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A Robust Competitive Clustering Algorithm
With Applications in Computer Vision
Hichem Frigui, Member, IEEE, and Raghu Krishnapuram, Senior Member, IEEE

Abstract—This paper addresses three major issues associated with conventional partitional clustering, namely, sensitivity to
initialization, difficulty in determining the number of clusters, and sensitivity to noise and outliers. The proposed Robust Competitive
Agglomeration (RCA) algorithm starts with a large number of clusters to reduce the sensitivity to initialization, and determines the
actual number of clusters by a process of competitive agglomeration. Noise immunity is achieved by incorporating concepts from
robust statistics into the algorithm. RCA assigns two different sets of weights for each data point: the first set of constrained weights
represents degrees of sharing, and is used to create a competitive environment and to generate a fuzzy partition of the data set.
The second set corresponds to robust weights, and is used to obtain robust estimates of the cluster prototypes. By choosing an
appropriate distance measure in the objective function, RCA can be used to find an unknown number of clusters of various shapes
in noisy data sets, as well as to fit an unknown number of parametric models simultaneously. Several examples, such as
clustering/mixture decomposition, line/plane fitting, segmentation of range images, and estimation of motion parameters of multiple
objects, are shown.

Index Terms—Robust clustering, fuzzy clustering, competitive clustering, robust statistics, optimal number of clusters, linear
regression, range image segmentation, motion estimation.
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1 INTRODUCTION

RADITIONAL clustering algorithms can be classified into
two main categories [23]: hierarchical and partitional.

In hierarchical clustering, the number of clusters need not
be specified a priori, and problems due to initialization and
local minima do not arise. However, since hierarchical
methods consider only local neighbors in each step, they
cannot incorporate a priori knowledge about the global
shape or size of clusters. As a result, they cannot always
separate overlapping clusters. Moreover, hierarchical clus-
tering is static, and points committed to a given cluster in
the early stages cannot move to a different cluster.

Prototype-based partitional clustering algorithms can be
divided into two classes: crisp (or hard) clustering where
each data point belongs to only one cluster, and fuzzy
clustering where every data point belongs to every cluster
to a certain degree. Fuzzy clustering algorithms can deal
with overlapping cluster boundaries. Partitional algorithms
are dynamic, and points can move from one cluster to an-
other. They can incorporate knowledge about the shape or
size of clusters by using appropriate prototypes and dis-
tance measures. These algorithms have been extended to
detect lines, planes, circles, ellipses, curves and surfaces [1],
[6], [8], [29]. Most partitional approaches use the alternating
optimization technique, whose iterative nature makes them
sensitive to initialization and susceptible to local minima.

Two other major drawbacks of the partitional approach are
the difficulty in determining the number of clusters, and the
sensitivity to noise and outliers.

In this paper, we describe a new approach called Robust
Competitive Agglomeration (RCA), which combines the
advantages of hierarchical and partitional clustering tech-
niques [14]. RCA determines the “optimum” number of
clusters via a process of competitive agglomeration [15],
while knowledge about the global shape of clusters is in-
corporated via the use of prototypes. To overcome the sen-
sitivity to outliers, we incorporate concepts from robust
statistics. Overlapping clusters are handled by the use of
fuzzy memberships. The algorithm starts by partitioning
the data set into a large number of small clusters which
reduces its sensitivity to initialization. As the algorithm
progresses, adjacent clusters compete for points, and clus-
ters that lose the competition gradually vanish. However,
unlike in traditional hierarchical clustering, points can
move from one cluster to another. RCA uses two different
sets of weights (or memberships) for each data point: the
first one is a set of probabilistically constrained member-
ships that represent degrees of sharing among the clusters.
The constraint generates a good partition and introduces
competition among clusters. The second set of member-
ships is unconstrained or possibilistic [40], [11], [30], and
represents degrees of “typicality” of the points with respect
to the clusters. These memberships are used to obtain ro-
bust estimates of the cluster prototypes.

The organization of the rest of the paper is as follows. In
Section 2, we briefly review other related approaches. In
Section 3, we present the RCA algorithm. In Section 4, we
illustrate the power and flexibility of RCA to incorporate
various distance measures. In Section 5, we describe the
application of RCA to segmentation of range images. In
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Section 6, we formulate a multiple model general linear
regression algorithm based on RCA and apply it to simul-
taneous estimation of motion parameters of multiple ob-
jects. Finally, Section 7 contains the conclusions.

2 RELATED WORK

Most prototype-based partitional clustering algorithms
such as K-Means and Fuzzy C-Means (FCM) [1] assume
that the number of clusters, C, is known. Moreover, since
they use a least squares criterion, they break down easily
(i.e., the prototype parameter estimates can be arbitrarily
wrong [18]) in the presence of noise. The goal of clustering
is to identify clusters in the data set. This implicitly as-
sumes that we have a definition for a valid cluster. Thus,
the idea of break down [18] can be extended to the clus-
tering domain via the use of validity [9]. When the num-
ber of clusters, C, is known, the ideal cluster breaks down
only when the outliers form a valid cluster with a cardi-
nality higher than the cardinality, Nmin, of the smallest
good cluster. This gives us the theoretical breakdown
point of Nmin/N, where N is the number of points in the
data set. Recent solutions to robust clustering when C is
known can be divided into two categories. In the first
category are algorithms that are derived by modifying the
objective function of FCM [35], [7], [30]. These algorithms
are still sensitive to initialization and other parameters [9].
The algorithms in second category incorporate techniques
from robust statistics explicitly into their objective func-
tions. A notable non-fuzzy clustering algorithms in this
category is the K-Medoids algorithm [25]. Bobrowski and
Bezdek [3] proposed an L1-norm-based fuzzy clustering
algorithm which also falls into this category. However,
there is no mention of robustness in this paper. A variation
of this algorithm that is motivated by robustness can be
found in [26]. Another early fuzzy clustering algorithm
(on which RCA is based) is the Robust C-Prototypes (RCP)
algorithm [12], which uses the M-estimator [22]. The
Fuzzy Trimmed C Prototypes (FTCP) algorithm [27] uses
the least trimmed squares estimator [36], the Robust
Fuzzy C Means (RFCM) algorithm [4] again uses the M-
estimator in a different way, and the Fuzzy C Least Me-
dian of Squares (FCLMS) algorithm [34] uses the least
median of squares estimator [36]. FTCP and FCLMS can
achieve the theoretical breakdown point of Nmin/N with a
trivial modification to their objective functions. However,
in theory, they both require an exhaustive search. To re-
duce the computational complexity, a heuristic search is
used in [27] and a genetic search is used in [34].

