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Abstract

Human speech perception is robust in the face of a wide variety of distortions, both experimentally applied and
naturally occurring. In these conditions, state-of-the-art automatic speech recognition (ASR) technology fails. This
paper describes an approach to robust ASR which acknowledges the fact that some spectro-temporal regions will be
dominated by noise. For the purposes of recognition, these regions are treated as missing or unreliable. The primary
advantage of this viewpoint is that it makes minimal assumptions about any noise background. Instead, reliable regions
are identified, and subsequent decoding is based on this evidence. We introduce two approaches for dealing with un-
reliable evidence. The first — marginalisation — computes output probabilities on the basis of the reliable evidence only.
The second — state-based data imputation — estimates values for the unreliable regions by conditioning on the reliable
parts and the recognition hypothesis. A further source of information is the bounds on the energy of any constituent
acoustic source in an additive mixture. This additional knowledge can be incorporated into the missing data framework.
These approaches are applied to continuous-density hidden Markov model (HMM)-based speech recognisers and
evaluated on the TIDigits corpus for several noise conditions. Two criteria which use simple noise estimates are em-
ployed as a means of identifying reliable regions. The first treats regions which are negative after spectral subtraction as
unreliable. The second uses the estimated noise spectrum to derive local signal-to-noise ratios, which are then thres-
holded to identify reliable data points. Both marginalisation and state-based data imputation produce a substantial
performance advantage over spectral subtraction alone. The use of energy bounds leads to a further increase in per-
formance for both approaches. While marginalisation outperforms data imputation, the latter technique allows the
technique to act as a preprocessor for conventional recognisers, or in speech-enhancement applications. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The sensory occlusion problem
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its environment. One aspect of this challenge is the
need to function with missing or unreliable data.
In vision, for instance, evidence for individual
objects may be incomplete or fragmented due to
occlusion. In recent years, a number of studies
have examined the ‘missing data’ problem in
computer vision (Ahmed and Tresp, 1993; Gha-
hramani and Jordan, 1994). The equivalent prob-
lem in audition has received far less attention
because it is counter to intuition: while objects in a
visual scene are predominantly opaque, acoustic
signals combine additively. Consequently, tech-
niques for robust automatic speech recognition
(ASR) have been developed with the aim of
achieving near-perfect allocation of the acoustic
mixture into contributions from constituent
sources. Examples of such approaches include
hidden Markov model (HMM) decomposition
(Varga and Moore, 1990), parallel model combi-
nation (Gales and Young, 1993) and blind sepa-
ration (Comon, 1994; Bell and Sejnowski, 1995).
However, these techniques presently have a num-
ber of limitations, motivating the alternative hy-
pothesis — that incomplete data is a valid
characterisation of the normal listening situation —
which this paper takes as its starting point.

1.2. Arguments for missing data processing in the
auditory system

Several researchers (Lippmann, 1997; Herman-
sky, 1998; Cooke and Green, in press) argue that
the search for robust ASR has much to gain by
examining the basis for speech perception in lis-
teners. Lippmann (1997) presents evidence from a
wide range of speech recognition tasks which in-
dicates that human error rates are an order of
magnitude smaller than those obtained by ASR
algorithms for clean speech, and two orders of
magnitude smaller for typical noise conditions.
Further, for any given signal-to-noise ratio (SNR),
listeners generally perform at higher levels of
identification for non-stationary maskers (Miller
and Licklider, 1950), whereas current robust ASR
techniques favour, and often assume, stationary
noise back-grounds.

Our proposal is underpinned by evidence that
listeners routinely handle the missing data case in

everyday sound source processing. Several argu-
ments can be advanced in support of this claim.

1. Listeners can cope with missing data. Natural
speech signals which have undergone deliberate
spectro-temporal excisions typically show re-
markably little decrease in intelligibility (Strange
et al., 1983; Steeneken, 1992; Warren et al., 1995;
Lippman, 1996). For example, normal conversa-
tion is viable for speech which has been high- or
low-pass filtered with a cutoff frequency of 1800
Hz (Fletcher, 1953; Allen, 1994). Redundancy in
the speech signal combats the missing data con-
dition.

2. The missing data condition occurs naturally.
Whilst the excisions referred to above are delib-
erate, there are counterparts in everyday listening,
e.g. interfering signals, band-restricted transmis-
sion and channel noise over telephone lines.

3. Masked data is effectively missing data. The
neural code for signal detection exhibits what has
been called the ‘capture effect’ (Moore, 1997), in
that locally more intense sound components
dominate the neural response, whether defined in
terms of firing rate or temporal response pattern.
Locally weaker sound components do not con-
tribute to the neuronal output: they are masked
and therefore can be considered missing for the
purposes of further processing. The everyday au-
ditory scene commonly contains several active
sound sources, any of which constitute a potential
target for the listener’s attention. Local spectro-
temporal variations in target-to-background
intensity will, via the capture effect, lead to in-
complete evidence for each constituent source.

