounds should be characterized by a repetitive series of
impact sounds with decreasing period and amplitude.

When a bottle breaks, on the other hand, it separates into
several pieces of various sizes and shapes (Figure 4B).
Thus a breaking sound should be characterized by an initial
impact sound followed by several different, overlapping
bouncing sounds, each with its own spectrum and period.

Acoustic analyses of bouncing and breaking sounds
confirm this informal physical analysis. In addition,

) Y

Figure 4. Bouncing (A) and breaking (B) sounds are
characterized by the temporal patterning of a series of
impacts [After Warren and Verbrugge, 13].

231

24 -29 April 1993

INFERGHI 93

Warren and Verbrugge [13] found that people were able to
distinguish tokens of bouncing and breaking sounds that
were constructed by using these rules to splice tapes of
impact sounds together.

Synthesized Breaking, Bouncing and Spliling

To create bouncing sounds, then, we need simply imbed the
impact algorithm in another that calls it at exponentially
decaying intervals. To create breaking sounds, the
bouncing algorithm is imbedded in another algorithm that
calls it with parameters specifying sources of different sizes
at times corresponding to several exponentially decaying
time series.

Several new event parameters become relevant for these
algorithms: The initial height of the virtual object is
indicated by the time between the first and second bounce,
its elasticity by the percentage difference of delays between
bounces, and the severity of breaking by the number of
pieces produced. In addition, the asymmetry of the
perceived object can be varied by adding randomness to the
overall temporal pattern.

It becomes clear upon listening to sounds synthesized
using this algorithm that although Warren and Verbrugge
[13] claimed that information for breaking and bouncing
depends only on temporal patterning, the perceived event
depends on the virtual materials involved as well. For
instance, if impacts specifying wooden objects are produced
in a temporal pattern typical of breaking, we are liable to
hear spilling rather than breaking. Similarly, if each of
several virtual objects has different material properties, we
again hear several spilling objects rather than breaking.

In sum, the impact algorithm described above can be used
not only to generate the sounds made by mallets of
different hardnesses striking virtual objects of a wide
variety of shapes, sizes, and materials, but can also serve as
the basis for more complex bouncing, breaking, and
spilling sounds. As such, it serves as a research tool that
allows the space of such sounds to be explored. Moreover,
it provides an efficient method for generating families of
related auditory icons. For instance, parameterized impact,
bouncing, breaking and spilling sounds might be used to
differentiate and provide details about the results of actions
involving icons, windows, containers, and so forth.

FROM IMPACTS TO SCRAPING

The sounds made by impacts and patterns of impacts are
generally useful for creating auditory icons, but it is
desirable to have access to sounds made by a wider range
of events. In particular, it would be useful to generate the
sounds made by the same object being interacted with in
different ways. Using such algorithms, auditory interface
designers might map a particular file to a virtual object, and
then hit, bounce, or scrape it depending on the relevant
computer interaction.

In order to create such algorithms, it is necessary to
separate the specification of a virtual object from that of the

232

interaction that causes it to produce sound. This turns out
to be possible because objects tend to vibrate only at
certain invariant resonant frequencies. For example, the
spectrogram in Figure 5 shows the sound made by a piece
of glass being hit and then scraped across a rough surface.
Note that despite the different temporal patterns of the
sounds, the resonant modes of each are the same. These
modes specify the object, then, interaction determines the
temporal pattern and amount of energy introduced to each.

ieéev.vc.ﬁ.f..glass being hit and

Figure 5. Spectrogram of a
ﬁequencies remain invariant

then scraped: The resonant
over different interactions.

Because the effects of interactions and objects are distinct,
each can be modelled separately. The resonant modes of a
virtual object may be modelled as a bank of filters that
allow energy to pass at particular frequencies. Interactions,
then, can be specified by the pattern of energy passed
through the filter bank.

Modelling Objects as Filter Banks
A simple formula for a bank of one-pole filters is:

Yn = ZmPm(Clmxn + 2myn-1 - 3myn-2) 3)

where @y, is an amplitude scalar for partial m, yy, is the nth
output, x, is the nth input, and:

clm=(1-¢3m) [(A - 2 2)/4c3 15

€2 = (4¢3 m co821f i)/(C3m + 1)
3m = &-2%m;

where fi, is the frequency and by, the bandwidth of partial
m,

The parameters used to control the impact algorithm can
also be used to control this sort of filter bank. However,
manipulating filter bandwidths to control damping actually
provides more information for material than do simple
manipulations of sine wave damping. Bandwidth b is
proportional to damping: the narrower the resonance peak
of the filter the longer the resonant response to excitation.
This correlation between damping and the smearing of
partials in frequency space corresponds well to the
characteristics of sounds made by materials such as wood
or metal [6, 14].