When C is unknown, one way to state the clustering
problem is to find all the valid clusters in the data set (see
[9] for a more precise definition). In this case, the ideal algo-
rithm will not break down because it will identify all the
“good” clusters correctly (say, by exhaustive search), in ad-
dition to some spurious ones. An alternative way to state
the problem is: identify only all the valid clusters formed by
the good data. In this case, the ideal algorithm will break
down when the outliers form a valid cluster, giving us the
breakdown point of Nminval/N, where Nminval is the minimum
number of points required to form a valid cluster. Note that

a given clustering algorithm may not achieve these theo-
retical breakdown points.

The traditional approach to determining C is to evalu-
ate a certain global validity measure of the C-partition for
a range of C values, and then pick the value of C that op-
timizes the validity measure [2], [23], [16], [28]. An alter-
native is to perform progressive clustering [10], [28], [29],
where clustering is initially performed with an overspeci-
fied number of clusters. After convergence, spurious
clusters are eliminated, compatible clusters are merged,
and “good” clusters are identified. Another variation of
progressive clustering extracts one cluster at a time [24],
[43]. These approaches are either computationally expen-
sive, or rely on validity measures (global or individual)
which can be difficult to devise. Robust approaches to
clustering when C is unknown treat the data as a mixture
of components, and use a robust estimator to estimate the
parameters of each component. The Generalized MVE
(GMVE) [24], which is based on the Minimum Volume
Ellipsoid estimator [36], the Model Fitting (MF) algorithm
[44], and the Possibilistic Gaussian Mixture Decomposi-
tion (PGMD) algorithm [43] are some examples. In the
above approaches, the data set is classified into a set of
“inliers,” i.e., points belonging to a cluster, and a set of
“outliers.” Since the set of outliers includes points from
other clusters, the proportion of outliers can be very high.
Therefore, even the use of a robust estimator with the
theoretical-best breakdown point of 50 percent is not suffi-
cient to make these algorithms highly robust. To overcome
this problem, these algorithms consider the “validity” of
the cluster formed by the inliers, and try to extract every
valid cluster in the data set. In order to guarantee a good
solution, the GMVE and PGMD use many random ini-
tializations. Cooperative Robust Estimation (CRE) [5] and
MINPRAN [38] are two other robust model-fitting ap-
proaches that fall into this category. The CRE algorithm
attempts to overcome the low breakdown point of M-
estimators by initializing a large number of hypotheses
and then selecting a subset of the initial hypotheses
based on the Minimum Description Length (MDL) crite-
rion. The CRE technique assumes that the scale (q in [5])
is known. MINPRAN assumes that the outliers are ran-
domly distributed within the dynamic range of the sen-
sor, and the noise (outlier) distribution is known. Be-
cause of these assumptions, CRE and MINPRAN do not
easily extend to the clustering domain. If the data is ex-
pected to have multiple curves, MINPRAN seeks one
curve/surface at a time. In [9], the relation between the
above progressive approaches and other robust cluster-
ing algorithms is explored.

When the clusters overlap, the idea of extracting them in
a serial fashion will not work. Removing one cluster may
partially destroy the structure of other clusters, or we might
get “bridging fits” [38]. Fig. 2a shows one such noisy data
set with two crossing clusters. The algorithm we propose is
designed to overcome this drawback. Moreover, all the cur-
rent algorithms use hard finite rejection [19], i.e., points
within an inlier bound are given a weight of one, and
points outside the bound are given a weight of zero. This
means that these algorithms do not handle the “region of
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doubt” [36] very well. To overcome this problem, we use
smooth [19], [36] or fuzzy rejection, where the weight func-
tion drops to zero gradually.

3 THE ROBUST COMPETITIVE AGGLOMERATION
(RCA) ALGORITHM

3.1 Algorithm Development
Let ;�= {xj | j = 1, ¡, N} be a set of N vectors in an n-
dimensional feature space with coordinate axis labels (x1,
L, xn). Let B = (b1, ¡, bC) represent a C-tuple of prototypes,
each of which characterizes one of the C clusters. Each bi

consists of a set of parameters. The Fuzzy C-Means algo-
rithm [1] minimizes:
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In (1), dij
2  represents the distance of feature vector xj from