4. The auditory nervous system handles simulta-
neous signals. The auditory system must do more
than process isolated speech sources. In Bregman’s
terms (Bregman, 1990), the ‘auditory scene anal-
ysis’ problem involves organising multiple, con-
current signals into associated perceptual streams.
There must be a neural mechanism which enables
subsequent processes to identify those components
which have been grouped into the same stream.
Solutions to this binding problem (von der Mals-
burg and Schneider, 1986; Liu et al., 1994; Brown
et al., 1996; Brown and Wang, 1997) typically
envisage phase synchronisation of sensory chan-
nels containing signal components deemed to
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Fig. 1. Identifying reliable evidence by computational auditory scene analysis: (a) auditory spectrogram of the TIDigit sequence ‘four
three nine’ in 10 dB factory noise; (b) reliable regions identified by harmonic cues; and (c) reliable regions identified by spatial location.

originate from the same object, which are desyn-
chronised from channels responding to different
objects. Processes sampling the neural array at any
instant will receive an uncorrupted, but incom-
plete, view of one or other constituent source.

1.3. Application to robust ASR

Application of missing data techniques in ro-
bust ASR requires a solution to two problems:

(1) identification of reliable spectro-temporal ev-

idence;

(i) modification of recognition algorithms to

handle incomplete data.

In this paper, our emphasis is on (ii), but in this
section we discuss (i) and relate our methodology
to other approaches to robust ASR.

In the experiments we report, simple noise es-
timation techniques are used as the basis for evi-
dence selection. Like most approaches to robust
ASR (see reviews by Grenie and Junqua, 1992;
Gong, 1995; Furui, 1997; Speech Communication
(special issue) 25 (1-3) (1998)) we are therefore
making use of noise models ! in this paper.

However, the missing data approach does not
presuppose the existence of noise models. There are
alternative solutions to problem (i) based, for in-
stance, on Auditory Scene Analysis (Cooke, 1993;
Brown and Cooke, 1994; Ellis, 1996). To illustrate,

! We use the term ‘noise model’ to refer to any structure (such
as an estimated distribution or an HMM) from which it is
possible to generate typical noise observations.

Fig. 1(a) shows a mixture of speech and factory
noise. In Fig. 1(b) the regions in black have been
assigned to the speech source solely by making use
of harmonicity cues in voiced speech segments.
Another cue for grouping evidence from different
sources is location: this is illustrated in Fig. 1(c),
where inter-aural time differences are used to as-
sign the time-frequency pixels to one of two
sources. Here the auditory scene is simulated, so
that the speech has an ITD of —0.5 ms relative to
the noise. In these examples, properties of the
target source and the auditory scene alone are being
used to identify reliable data.

The ‘primitive grouping’ (Bregman, 1990) used
in these examples exploits properties of the target
source alone, i.e. low-level constraints that reach
back to the physics of sound and the properties of
the auditory and speech production systems. If a
speech recogniser is to function in unpredictable
listening conditions, with an indefinite number of
unidentified sound sources present, which fur-
thermore come and go with time, it seems unre-
alistic to construct and deploy noise models.
However, in situations where noise characteristics
are available, noise models can and should be
used. This applies in the work reported here, but
the theory we present involves no commitment to
any particular method of deciding what data is
missing. We return to these issues in Section 5.3.

1.4. Previous missing data studies

A number of studies into the missing data
problem have been reported (Proc. NIPS, 1996).
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Naive approaches involve unconditional estima-
tion of missing values. Classification performance
using such techniques typically falls very rapidly as
the proportion of missing data increases. A more
principled method is presented in (Ahmed and
Tresp, 1993) for converting an existing classifier to
deal with both missing and uncertain (i.e., poten-
tially noise-corrupted) data. A maximum likeli-
hood (ML) framework for both training and
recognition with missing data in its most general
form is presented in (Ghahramani and Jordan,
1994). The principle advantage of the ML criterion
is its ability to generate practical parameter esti-
mation techniques.