INFERCHI 93

24 -29 April 1993

Simulating Interactions with Input Waveforms

A virtual object can be defined by the characteristics of the
filter bank described above. The waveform passed through
the filter bank, then, models the interaction that causes the
object to sound. In this section, I describe two sorts of
input waveforms that I have explored. The first models
impact forces, the second scraping.

When objects are struck, the input forces are characterized
by short impulses such as those shown in Figure 6. The
energy of such impulses is spread out over many
frequencies: the pulse width reflects low frequency energy,
while its angularity reflects high frequency components.
This comresponds to Freed's characterization of mallet
hardness [S]. Hard mallets introduce force suddenly to an
object, deforming it quickly, and thus introduce a relatively
high proportion of high frequency energy to the resonant
object. Soft mallets, in contrast, deform as they hit the
object, introducing energy relatively slowly, and thus the
corresponding impulses are characterized by a high
proportion of low frequency energy. Shaping the impulses
used to excite a filter bank, then, is a physically realistic
way to control perceived mallet hardness.

Input

SES.

Figure 7. A sample force waveform characterizing a
scrape with increasing speed.

Filter
Bank

Impulse
A) ” >

B \.J >

Result

Filter
Bank

Filter
Bank

Fif?ure 6. Sample impulse waveforms characterizing
difterent impacts (see text).

When an object is scraped, force is applied more
continuously. Scraping has been relatively unexplored in
terms of its physical or perceptual attributes. However, an
informal physical analysis suggests that the pattern of force
on an object generated as it is scraped across a surface can
be approximated by band-limited noise, where the center
frequency of the noise corresponds to dragging speed, and
the bandwidth to the roughness of the texture (see Figure
7). Although these parameters are only approximate, being
less well motivated physically or psychologically than
those used to model impacts, experience shows that a wide
variety of realistic scraping noises can be produced using
these heuristics.

In sum, the filter-based algorithm described in this section
is based on a physically plausible model of sound
producing events. By separating the parts of the model
that specify the object from those specifying the
interaction, a wide range of virtual sound-producing events
can be simulated. The model can create any of the impact
sounds that the algorithm described in the last section can.

In addition, it can also be used to create a variety of
scraping sounds (and, potentially, any other sound
involving solid objects).

The ability to generate the sounds of the same object being
caused to sound by different interactions offered by this
algorithm has great potential for the creation of auditory
interfaces. It allows the design of parameterized auditory
icons in which the same interface object (e.g., a file) might
make sounds indicating a varicty of events (e.g., selecting,
dragging, opening).

MACHINE SOUNDS

Just as complex interactions such as scraping can be
modelled by a few summarizing parameters, so might still
more complex events be captured succinctly by high-level
descriptions. For instance, another class of sounds useful
for auditory icons are those made by small machines.
Sampled machine sounds were used effectively in the
ARKola simulation [9], indicating ongoing processes that
were not visible on the screen. More generally, they might
be used to indicate background processes such as printing
or compiling in more traditional multiprocessing systems.

A detailed account of the mechanical physics of machinery
seems prohibitively difficult. But just as the scraping
waveforms described above model the overall parameters of
a complex force rather than each of the contributing details,
so an approximate model of machines might capture some
of the high-level characteristics of the sounds they produce.
In particular, three aspects of machine sounds seem relevant
for modelling: First, the overall size of the machine is
likely to be reflected in the frequencies of sounds it
produces; second, most machines involve a number of
rotating parts that can be expected to produce repetitive
contributions to the overall sound; and third, the work
done by the machine can be expected to affect the
complexity of the sound.

FM Synthesis of Machine Sounds

I have been exploring an efficient algorithm for creating a
variety of machine-like sounds that capture these properties.
The basic strategy is to synthesize a sound using complex
tones that vary in a repetitive way, indicating cyclical
motion. The rate at which the virtual machine is working,
then, can be indicated by repetition speed, the size of the
virtual machine by the base frequency, and the amount of
work by the bandwidth of the sounds (se¢ Figure 8).