prototype bi, uij represents the degree to which xj belongs to
cluster i, U = [uij] is a C � N matrix called the constrained
fuzzy C-partition matrix, and m ³ [0, �) is known as the
fuzzifier. Jm, which is essentially the sum of (fuzzy) intra-
cluster distances, has a monotonic tendency, and has the
minimum value of zero when C = N. Therefore, it is not
useful for the automatic determination of C. To overcome
this drawback, we add a second regularization term to pre-
vent overfitting the data set with too many prototypes. The
resulting objective function JA is:
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which is minimized subject to the constraint in (2). In (3),
the second term is the negative of the sum of the squares of
the cardinalities of the clusters and is minimized when the
cardinality of one of the clusters is N and the rest of the
clusters are empty. With a proper choice of a, we can bal-
ance the two terms to find a solution for C. JA is still not ro-
bust, since the first term is a least squares objective func-
tion. Therefore, we robustify JA to yield the objective func-
tion for the proposed RCA algorithm as follows:
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In (4), ri() is a robust loss function associated with cluster i,

and w w d d dij i ij i ij ij= = � �2 2 24 9 4 9r /  represents the “typicality”

of point xj with respect to cluster i. The function ri() corre-
sponds to the loss function used in M-estimators of robust
statistics and wi() represents the weight function of an
equivalent W-estimator (see [18], for example). This par-
ticular choice for robustification is motivated by the need to
keep the computational complexity low. The loss function
reduces the effect of outliers on the first term, and the

weight function discounts outliers while computing the
cardinalities. By selecting dij and the a prudently, JR can be
used to find compact clusters of various types while parti-
tioning the data set into a minimal number of clusters.

To minimize JR with respect to the prototype parameters,
we fix U and set the derivative of JR with respect to bi to
zero, i.e.,
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Further simplification of (5) depends on ri() and dij. Since
the distance measure is application dependent, we will
return to this issue in Section 4. To minimize (4) with re-
spect to U subject to (2), we apply Lagrange multipliers
and obtain
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We then fix B and solve
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Equations (7) and (2) represent a set of of N � C + N linear
equations with N � C + N unknowns (ust and lt). A compu-
tationally simple solution can be obtained by computing
the term S j

N
sj sjw u=1  in (7) using the memberships from the

previous iteration. This yields:
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Solving for lt using (8) and (2) and substituting in (8), we
obtain the following update equation for the membership
ust of feature point xt in cluster bs:
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where ust
RR  is the degree to which cluster s shares xt (com-

puted using robust distances), and ust
Bias  is a signed bias

term which depends on the difference between the robust
cardinality, N w us j

N
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The bias term, ust
Bias , is positive (negative) for clusters
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with cardinality higher (lower) than average, and hence the
membership of xt in such clusters will appreciate (depreci-
ate). When a feature point xj is close to only one cluster (say
cluster i), and far from other clusters, we have N Ni j  , or

uij
Bias   0, implying no competition. On the other hand, if a

point is roughly equidistant from several clusters, these
clusters will compete for this point based on cardinality.
When the cardinality of a cluster drops below a threshold,
we discard the cluster, and update the number of clusters.

It is possible for uij to become negative if Ni is very small
and point xj is close to other dense clusters. In this case, it is
safe to set uij to zero. It is also possible for uij to become
larger than one if Ni is very large and feature point xj is
close to other low cardinality clusters. In this case, it is
clipped to one. This practice is customary in optimization
theory.

The process of agglomeration, controlled by a, should
be slow in the beginning to encourage the formation of
small clusters. Then it should be increased gradually to
promote agglomeration. After a few iterations, when the
number of clusters becomes close to the “optimum,” the
value of a should again decay slowly to allow the algo-
rithm to converge. Therefore, an appropriate choice of a in
iteration k is
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In (10), a and h are functions of the iteration number k, and
the superscript (k - 1) is used on uij, dij

2 , and wij to denote

their values in iteration k - 1. A good choice for h is
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where h0 is the initial value, t is the time constant, and k0

is the iteration number at which h starts to decrease. In
all examples presented in this paper (except in Section 5,
where these parameters were fine-tuned for best per-
formance), we choose h0 = 1, k0 = 5, and t = 10. With
proper initialization, these values are reasonable regard-
less of the application. Initialization issues are discussed
in Section 7.

3.2 Choice of the Weight Function
In curve/surface fitting or linear regression, it is reasonable
to assume that the residuals have a symmetric distribution
about zero. Therefore, we choose Tukey’s biweight function
[18] given by
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where rij
*  stands for the normalized residual defined as:
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In (12) to (14), rij is the residual of the jth point with respect
to the ith cluster, Medi is the median of the residuals of the
ith cluster, and MAD is the median of absolute deviations
[18] of the ith cluster. In other words, in each iteration, the
data set ; is crisply partitioned into C components ;i,
for i = 1, L, C, and Medi and MADi are estimated for each
cluster.

When distances (rather than residuals) are used, the
symmetric distribution assumption does not hold. We sug-
gest a monotonically nonincreasing weight function wi(d

2) :
5+ � [0, 1] such that wi(d

2) = 0 for d2 > Ti + cSi, where c is a
constant, and Ti and Si are given by
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Choosing wi(0) = 1, wi(Ti) = 0.5, and wi�(0) = 0, results in the
following weight function:
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The corresponding loss function can be shown to be
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In (17) Ki is an integration constant used to make all ri()
reach the same maximum value.
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This choice ensures that all noise points will have the same
membership value in all clusters. Fig. 1 shows the plot of
the weight function and the corresponding loss function.
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In (14), (16), and (17), c is a tuning constant [18],
which is normally chosen to be between four and 12.
When c is large, many outliers will have small nonzero
weights, thus affecting the parameter estimates. On the
other hand, if c is small, only a subset of the data points
will be visible to the estimation process, making conver-
gence to a local minimum more likely. As a compromise,
we start the estimation process with a large value of c,
and then decrease it gradually as function of the iteration
number (k), i.e.,

c c c ck k= --max ,min 1 D2 7                        (18)

with c0 = 12, cmin = 4, and Dc = 1.
The RCA algorithm is summarized in Algorithm 1.