Holmes and Sedgwick (1986) proposed a
method for handling observations estimated to be
noise-dominated. Observations with energies
above that of the noise estimate are treated con-
ventionally, while those below the noise estimate
are handled using the cumulative probability of all
observations below the noise estimate. Varga et al.
(1988) compared the performance of the Holmes
and Sedgwick approach with noise masking
(Klatt, 1976) and noise marking (Bridle et al.,
1994), demonstrating its superiority at low SNRs.
When reliable data is identified using noise mod-
elling, one of the missing data techniques formu-
lated and evaluated in the current paper — bounded
marginalisation (Section 3.3) — is essentially the
same as the Holmes and Sedgwick (1986) ap-
proach when generalised for CDHMMs. However,
formulating the problem as one of missing data
(Cooke et al., 1994; Green et al., 1995; Lippmann
and Carlson, 1997; Morris et al., 1998) is advan-
tageous for two reasons. First, it highlights the
applicability of solution techniques to problems
other than dealing with noisy speech. For instance,
no noise estimation is involved in dealing with
clean, but band-limited speech, yet missing data
techniques provide a natural means of handling
this condition. Second, the relationship of missing
data approaches to results in human speech per-
ception of distorted speech referred to in Section
1.2 is made apparent.

Brendborg and Lindberg (1997) developed a
feature-masking technique which has some com-
monality with the missing data approach in that it
marginalises certain features. Missing data impu-

tation prior to decoding was reported by Raj et al.
(1998). The missing data approach has some fea-
tures in common with emerging techniques for
robust ASR which attempt classification on the
basis of partial information. Notably, the multi-
stream approach to ASR (Bourlard and Dupont,
1996; Hermansky et al., 1996) has achieved some
success in decoding on the basis of independent
processing of different spectral regions, with later
recombination.

The work reported here differs from earlier
studies in several important respects. Empirical
tests of missing data theory, largely in computer
vision, have mainly been confined to ‘toy’ prob-
lems with low-dimensional observation vectors
and predominantly used random rather than nat-
urally occurring deletion patterns. In contrast, this
paper describes practical procedures for dealing
with real-world missing data problems in ASR,
while keeping to a general theoretical framework
which permits these techniques to be transferred
directly to other high dimensional classification
problem domains. Section 2 describes two distinct
approaches to classification with missing data.
Section 3 shows how these can be applied to ASR
based on continuous-density HMM. Recognition
studies using TIDigits in additive noise are
described in Section 4.

2. Classification with unreliable data
2.1. The missing data problem

The classification problem in general is to assign
an observation vector x to a class C. In the missing
data case, some components of x are unreliable or
unavailable. In these circumstances, the problem
for probabilistic classification is that the likelihood
f(x|C) cannot be evaluated in the normal manner.

In the following, it is assumed that some prior
process of the form outlined in Section 1 (and
exemplified in Section 4.3) has partitioned each
data vector x into reliable and unreliable parts,
(x;,x,). The components of x, are reliable data,
available to the classifier. The components of x,
are distinguished by uncertainty about their true
values. Two uncertainty conditions are considered
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here. The first is complete ignorance of the unre-
liable values. This could result from sensor failure,
temporary loss of signal, or narrow-bandwidth
transmission, for instance. The second condition is
knowledge of the interval within which the true
data lie. In acoustic signal processing, this com-
mon situation simply expresses the case of additive
noise masking. Assuming that energy estimates are
made over sufficiently large spectro-temporal re-
gions, the observed value defines an upper bound
on the true data value, while the lower bound is
Zero.

It is important to reiterate that these two types
of uncertainty require no commitment to noise
models. Of course, if such models were available,
their effect on the target signal could be expressed
probabilistically as, for instance, in (Gales and
Young, 1993). However, in many situations of
everyday listening, the requirement to have ade-
quate noise models for the whole of the attentional
background is unreasonable, and it is of interest to
see how well systems with no commitment to noise
models can perform.

Here, two approaches to classification with
unreliable data are identified: data imputation and
marginalisation. Data imputation is of particular
interest when some later process needs actual es-
timates of the unreliable components, as would be
required in speech enhancement or for further data
transformation (e.g. to the cepstral domain).
Marginalisation is of value in classification tasks
which can proceed without reconstruction of un-
reliable parts.

2.2. Data imputation

In data imputation, the aim is to estimate values
for the unreliable components of x, producing a
complete observation vector x, and to then pro-
ceed with classification using f'(x|C).

There are a number of simple but suboptimal
approaches to data imputation. Unreliable values
could be replaced by the unconditional means for
those components in any given class, for example.
Previous work with such simplistic techniques has
shown them to be inadequate for real-world tasks
such as robust ASR (Cooke et al., 1997). A better
approach is to use knowledge of the reliable

components in conjunction with the covariance
structure of each class (i.e., the conditional means,
modes, etc.). Specifically, the distribution of un-
reliable components conditioned on the reliable
components can be used for data imputation.
Formally, if f(x|C) denotes the distribution of the
complete vector in a given class C, then unreliable
items are replaced by values drawn from

S (xy|xr, C). In many cases, values can be chosen

using the expectation for this distribution. How-
ever, if it is suspected that the distribution is other
than unimodal, an estimate of its mode would be
more appropriate.