233

24

-29 April 1993

INFERCHI 93

— —_— —-——
size » work
—_— — —
A
freq speed
tiMe i

Figure 8. Machine sounds can be characterized by a
complex wave that varies repetitively over time.

This class of sound may be synthesized efficiently using
Frequency Modulation (FM) synthesis [2]. FM synthesis
involves modulating the frequency of a carrier wave with
the output of a modulating wave. This produces a complex
tone with a number of frequency components spaced
equally around the carrier wave and separated from one
another by the modulating frequency. The number of
components (and thus the bandwidth of the sound)
depends on the amplitude of the modulating wave (see
Figure 9). Thus machine sounds can be created simply by
associating the carrier frequency with the size of the virtual
machine, setting the maximum amplitude of the modulating
wave to the amount of work done by the virtual machine,
and modulating the amplitude of the modulator according
to the speed of the virtual machine (see pseudocode in
Figure 10).

carrier —
frequenc ——
® Y modulating
; amplitude
modulating { —m
frequency —

Figure 9. FM synthesis, which allows simple control over
complex sounds, is useful for generating machine sounds.

The resulting sounds are pitched humming noises that
pulse at the speed of the virtual machine. When "work” is
low, the throbbing is subtle; when it is high, it becomes
quite pronounced. Moreover, the quality of the sounds
can be varied by changing the ratio of modulating to carrier
frequency: when the two are an integral multiple of one
another, the resulting sound is harmonic, when they are not,
the sound is inharmonic or noisy. Because the physical
and acoustic analyses underlying this algorithm are far
more approximate than those used for the various impact
and scraping algorithms described above, the sounds it

mod.wave.amp = work * sin(speed * time/samprate);
mod.wave.sample = mod.wave.amp * sin(mod.freq *
time/samprate);

output = amp * sin((size + mod.wave.sample) *
time/samprate);

Figure 10: Pseudocode for generating machine-iike sounds

characterized by speed, size, and work.

234

produces are far less realistic. Nonetheless, they seem to
capture some of the features of machine sounds well
enough to use as indicators of ongoing processes in
multiprocessing systems.

CONCLUSIONS

The algorithms described here allow the synthesis of a
variety of everyday sounds specified in terms of attributes
and dimensions of the events that cause them. Because
they are based on a combination of acoustic and physical
analyses and use relatively sophisticated synthesis
techniques, they capture a great degree of the richness and
complexity of their naturally produced counterparts.
Because they are specialized for the classes of event they
are to simulate, they are easy to implement, efficient, and
can generate sounds in realtime on many computers.
Finally, because they have been designed with potential
applications in mind, the events they simulate are those
useful for auditory icons.

These algorithms vary in their physical accuracy. Some are
based on quantitative physical analyses, while others are
based on more qualitative, informal descriptions of events.
Moreover, even the quantitative analyses are only
approximate. For instance, the physics of a struck bar of
wood is much more complex than implied by the simple
account given here. Insofar as these algorithms are
approximate, the sounds they produce will differ from those
made by real events.

Nonetheless, these algorithms do produce quite realistic
sounds. Listeners comment that they have the impression
of hearing an actual event rather than a synthesized sound.
Insofar as the sounds do differ from those made by real
events, they may be considered as "cartoon-sounds,” sounds
which capture the relevant features of their sources just as
visual caricatures (or graphical computer icons) capture
those of theirs. For the purposes of simulating sound-
producing events, then, these algorithms are adequate. For
the purpose of creating auditory icons, they show great
potential, combining flexibility, intuitive controls,
efficiency, and relevance.

I have specified these algorithms here in sufficient detail
that readers may implement and explore them, in the hope
that they will spur further research on parameterized
auditory icons. These algorithms open many possibilities
for the design of rich auditory interfaces. Impact and
scraping sounds can be used to increase the tangibility of
graphical objects in direct manipulation interfaces.
Bouncing, breaking, and spilling sounds can be used to
indicate events in virtual reality systems. Machine sounds
might allow us to hear a remote printer as our job reaches
the queue, and characteristics of the sound might tell us
how fast the job is printing or how much time it will take.
In sum, using these algorithms we can design interfaces
that we can listen to the way we do to the everyday world.

INFERCHI 93

24-29 April 1993

ACKNOWLEDGEMENTS

1 am grateful to Dave Woodhouse and Roy Patterson for
help with the physical and acoustical analyses presented
here, and to Don Norman, Anne Schlottmann, William
Mace, Allan Maclean, Wendy Mackay, and Michael Turvey
for valuable discussions about this research.