4 EXAMPLES OF DISTANCE MEASURES

As mentioned in Section 3.1, RCA can be used with a vari-
ety of distance measures depending on the nature of the
application. In this section, we discuss distance measures
suitable for ellipsoidal clusters and hyperplanes.

4.1 Detection of Ellipsoidal Clusters
To detect ellipsoidal clusters in a data set, we use the fol-
lowing distance measure [37], [17]:
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In (19), ci is the center of cluster bi, and Ci is its covariance
matrix. (See [31] for an interpretation of dCij
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If we assume Ci = s2In, then (19) reduces to the Euclidean
distance. This simplified version can be used when the
clusters are expected to be spherical.

Fig. 3 illustrates RCA using dCij
2 . Fig. 3a shows a syn-

thetic Gaussian mixture consisting of four clusters of vari-
ous sizes and orientations. Uniformly distributed noise
constituting 40 percent of the total points was added to the
data set. Fig. 3b shows the initial 20 prototypes superim-
posed on the data set, where “+” signs indicate the cluster
centers, and the ellipses enclose points with a Mahalanobis
distance less than nine. These prototypes were obtained by
running the G-K algorithm [17] for five iterations. After two
iterations of RCA, nine empty clusters are discarded (see
Fig. 3c). The number of clusters is reduced to six after three
iterations, and to four after four iterations. The final result
after a total of 10 iterations is shown in Fig. 3d.

To illustrate the ability of RCA to handle nonuniform
noise, Fig. 4 shows the result of RCA on a data set contain-
ing Gaussian clusters with roughly 25 percent noise. To il-

Fig. 1. Plots of the weight and loss functions.

Algorithm 1
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lustrate the ability of the RCA algorithm to detect overlap-
ping clusters, in Fig. 2b we show the result of RCA on the
data set in Fig. 2a. The algorithm converged in 10 iterations.

4.2 Detection of Linear Clusters
To detect clusters that resemble lines or planes, we use a
generalization of the distance measure proposed in [6], [1].
This distance is given by

dLij ik j i ik
k

n
2

2

1

= - �
=
Ên x c e4 94 9 ,                   (22)

where eik is the kth unit eigenvector of the covariance matrix
Ci. The eigenvectors are assumed to be arranged in as-
cending order of the corresponding eigenvalues. The value
of nik in (22) is chosen dynamically in every iteration to

be nik = {lin/lik}, where lik is the kth eigenvalue of Ci. It
can be shown that for the distance measure in (22), the
update equations for ci and Ci are given by (20) and (21),
respectively.

Fig. 5a shows an image consisting of 10 line segments in
a noisy background. Fig. 5b shows the 20 initial prototypes
obtained by running the AFC algorithm [6] for five itera-
tions. After two iterations of RCA, the number of clusters
drops to 15 as shown in Fig. 5c. After nine iterations, the
number of clusters reduces to the “optimal” number and
the algorithm converges after a total of 12 iterations. The
final result is shown in Fig. 5d.

5 APPLICATION TO RANGE IMAGE SEGMENTATION

5.1 Planar Range Image Segmentation
Since planar surface patches can be modeled by flat ellip-
soids, the distance measure dCij

2  in (19) can also be used to

find the optimal number of planar patches. To avoid miss-
ing tiny surfaces, we start by dividing the image into non-
overlapping windows of sizes Ws � Ws. Then, we apply
RCA in each window with C = Cmax to estimate the optimal
number of planar patches within the window. Finally, we
pool the resulting (say M) prototypes to initialize the RCA
algorithm with C = M. Because of the nature of dCij

2 , planar

surfaces with nonconvex shapes may be approximated by
several planar patches, or several spatially disconnected
planar patches may be approximated by a single cluster.

Fig. 2. (a) Original data set noisy data set with two overlapping clusters. (b) Result of RCA.

Fig. 3. Results on a noisy data set with ellipsoidal clusters. (a) Original image. (b) Initial prototypes. (c) Results after two iterations. (d) Results
after 10 iterations (convergence).

Fig. 4. Clustering six ellipsoidal clusters with nonuniform noise. (a) Original
data set. (b) Result of RCA.
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Therefore, after RCA converges, we merge compatible
clusters [28] that are adjacent. We then perform connected
component labeling on each cluster and assign different
labels to disjoint regions.

The above RCA-based algorithm was tested on two
standard data sets, ABW data set and perceptron data set,
that were created for bench-marking range image segmen-
tation algorithms [20]. Each set contains 40 images of size
512 � 512, and has been randomly divided into a 10-image
training set and a 30-image testing set. We use the perform-
ance measures developed by Hoover et al. [20] to evaluate
the performance of RCA. These measures rely on compar-
ing the Machine Segmented (MS) image and the Ground
Truth (GT) image and classify the regions into one of the
five categories:

1)� correct detection,
2)�oversegmentation,
3)�undersegmentation,
4)�missed, and
5)�noise.

The accuracy of the segmentation is quatified by comput-
ing the average and standard deviation of the differences
between the angles made by all pairs of adjacent regions
that are instances of correct detection in the MS and GT
images. The above data sets and performance measures
have been used in [20] to compare the University of South
Florida (USF), University of Edinburgh (UE), Washington
State University (WSU), and University of Bern (UB) seg-
mentation algorithms. Here, we will reproduce the same
set of experiments and include the RCA algorithm in the
comparison.