2.3. Marginalisation

An alternative to data imputation is to classify
based solely on reliable components, effectively
integrating over the unreliable components. For
the case of complete ignorance of unreliable val-
ues, this is achieved by using the marginal distri-
bution f(x,|C) in place of f(x|C). The marginal
distribution over reliable data has been widely
used on its own for classification with incomplete
data (Ahmed and Tresp, 1993; Green et al., 1995;
Lippmann and Carlson, 1997).

Sections 3.2 and 3.3 develop the data imputa-
tion and marginalisation approaches further in the
context of HMM-based speech recognition, to-
gether with extensions in which unreliable evidence
is not dismissed altogether, but serves to bound the
possible values which the true observation could
take.

3. Application to HMM-based ASR
3.1. Architecture and assumptions

In conventional Continuous Density Hidden
Markov Model Speech Recognition, each chosen
speech unit is represented by a trained HMM with
a number of states. The states correspond to the
classes of Section 2. Each state is characterised by
a multivariate mixture Gaussian distribution over
the components of the acoustic observation vector
x, from an observation sequence X. The parame-
ters of these distributions, together with state
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transition probabilities within models are esti-
mated during training, commonly using the
Baum-Welch algorithm. All this comprises the
recogniser’s acoustic model. There will also be a
language model expressing transition probabilities
between the speech units of the acoustic model. A
decoder (usually implementing the Viterbi algo-
rithm) finds the state sequence having the highest
probability of generating X.

Here, the two approaches outlined in Section 2
are applied to this framework. We assume that
HMMs have been trained in the usual way, on
clean data. For generality, we avoid training dif-
ferent models for different noise conditions. We
further assume that the density in each state C; can
be adequately modelled using mixtures of M
Gaussians with diagonal-only covariance struc-
ture 2

fxlc) =37 Pklc)f
1

M
(x|k, C;), (1)
k=
where the P(k|C;) are the mixture coefficients.
This is a reasonable assumption if sufficient
numbers of mixture components are used since
any covariance can theoretically be approximated
with such a mixture. In previous studies, the use of
full covariance structures in missing data ASR has
been demonstrated to be computationally pro-
hibitive (Morris et al., 1998).

3.2. Data imputation

Following the approach outlined in Section 2.2,
the conditional density f(x,|x;, C;) is required for
each state C;. By Bayes Rule

f(xu;xr|ci)

pacey
But f(xy,x|C;) is just f(x|C;). Substituting (1)
above, we obtain

Zi/lzl P(k|ci)f(xu7xr|k7 Ci)
S (| G) '

(2)

f(xulxr’ CI) =

(3)

f(xu|xr7 Cl) =

2 In this paper, P(x) denotes the probability of x and f(x)
denotes the probability density at x.

Since each mixture component indexed by k is
modelled using diagonal-only covariance, the
independence assumption can be applied ar the
level of each mixture (i.e., while f(xy,x:|C;) #
FORIC (G, (rarilk, C) = £ (el Co)f Gl
G,), for each k), allowmg (3) to be rewritten as

Sy PRGOS (xilk, C)f (xulk, C)
S (| G) '

S Cealxe, G) =

An application of Bayes’ rule results in the fol-
lowing expression for the conditional density:

E:Pﬂn,i (xulk, Cy). (4)

xu|xra i

Any value can be imputed in place of x,. However,
some values are more probable than others. Here,
we impute the most probable value of the condi-
tional density f(x,|x;, C;). For a unimodal distri-
bution, this is the expected value,

Eyx.c, {xi} = /f(xu|xra Ci)xy dxy. (5)

Substituting (4) and moving the integral inwards
produces

M
Bugncnn) = D Pk C) [ fslk G
k=1

The integral expression is the expectation of
f(xulk, C;), which is just the mean of this mixture
component for the unreliable portions of the data
vector, as estimated during model training, i, c,-
Hence, data imputation estimates unreliable com-
ponents of the observation vector using

Xui = ZP k|x;, C;

where the P(k|x,, C;) can be considered as respon-
sibilities for mixture component k given the reli-
able data in each state,

P(k|C)f (xc|k, C)
S sy P(KIC)f (xelk, C)
Note that each state C; gives rise to different

imputed values x,;. In the decoding algorithm,
these state-dependent vectors replace the normal

:uu|k Ci» (6)

Pklx:, C;) = ()
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state-independent feature vector. After decoding,
the imputed vectors for the states on the winning
path can be used to provide a single restoration,
for instance in speech enhancement (see Section
5.1).