REFERENCES

1. Blattner, M., Sumikawa, D., & Greenberg, R. Earcons
and icons: Their structure and common design
principles. Human-Computer Interaction, 4 (1989).

2. Chowning, J. The synthesis of complex audio spectra
by means of frequency modulation. Journal of the
Audio Engineering Society, 21 (1973): 526-534.

3. Dodge, C., & Jerse, T. Computer music: Synthesis,
composition, and performance. New York: Schirmer
Books, 1985.

4. Draper, S., Waite, K., & Gray, P. Alternative bases for
comprehensibility and competition for expression in an
icon generation tool. Proceedings of Interact’90
(Cambridge, UK. 27 - 31 August, 1990). Amsterdam:
North Holland..

5. Freed, D. Auditory correlates of perceived mallet
hardness for a set of recorded percussive sound events.
Journal of the Acoustical Society of America, 87
(1990): 311-322.

6. Gaver, W. Everyday listening and auditory icons.
Unpublished doctoral Dissertation, University of
California, San Diego, 1988.

7. Gaver, W. The SonicFinder: An interface that uses
auditory icons. Human-Computer Interaction, 4
(1989): 67-94.

8. Gaver, W. What in the world do we hear? An
ecological approach to auditory source perception.
Ecological Psychology, 5 (1993): 1-29.

9. Gaver, W,, Smith, R. B., & O’Shea, T. Effective
sounds in complex systems: The ARKola simulation.
Proceedings of CHI 1991 (New Orleans, April 28 -
May 2, 1991) ACM, New York.

10. Lamb, H. The dynamical theory of sound. 2nd ed.
New York, Dover, 1960,

11. Risset, J., & Wessel, D. Exploration of timbre by
analysis and synthesis. In D. Deutsch (Ed.), The
psychology of music. New York: Academic Press,
1982.

12. Smith, R. A prototype futuristic technology for
distance education. Proceedings of the NATO
Advanced Workshop on New Directions in
Educational Technology. (Nov. 10 - 13, 1988,
Cranfield, UK.)

13. Warren, W. & Verbrugge, R. Auditory perception of
breaking and bouncing events: A case study in
ecological acoustics. Journal of Experimental
Psychology: Human Perception and Performance, 10
(1984): 704 - 712.

14, Wildes, R., & Richards, W. Recovering material
properties from sound. Richards, W. (ed.), Natural
computation. Cambridge, MA: MIT Press, 1988.

APPENDIX A: DIGITAL SAMPLING AND SYNTHESIS

Digital sampling and synthesis both rely on the fact that
analog sound waves may be described by a stream of
numbers (or samples) that represent the amplitude of the
wave over time (see Figure 11). These samples, in tumn,
can be used to control a loudspeaker, recreating the sound.

As Figure 11 suggests, the accuracy with which a
waveform may be represented depends on the sampling rate:
waves at frequencies over 1/2 the sampling rate (the
Nyquist frequency) cannot be specified unambiguously.
Similarly, the number of bits per sample determines the
different levels of amplitude that may be captured.

"IN
. N
Analog g time —» /} N . A
Digital "1 .Ev[.;‘-:ﬂu[ml! |.1|-s]-:11-a] TisTs s}
Analog —

| =

Figure 11. Analog waveforms can be represented as
samples indicating the wave's amplitude over time.

Digital sampling involves recording a sound, digitizing the
waveform, and then recreating the waveform using the
(possibly manipulated) samples.

Synthesis, in contrast, involves generating sample values
algorithmically. Many synthesis algorithms rely on
Fourier's theorem that complex waves may be analyzed —
and thus synthesized — as the sum of many (possibly
varying) sine waves. In any case, synthesis algorithms are
merely methods for creating streams of numbers that
describe sounds.

There are several software packages that facilitate synthesis
(e.g., the Csound software from the MIT Media Lab, or
Cmusic from UCSD, both of which can be obtained
without charge for educational and research purposes). The
algorithms described in this paper may be explored using
such packages. However, for use in interfaces, these
algorithms should be implemented as functions to be called
by other software; the samples they produce can simply be
sent to the onboard digital-to-analog converter just as
sampled sounds are.

Clearly this is only a brief introduction to the basic
concepts of digital sampling and synthesis. More detailed
introductions to these topics may be found in several
textbooks [e.g., 3].

235