In the training phase, we fine-tuned the parameters of
RCA as follows: window size used in the initialization Ws

= 128; initial number of prototypes in each window Cmax =
15; (h0, t) = (2, 20) (see (10)). These parameters are opti-
mal for both ABW and Perceptron data sets. Since the
Perceptron data is more noisy, we use cmin = 4, and for the
ABW data, cmin = 8. Also, to reduce computations, all im-
ages were subsampled in the x and y directions by a
factor of three. These parameters are all then fixed in the
testing phase.

Fig. 6a shows the intensity image of one of the ABW test
images. The segmented range image is shown in Fig. 6b.
The shaded gray regions correspond to background points

that are ignored during segmentation. Fig. 7 shows an ex-
ample from the Perceptron data set. As in [20], we compute
the performance metrics of the five segmentation algo-
rithms while varying the compare tool tolerance from 51
percent to 95 percent. Due to space limitation, we show
only plots of the correct detection measure (Fig. 8). The per-
formance measures using an 80 percent compare tolerance
for all five segmenters are listed in Table 1 for the ABW
data and Table 2 for the Perceptron data. RCA compares
very well with the best segmenters.

Among the five planar surface segmenters in the com-
parison, UE, WSU, and RCA have the capability to segment
curved surfaces. RCA has the additional advantage that it
can handle irregularly spaced sparse data as well (e.g.,
range data computed from stereo methods).

Fig. 5. Results on a noisy data set with linear clusters. (a) Original image. (b) Initial prototype. (c) Results after two iterations. (d) Results after 12
iterations (convergence).

Fig. 6. Segmentation of an ABW testing image. (a) Intensity image.
(b) Result of RCA.

Fig. 7. Segmentation of a Perceptron testing image. (a) Intensity im-
age. (b) Result of RCA.
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5.2 Quadric Range Image Segmentation
Let the ith prototype bi, represented by the parameter vec-
tor pi, define the equation of a quadric surface as p qi

T = 0 ,
where

pi
T

i i ip p p= 1 2 10, , . . . , ,

qT = [x2, y2, z2, xy, xz, yz, x, y, z, 1],

and

x = (x, y, z)

is a 3D point. Since the exact distance from a point xj to a
quadric surface bi has no closed-form expression, we use
the approximate distance [39], [13] given by

dAij
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,                (23)

where D(qj) is the Jacobian of q evaluated at xj. To avoid the
all-zero trivial solution for pi, the following constraint may
be chosen [39]
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Starting from (5), it can be shown that the use of dAij leads to
a solution of pi based on the following generalized eigen-
vector problem: Fipi = liGipi, where
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To obtain a reliable initialization, we divide the image into
small nonoverlapping windows and apply RCA in each

Fig. 8. Performance measures on 30 test images. (a) ABW data. (b) Perceptron data.

TABLE 1
RESULTS OF FIVE SEGMENTERS ON 30 ABW TEST IMAGES AT 80 PERCENT COMPARE TOLERANCE

TABLE 2
RESULTS OF FIVE SEGMENTERS ON 30 PERCEPTRON TEST IMAGES AT 80 PERCENT COMPARE TOLERANCE
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window with C = 1. Finally, we pool the resulting prototype
parameters to initialize the RCA algorithm. Initially, there
might be several initial prototypes corresponding to the
same surface. However, due to competition, only one of
these surfaces will survive.

The examples used in this section consist of some 240 �
240 real and some synthetic range images.1 A sampling rate
of three in the x and y directions was used to reduce com-
putations. 30 � 30 windows were used to estimate the initial
prototypes. Fig. 9a shows a synthetic range image of a
plastic pipe. Fig. 9b shows the initial 36 surface patches.
These patches were generated after assigning each point
to the nearest prototype. Fig. 9c shows the final results,
where each each surface is displayed with a different gray
value, and the boundaries are shown in black. Fig. 10a
shows a real range image of three plastic pipes of different
sizes and orientations. The final results of the RCA algo-
rithm consisting of the correctly identified surfaces are
shown in Fig. 10b.

To test the robustness of RCA, Gaussian noise (with s = 4)
was added to the image in Fig. 9a, and about 10 percent of
the data points were randomly altered to become outliers.
The results are shown in Fig. 11, where noise points (i.e.,
points with zero weight (wij) in all clusters) are shown in
black.

6 ESTIMATION OF MULTIPLE MOTION GROUPS AND
SEGMENTATION

In this section, we show how RCA can be used to perform
multiple model linear regression and apply it to estimation
of the motion parameters of multiple motion groups.

6.1 General Linear Regression
The General Linear Regression (GLR) [21] for solving a set
of homogeneous equations for motion parameters can be
written as: Xb = r, where XT = (x1 | L |xN) is the design
matrix with xi = (1, xi1, L, xip)

T, b = [b0, b1, L, bp]
T is the pa-

rameter vector, and r = [r0, r1, L, rp]
T is the residual vector.

Since the system is homogeneous, we can fix b0 = -1 and
reformulate the GLR model as: -1 + X* b* = r, where 1 de-
notes an N-dimensional vector with every component equal

1. These images were obtained from Michigan State University and
Washington State University via anonymous ftp.

to one, X = [1 | X*], and bT = [-1, b*T]. GLR can be solved by
the least squares minimization:

min min
* *b b

Si ir
2 2= r ,

with the solution:

b* = (X*TXT)-1X*T1.