The term f(x.|k,C;) also appears in the mar-
ginalisation approach for handling missing data.
Its evaluation is detailed in Section 3.4.

3.3. Marginalisation

Here, the aim is to compute the HMM state
output probabilities using a reduced distribution
based solely on reliable components. We require
the marginal determined by integrating over all
missing components,

f(x]C) = / S (0r3:]C) d,. (8)

Substituting Eq. (1) and exploiting the indepen-
dence, within each mixture component, of reliable
and unreliable subvectors, we obtain

M
£0alC) =3 PGS (K, C) /fxu|k ) dx.

©)

3.4. Evaluation of the marginal

Egs. (6), (7) and (9) identify the computations
required for data imputation and marginalisation,
respectively, for the case of densities representable
by mixtures of diagonal-covariance Gaussians.
Both use the marginal f(x.|k,C;) which is easily
evaluated in the case of diagonal-covariance mul-
tivariate Gaussians using the following procedure.

Let N(x; w;, 07 ;) denote the Gaussian for mix-
ture component k of model i. Using the partition
of the observation vector x = (x;,x,) into reliable
and unreliable components, the mean and variance
vectors for mixture component k& of model i are
similarly partitioned,

= (tur,k,i? :L"u,k,i)7

o = (Gf‘k.,m Gi,k,i) .

The marginal is then obtained as (Morrison, 1990)

f(xr|k7 Ci) = N(xr§ e ks O-ik,i)' (10)

3.5. Bounded marginalisation

The integral in Eq. (9) reduces to unity if the
unreliable components are missing altogether.
However, if knowledge of the unreliable subvector
exists in the form of bounds [xiow, Xnien], and in the
case of diagonal Gaussian mixture components,
the integral can be evaluated as a vector difference
of multivariate error functions,

/f(xu|k, C;)dx
1 xhigh u :uu ki Xlow,u — :uu_k i)
=—|erf| ——— | —erf[ ———— .
2 [ ( \/Zo-utk,l > ( \/zauk,i

(11)

Any further prior knowledge of noise character-
istics could be employed at this point.

3.6. Utilising bounds with data imputation

Knowledge of the unreliable subvector in the
form of bounds [xjw,Xnien) can also be used to
constrain the imputed values x, (in the following,
the subscript i indicating the state to which the
imputed value corresponds is dropped for clarity).
Eq. (11) can be used in the calculation of the re-
sponsibilities (7) to produce values which dis-
criminate better between the Gaussians in the
mixture, especially in the frames with little or no
reliable data.

It is also necessary to constrain the choice of
imputed values for unreliable data so that they lie
within the bounds of the spectro-temporal energy
surface. If the individual Gaussians in the state
pdfs are well-separated, their means can be taken
as the modes of the mixture distribution.

For each individual Gaussian, we compute the
most likely value within the bounds,

My s Xiow S My i < Xhigh
ok = § Xnighs  Xhigh < Uy
Xlow Xiow > ,I.Lu_’k,
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and choose the most likely X, in each state as our
imputed value.

3.7. Computational complexity and the use of
energy bounds

Data imputation (6) doubles the computational
complexity compared to conventional output
probability evaluation. Marginalisation without
bounds requires less computation than a conven-
tional output probability calculation since proba-
bility evaluation of (univariate) Gaussians is
required only for x, rather than the whole of x.
With bounds (11), complexity is greater than a
conventional approach, and its tractability de-
pends on the availability of a fast error function
implementation. If the observation vector repre-
sents spectral energies, as in the experiments re-
ported below, xj,w = 0 and xpign is the observed
energy. In these conditions, the second error
function in Eq. (11) can be precomputed.

4. Recognition experiments
4.1. Task details

To evaluate the approaches presented in Section
3, we report recognition studies using the TIDigits
connected digit corpus (Leonard, 1984). Acoustic
vectors were obtained via a 64-channel auditory
filter bank (Cooke, 1993) with centre frequencies
spaced linearly in ERB-rate from 50 to 8000 Hz.
The instantaneous Hilbert envelope at the output
of each filter was smoothed with a first-order filter
with 8 ms time constant, and sampled at a frame-
rate of 10 ms. The training section of the corpus

was used to train 12 word-level HMMs (1-9, ‘oh’,
‘zero’ and a silence model), each with 8 emitting
states. Observations in each state were modelled
with a 10 component mixture. Models were
trained on clean training data. Testing was per-
formed on a 240-utterance subset of the TIDigits
test set. HTK Version 1.5 (Young and Woodland,
1993) was used for training, and a local MATLAB
decoder adapted for missing data was used for all
recognition tests.