However, least squares is very sensitive to noise. An alter-
native is the weighted least squares:

min
*b

Si i iw r2 ,

with the solution:

b* = (X*TWXT)-1X*TW1,

where W = diag(w1, L, wN).
If a data set contains multiple models, the GLR model

must be applied repetitively to extract one model at a time.
This approach is computationally expensive, requires mod-
els to be well-separated, needs a high breakdown estimator
(since while extracting the ith model, all other models are
considered as outliers), and is sensitive to initialization. To
deal with these problems, we propose the Multiple-Model
General Linear Regression (MMGLR) method, which al-
lows the simultaneous estimation of an unknown number
of models.

6.2 Multiple-Model General Linear Regression
Let the ith model with the parameter vector bi = [bi0, bi1, L,
bip]

T, be represented by

Fig. 9. Segmentation of a synthetic range image. (a) Original range image. (b) Initial approximation. (c) Final result of RCA.

Fig. 10. Segmentation of a real range image. (a) Original range image.
(b) Result of RCA.
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bi0 + bi1xj1 + bi2xj2 + L + bipxjp = rij,   for 1 � j � N,

where rij is the residual corresponding to the jth data vector
in the ith model. MMGRL minimizes (4) (where dij

2  is re-

placed by rij
2 ) subject to the constraint in (2). Solving (5)

corresponding to this situation leads to

�
� - + =b b

i
i i iU W 1 X1 2

2
0/ * *4 9 ,

where

Ui = diag(ui1, L, uiN),

and

Wi i iNw w1 2
1

1 2 1 2/ / /, . . . ,= diag4 9 .
The resulting update equation for the parameters is:

b i
T

i i
T T

i i
* * *=

-
X U W X X U W 12 1 24 9 .                  (24)

In linear regression, it is customary to use the studen-
tized residuals

r r hj j jj
* /= -1 ,

where hjj is the jth diagonal element of the hat matrix H =
X(XTX)-1XT. Huang et al. [21] showed that the corresponding
hat matrix for GLR is H* = X*(X*TX*)-1X*T. To extend this prin-
ciple to the MMGLR, we compute C hat matrices (i.e., one
per model), as

H W U X W U X X W U Xi i i i i
T

i i
T* * * * *=

-2 2 4 1 24 9 .           (25)

The residuals can be normalized as

r r hij ij jj
i* */= -1 0 5 .

However, this normalization introduces a bias towards
noise points (wij < 0) or points belonging to other models

(uij < 0). In this case, hjj
i*0 5   0 , and hence no normalization

takes place. Also, residuals will be inflated for points which
are typical of the ith model since they are divided by a fac-
tor smaller than one. Therefore, we modify the normaliza-
tion process as follows:
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where h hi j jj
i

max
*

,
*max= 0 5 . In other words, points that are

known to be atypical of the ith model are forced to receive
the maximum possible inflation factor.

MMGLR can be used to estimate the motion parameters
of multiple objects in the same scene. The instantaneous
velocity &p t0 5  of a point p = (x, y, z)T located on the surface of
a translating object rotating with an instantaneous angular
velocity w(t) = (w1, w2, w3)

T is characterized by

&p p kt t t t0 5 0 5 0 5 0 5= � +w ,

where k(t) = (k1, k2, k3)
T is a vector involving translation. Let

(X(t), Y(t)) be the 2D prespective projection of p(t) onto the
image plane at Z = 1, and let (u(t), v(t)) denote its projective
instantaneous velocity. Motion estimation consists of solv-
ing for w and k using a set of N observations (Xj, Yj)

T and
their corresponding (uj, vj)

T for j = 1 L N. This can be done
by solving Ah = 0, where

A = a a aT T
N
T

1 2, , . . . , ,

a j j j j j j j j j j j j j

T
X Y X Y X Y v u v X u Y= - -1 2 2 22 2, , , , , , , ,

and

h = [h0, h1, h2, h3, h4, h5, h6, h7, h8]
T.

Once h has been determined, the motion parameters w and k
can be easily obtained [42]. Since h is nine-dimensional and
Ah = 0 represents a set of homogeneous equations, we need
only eight observations to solve for the optical flow [42].

When a scene consists of C independently moving ob-
jects, the motion of each object can be characterized by a
different vector hi. In this situation, we need to solve Ahi = 0
for i = 1, L, C. MMGLR solves this set of equations where
X and bi correspond to A and hi, respectively. It finds C
automatically.

MMGLR requires an overspecified number (C) of initial
parameter estimates. We obtain each one of these estimates
by solving Ah = 0 on a randomly selected subset of eight

Fig. 11. Segmentation of a noisy range image. (a) Noisy range image. (a) Cross-section of the image along row 170. (c) Result of RCA.
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observations. These C estimates are then pooled together to
initialize the MMGLR algorithm. To ensure a reliable result,
the initial number of models C needs to be high. However,
since C decreases drastically in the subsequent iterations,
this method is still efficient. Since MMGLR allows points to
move from one model to another, and since fuzzy rejection
allows points to change from inliers to outliers and vice versa
smoothly, we can afford to use a smaller number of initiali-
zations than algorithms based on hard rejection. In both ex-
periments described in this subsection, we use C = 50.

Fig. 12a shows a synthetic 3D scene consisting of four
touching rigid objects, each undergoing a motion with dif-
ferent rotational and translational velocities. Fig. 12b dis-
plays the subsampled and scaled true optic flow field. We
contaminated this optic flow field with Gaussian noise
(SNR = 70) and additionally altered 20 percent of the obser-

vations randomly to make them outliers. The resulting op-
tic flow field is shown in Fig. 12c. MMGLR succeeds in de-
termining the correct number of motion groups in the
scene. It also estimates their motion parameters accurately,
as shown in Table 3. Fig. 12d shows the segmented optic
flow field where each motion group is represented by a
different symbol. The correctly identified outliers (points
having zero weight wij in all models) are shown as black
dots in Fig. 12d. The recovered optic flow field is shown in
Fig. 12e.

Fig. 13a and Fig. 13b show two 512 � 512 subimages of
the 13th and 14th frames in a motion sequence [32] con-
taining a moving truck. In this experiment, the background
motion (due to camera panning) is treated as another mo-
tion group to create a multiple motion scenario. We selected
30 target points on the vehicle and another 30 points from

Fig. 12. Estimation of multiple motion groups. (a) Range image of four moving objects. (b) True optic flow field. (c) Contaminated optic flow field.
(d) Segmented optic flow field. The “•” symbols indicate the detected outliers. (e) Reconstructed optic flow.
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the background. The matches of these 60 points were com-
puted using a robust matching algorithm [41] and verified
manually. To illustrate the robustness of MMGLR, we
added another 10 target points with erroneous matches. All
70 points are marked “+” in Fig. 13a and Fig. 13b. The tar-
get points and their matches were first converted from pixel
coordinates to image coordinates, and then calibrated [32].
Finally, all target points were integrated to form the mixture
data set

{(Xi, Yi), (ui, vi)}, i = 1, L, 70,

where (Xi, Yi) is the image coordinates of the ith target point
in the 13th frame and (ui, vi) is its displacement vector.

The “ground truth” for the vehicle motion is unknown.
Also, since the rotation angle of the truck is too small (about
5o), it could not be estimated reliably using two-view point
correspondence and three-view line correspondence algo-
rithms [33]. Since we are testing the robustness of MMGLR
and its ability to detect multiple models, and not the per-
formance of the linear optic flow algorithm, we compare
our results with those obtained when the linear optic flow
algorithm is supplied with the correct data subset for each
motion (see Table 4). MMGLR was first run with only the 60
good target points and then with the added outliers. In both
cases, the algorithm was able to detect the correct number
of motion groups (=2) and estimate their parameters cor-

TABLE 3
ACTUAL AND ESTIMATED MOTION PARAMETERS FOR THE OBJECTS IN FIG. 12A

TABLE 4
ESTIMATED PARAMETERS FOR THE VEHICLE AND BACKGROUND MOTIONS SHOWN IN FIG. 13

Fig. 13. Vehicle and background motions. (a) The 13th image frame with 70 target points. (b) The 14th image frame with the matching target
points.



462 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  21,  NO.  5,  MAY  1999

rectly. Fig. 14 shows the partition of the optic flow field,
where the two motion groups and the detected outliers are
denoted by different symbols.

7 DISCUSSION AND CONCLUSIONS

7.1 General Comments
RCA is an attempt at addressing the three main issues of
partitional clustering algorithms (the difficulty in deter-
mining the number of clusters, sensitivity to initializa-
tion, and sensitivity to outliers), without sacrificing
computational efficiency. RCA minimizes a fuzzy objec-
tive function in order to handle overlapping clusters.
Constrained fuzzy memberships are used to create a
competitive environment that promotes the growth of
“good” clusters. Possibilistic memberships [30] are used
to obtain robust estimates of the prototype parameters.
Concepts from robust statistics have been incorporated
into RCA to make it insensitive to outliers. To handle the
region of doubt, and to reduce the sensitivity to initiali-
zation, RCA uses soft finite rejection. The agglomerative
property makes it relatively insensitive to initialization
and local minima effects. By using suitable distance
measures, we can apply this algorithm to solve many
computer vision problems. The choice of a in (10) is
quite critical to the algorithm. However, a can be chosen
by trial and error to produce stable results for a given
application. The variety of examples presented in this
paper show that this is possible and that RCA can pro-
vide robust estimates of the prototype parameters even
when the clusters vary significantly in size and shape,
and the data set is contaminated.

7.2 Computational Complexity
The RCA algorithm has a computational complexity similar
to that of FCM [1], which is 2(NC) in each iteration. Here, N
is the number of data points, and C is the number of clus-
ters. However, additional time is required to estimate the
weight function w(d2) which requires us to compute the

median of the squared distances twice (first to compute the
median, then to compute the MAD). The median of a data
set can be computed iteratively using

x
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This procedure converges in 2(log N) passes through the
data set. Since the distribution of the squared distances
does not change significantly in one iteration, this proce-
dure converges even faster when the median of the previ-
ous iteration is used to initialize the computation of the
median of the current iteration. Thus, the overall complex-
ity can be estimated as 2(N log N + NC) per iteration, or
2(NK(log N + C)), where K is the number of iterations. It is
to be noted that the value of C varies from Cmax to Cfinal. Ex-
cept for the application to motion analysis, in all other cases
we use a standard algorithm such as FCM to initialize RCA.
Therefore, the initialization overhead is 2(NkCmax), where k
is a small (< 5) integer.

7.3 Breakdown Issues
As discussed in Section 2, when C is known, the breakdown
point is Nmin/N, and when C is unknown, the breakdown is
either undefined or N Nminval / . These results were derived
by the use of validity, and an ideal clustering algorithm
would use a validity measure and an expensive exhaustive
search to achieve this level of robustness [9]. However, va-
lidity measures are hard to define in practice unless the
distribution of the good points is known. Moreover, devia-
tions from the assumed distribution can occur with widely
varying degrees in real applications, and it is hard to choose
thresholds when their optimal values can vary widely
among different data sets, and even among clusters in the
same data set.