Three noise signals (car, factory, Lynx heli-
copter) from the NOISEX corpus (Varga et al.,
1992) were added with random offsets at a range of
SNRs from —5 dB to 20 dB in 5 dB steps. Auditory
‘spectrograms’ or rate maps of these signals are
shown in Fig. 2 for several SNRs. These noise
types present differing degrees of challenge for
robust ASR. Most of the noise power density of
this car noise sample is concentrated in the sub-200
Hz region, and hence is a comparatively benign
masker of speech formant regions. It is also highly
stationary. The helicopter noise has significant
energy (in the form of relatively narrow peaks) in
the mid-frequency region, and is less stationary
than the car noise. The factory noise sample is the
least stationary of the three, and is characterised
both by energy peaks in the formant region and by
impulsive energetic regions (hammer blows?).
These characteristics are reflected in the recogni-
tion results obtained.

4.2. Baseline systems

Tables 1-3 give baseline accuracies for car, he-
licopter and factory noise, respectively. Results for
recognition of the noisy rate maps alone, and in
combination with a simple spectral subtraction

Fig. 2. Auditory spectrograms of, from left to right, the TIDigit sequence ‘four three nine’, car noise, helicopter noise and factory
noise. The noise segments (from NOISEX) are illustrative portions only. Random offsets into a longer sample of each are used for the

experiments.
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Table 1
Baseline accuracies for car noise
Clean 20 15 10 5 0 -5
MFCCI13_D_A 99 99 99 98 98 97 92
MFCC13_D_A + CMN 99 99 99 99 98 98 97
RATE64 97 97 96 93 86 70 50
RATE64 +SS 97 96 96 95 92 87 70
Table 2
Baseline accuracies for helicopter noise
Clean 20 15 10 5 0 -5
MFCCI13_D_A 99 99 98 91 69 18 01
MFCC13_D_A + CMN 99 99 96 88 62 21 01
RATEG64 97 73 56 34 20 11 8
RATE64 +SS 97 93 84 63 29 2 0
Table 3
Baseline accuracies for factory noise
Clean 20 15 10 5 0 -5
MFCCI13_D_A 99 97 90 56 14 0 0
MFCC13_D_A + CMN 99 97 92 75 41 10 0
RATE64 97 58 47 33 14 10 7
RATEG64 +SS 97 86 65 37 16 7 3

scheme are shown. A simple non-adaptive imple-
mentation of spectral subtraction was employed in
which a fixed noise estimate is computed as the
mean of the initial 10 frames of each noisy digit
sequence. More advanced schemes such as adap-
tive spectral subtraction (Mokbel, 1992), energy
histograms (Hirsch and Ehrlicher, 1995) and
minimum statistics (Martin, 1993) could be em-
ployed to derive better estimates of the noise
spectrum.

For comparison with a conventional robust
ASR technique, results for a system trained on a
13-element MFCC parameterisation with deltas
and accelerations are also shown, both with and
without cepstral mean normalisation (CMN).

For each of the four combinations, raw recog-
nition accuracy deteriorates with increasing noise
levels. The MFCC system operates at a higher
level of accuracy than that based on rate maps:
orthogonalised representations are more accu-
rately modelled by diagonal Gaussian mixtures.
Spectral subtraction results in the expected im-
provement over baseline performance, although

for helicopter and factory noise this advantage is
small for SNRs below 10 and 15 dB, respectively.
The departure from absolute stationarity makes
these noise types less suitable for the simple spec-
tral subtraction approach used here. Similarly,
CMN improves the MFCC system baseline. In
both cases (MFCC with CMN and rate map with
SS), the gain is relatively modest.

4.3. Limits on performance

To reveal the potential of the missing data
technique, we examine the claim that recognition
can be based on the reliable evidence subset in
the artificial condition where the spectro-tempo-
ral location of reliable evidence is known a pri-
ori. Any choice of spectro-temporal regions can
be visualised as a binary mask. There are a
number of ways to compute such a mask if the
clean speech and noise signals are available prior
to mixing. The scheme adopted here forms the
mask from those regions whose energy in the
mixture is within 3 dB of the energy in the clean
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speech (corresponding to a local SNR of 7.7 dB
— see Section 4.5). Examples of such ‘a priori
masks’ and corresponding noisy spectrograms
are shown in Figs. 3-5 for the three noise types
and a range of SNRs.

It is clear that the a priori masks allow through
most of the salient phonetic information, even at
high noise levels. Note that as the SNR decreases,
the 3 dB criterion will progressively omit lower
energy regions of the speech signal as they be-
come noise-dominated. Taking the helicopter
noise masker in Fig. 4 as an example, evidence for
the initial weak fricative /f/ and the final nasal /n/
of ‘439’ is lost as the SNR decreases from 20 to
0 dB.

Performance of the missing data techniques
with a priori masks is given in Tables 4-6 as de-
scribed below, and highlights the potential of our
approach: baseline performance and a priori per-
formance for helicopter and factory noise are
plotted against global SNR in Fig. 6. It should be
noted that these results do not represent an upper
limit for missing data techniques in general: an
ideal mask might, for instance, employ different

local SNR thresholds dependent on the amount of
missing data.

4.4. Missing data results using a negative energy
criterion

Section 1.4 outlined several methods for the
identification of reliable data. One cause of suspect
data are artefacts introduced by signal processing.
Here, spectral subtraction can leave negative en-
ergy values. Missing data techniques can be used
to counter these anomalies, as suggested by Dry-
gajlo and El-Maliki (1998), who demonstrated a
significant improvement over the use of spectral
subtraction alone in a speaker identification task.
If the observed magnitude in any frame is denoted
by |s+n| and the estimated noise magnitude
spectrum by 7, then the negative energy criterion
removes spectral regions from the mask if

|s +n| —|a] <O0. (12)

Column 3 of Figs. 3-5 shows example masks
which result from this criterion.

Fig. 3. Columns 1-4 depict auditory spectrograms, a priori reliable data masks, masks produced by the negative energy criterion (12)
and masks produced by the joint criterion (Egs. (12) and (13)), respectively. Rows 1-3 differ in the level of car noise added (20 dB, top;

10 dB, middle; 0 dB, bottom).
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Fig. 5. As for Fig. 4 but with factory noise.

Tables 7-9 provide results for the missing data results in an improvement over spectral subtrac-
techniques described in Section 3 after applying tion alone. Versions of the two missing data al-
this criterion. In each case, missing data processing gorithms of Section 3 which make use of bounds
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Table 4
Missing data recognition accuracies for car noise, local SNR criterion®
Clean 20 15 10 5 0 -5
Marginalisation 82 (97) 79 (97) 75 97) 76 (96) 76 (91) 75 (82) 71 (77)
Bounded marginalisation 96 (97) 97 (97) 97 97) 97 97) 96 (97) 95 (97) 95 (96)
Imputation 96 (97) 96 (97) 94 (97) 92 (96) 88 (90) 79 (87) 70 (79)
Bounded imputation 97 (97) 97 (97) 96 (97) 96 (97) 96 (97) 95 (96) 91 (94)
#Data in parenthesis represent a priori mask accuracies.
Table 5
Missing data recognition accuracies for helicopter noise, local SNR criterion*
Clean 20 15 10 5 0 -5
Marginalisation 82 (97) 76 (75) 76 (74) 73 (77) 64 (77) 46 (74) 29 (68)
Bounded marginalisation 96 (97) 96 (97) 95 (97) 93 (96) 88 (93) 69 (81) 41 (62)
Imputation 96 (97) 81 (92) 75 (88) 67 (82) 51 (74) 32 (66) 19 (52)
Bounded imputation 97 (97) 94 (96) 91 (95) 83 (92) 69 (86) 52 (75) 30 (61)
#Data in parenthesis represent a priori mask accuracies.
Table 6
Missing data recognition accuracies for factory noise for RATE64, local SNR criterion®
Clean 20 15 10 5 0 -5
Marginalisation 82 (97) 63 (74) 61 (74) 49 (75) 40 (76) 25 (74) 15 (71)
Bounded marginalisation 96 (97) 94 (97) 91 (97) 81 (95) 59 (87) 34 (69) 13 (55)
Imputation 96 (97) 78 91) 68 (87) 53 (81 36 (74) 18 (63) 10 (50)
Bounded imputation 97 (97) 90 (96) 84 (93) 67 (89) 47 (80) 25 (65) 11 (43)

#Data within parenthesis represent a priori mask accuracies.

information outperform unbounded versions.
From these results, it is not clear whether mar-
ginalisation or imputation is superior.

4.5. Missing data results using a local SNR criterion

While treating negative energy artefacts as miss-
ing produces some improvements, a further gain
might be expected by identifying regions with low
local SNR. Such regions are likely to be dominated
by noise and it may be profitable to treat them as
missing too. We refer to this as the SNR criterion,
defined as treating as missing those regions whose
estimated local SNR falls below some threshold 6,

£
10 logﬁ <9,
i.€e.
§ < pi®,  where =101, (13)

The negative energy criterion (12) implies the
SNR criterion, so this artefact is taken into ac-

count by (13). Following experimental verification,
we set the value of the estimated local SNR
threshold in the work reported below to 7.7 dB.
This value is equivalent to a ‘posterior SNR’ (EI-
Maliki and Drygajlo, 1999) of 10.7 dB.