RCA is a general purpose algorithm that attempts to
achieve robustness with reasonable computational com-
plexity. This is the rationale behind the choice of the M-
estimator to robustify RCA. This choice limits the break-
down point of RCA to 1

1p+ , where p is the dimensionality of

the parameter vector to be estimated. However, since RCA
starts with a large number of initial prototypes, it is possi-
ble to increase its robustness under certain conditions. RCA
uses the initial prototypes to generate a partition. The algo-
rithm consists of updating the weight function for each
component of the partition, then updating the member-
ships, and then finally updating the prototypes. This proc-
ess is repeated until convergence. Since the weight function
uses the median and MAD, it can tolerate up to 50 percent
noise points (within the component) provided it starts with
a good initialization.

Let there be C actual clusters. Let the good points
from the kth actual cluster be given the label “k,” k = 1, 2,
L, C, and let the noise points be labeled “0.” Let the
(hard) partition corresponding to the Cmax initial proto-
types be labeled as follows. If a given component has
only noise points, it is labeled “0,” otherwise it is labeled

Fig. 14. Results of MMGLR. The motion group corresponding to the
truck is denoted by squares, and the motion group corresponding to
the background is denoted by circles. The detected outliers are shown
as “+” signs.
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“i,” where i is the label of the majority of good points in
the component. Let Pi

max  denote the largest component
with the label i. For the RCA algorithm to give robust
results, we require an initialization that satisfies the fol-
lowing conditions:

1)�There exists at least one component that has the label
i, for all i = 1, L,C.

2)�The prototype corresponding to Pi
max  is a good point

of the ith actual cluster.
3)�The largest component labeled “0” is smaller than

Pi
max , i = 1, L, C.

4)� Pi
max  contains more than 50 percent of the points la-

beled “i.”

Since the cluster region by definition is denser than the
noise region, by using a sufficiently large number of
prototypes, it is usually possible to achieve an initializa-
tion to meet these conditions in practice. Initial proto-
types placed in the cluster region will naturally have
larger cardinalities and those in the noise region will
have smaller ones. Conditions 1 to 4 need to be satisfied
in the following iterations as well, to guarantee that the
algorithm will converge to a correct result. However,
since cardinalities are replaced by robust cardinalities in
the subsequent iterations, it becomes easier to satisfy
these conditions. When the components coalesce and
form the final result, each noise point will be crisply as-
signed to one of the components while computing the
weight function. In the worst case, all noise points can be
assigned to the smallest cluster. Therefore, Conditions 3
and 4 translate to the requirement that the number of
noise points be smaller than the cardinality of the small-
est cluster. Thus, when Conditions 1 to 4 are satisfied,
RCA can achieve the theoretical breakdown point. A
similar discussion applies to nonpoint prototypes as
well, with minor modifications. In this case, each initial
prototype can be generated with n data points, where n
is the number of parameters in the prototype.

7.4 Initialization Issues
From the above discussion, it is clear that initialization
plays a very important role in the RCA algorithm. The ini-
tialization procedure necessarily varies with the type of
prototypes used, the distance measure used, the type of
data, and finally the application. We now outline some
guidelines for initialization.

We can compute a theoretical value for the initial num-
ber of clusters, Cmax, as follows. Let there be Cexp number of
actual clusters expected in the data set, let Ni denote the
cardinality of cluster i, and let n be the number of points
required to generate a prototype. If we randomly pick n
points to generate a prototype, then the probability p that
we pick Cexp good prototypes, one from each cluster, is
given by

p
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If this selection is repeated K times, the probability that one
of these selections generates good prototypes for all Cexp

clusters is given by Pg = 1 - (1 - p)K. For a given value of Pg,
we can compute the value of K as,
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and Cmax can be estimated as Cmax = K � Cexp. This value of
Cmax grows exponentially with Cexp and n and therefore is
unrealistic.

In practice, an existing clustering algorithm (such as
FCM [1], GK [17], AFC [6]) can be used for initialization.
At the end of such an initialization, although not all Cmax

prototypes are expected to be good, we can assume that
each of the Cexp clusters has a fairly high probability, Pi

init ,
of being represented by one of the Cmax initial prototypes.
For example, consider the case of finding lines in a 2D
data set, i.e., n = 2. If there are N total points, there are
N(N + 1)/2 possible ways to pick a pair of points and
hence N(N + 1)/2 possible random initializations for a
line. However, most of these initializations involve points
that are far away from each other and constitute poor ini-
tializations. On the other hand, an algorithm such as AFC
will use only nearby points, and the probability that two
nearby points belong to the same line is high. If the data
set is an image, then by dividing the image into small
windows and applying a conventional clustering algo-
rithm with a suitable number of clusters in each window
can dramatically increase the value of Pinit. The probability
that all Cexp clusters are represented by the initialization is
given by

p Pi
init

i

Cexp

=
=

º
1

.

In this case, a much smaller number of initial clusters will
suffice.

Based on the above discussion, we suggest the following
rules of thumb. For general clustering, choose Cmax

N
n  *10

and use a simple clustering algorithm (such as FCM) to
generate the initial prototypes. Since good points are, by
definition, in dense regions, this initialization can be ex-
pected to meet the conditions discussed in the previous
subsection. The case of plane and surface fitting can be
handled by dividing the image into small windows and
applying a suitable clustering algorithm in each window. In
the case of regression, the above initialization techniques
are no longer applicable. Hence, we use a random sampling
procedure to generate the prototypes. Because of this ran-
domness, we require a larger value for Cmax. In our applica-
tions, we set Cmax

N
n  .
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