Columns 4 of Figs. 3-5 show SNR criterion
masks. Note their similarity to the a priori masks
in column 2 and their dissimilarity with the nega-
tive energy masks of column 3.

Recognition results obtained by treating as
missing those points which satisfy the SNR cri-
terion are shown in Tables 4-6. The accuracies
obtained demonstrate a further large improve-
ment over the negative energy criterion for all
noise types and methods. Here, a clear superior-
ity of marginalisation over imputation is re-
vealed.

The tables also show results obtained if masks
were obtained by prior knowledge of the local
SNR. These figures illustrate the potential of
techniques which distinguish between reliable and
unreliable evidence.
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Fig. 6. Summary of results for helicopter noise (left) and factory noise (right). Recognition accuracy is plotted against SNR for no
processing, spectral subtraction, MFCCs with cepstral mean normalisation and missing data recognition (with bounded marginali-
sation). Fo missing data, results with masks derived from noise estimates, and from the true noise value (‘a priori masks’ are shown).

4.6. Summary of results

Fig. 6 summarises our results for helicopter and
factory noise, showing accuracies against global
SNR for the best-performing missing data tech-
nique (bounded marginalisation) compared to no
processing, spectral subtraction and cepstral mean
normalisation. There is a clear win below 10 dB for
missing data recognition. The gap widens as the
amount of noise increases. Performance is better
for helicopter noise than factory noise: this is to be
expected for any system making use of simple
noise estimates, because of the unpredictable
impulsive factory noise components. We also show
the missing data performance using bounded
marginalisation with a priori masks. In the case of
helicopter noise the performance gap between
these masks and masks based on SNR estimates is
encouragingly narrow. It is wider for factory noise,
possibly for the reasons given above.

5. Discussion
5.1. Marginalisation versus imputation

While both methods produce a similar pattern
of improvement over the baseline spectral sub-

traction technique, marginalisation is superior,
since it involves no commitment to choosing a

single estimate to represent an uncertain value;
rather, it takes into account the distribution of the
missing points. For imputation, introduction of
the SNR criterion (13) is not beneficial unless the
bounds constraint is also applied. This finding
suggests that, compared to marginalisation, data
imputation is more heavily affected by data spar-
sity than data reliability.

If restored observation vectors are not required
in subsequent processing, marginalisation is the
method of choice. However, the restored vector
produced by data imputation offers considerable
practical advantages for further processing. For
example, it opens the way to applications such as
full-band restoration and speech enhancement, as
illustrated in Fig. 7. Furthermore, restored vectors
can be used as input to any ASR system (Statis-
tical or Hybrid) and can undergo useful transfor-
mations such as (approximate) orthogonalisation
via the DCT, differencing and normalisation.

The imputation method used here is only one of
many possible schemes and no claims to its opti-
mality can be made. If the conditional distribution

S (xy|x;, C;) is multimodal, then the values of choice

for imputation are the modes. However, they are
not as easy to find as the mean. Further, if there
are several modes, a suitable criterion is needed to
pick and impute one of them only. Using the
highest (most probable) mode may be the natural
choice in the absence of other knowledge.
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Table 7
Missing data recognition accuracies for car noise, negative components criterion
Clean 20 15 10 5 0 -5
Marginalisation 97 97 97 96 96 93 89
Bounded marginalisation 97 97 97 96 96 94 90
Imputation 97 97 97 96 96 94 91
Bounded imputation 97 97 97 96 95 94 91

Table 8
Missing data recognition accuracies for helicopter noise, negative components criterion
Clean 20 15 10 5 0 -5
Marginalisation 97 94 90 76 48 19 9
Bounded marginalisation 95 95 91 78 51 22 9
Imputation 97 95 92 80 57 25 11
Bounded imputation 97 95 92 83 59 28 10

Table 9
Missing data recognition accuracies for factory noise for RATE64, negative components criterion
Clean 20 15 10 5 0 -5
Marginalisation 97 89 76 52 27 16 11
Bounded marginalisation 97 91 80 57 32 16 10
Imputation 97 91 79 56 29 14 4
Bounded imputation 97 92 81 60 32 15 10

Constraints such as bounds on the imputed values
or continuity (smoothness) of the features (im-
puted and present) may help in choosing the cor-
rect mode for imputation. For the case of mixtures
of diagonal Gaussians, if the Gaussians are far
enough apart, the distribution will be multimodal.
A fuller discussion of mode-finding is contained in
(Carreira-Perpinan, 1999).

5.2. Use of energy bounds

Both the estimated masks and those obtained
through a priori knowledge of the local SNR result
in systems with surprisingly poor performance at
high SNRs (>10 dB). Analysis of the results shows
that the drop in accuracy from clean to 20 dB SNR
is due to a large number of insertion errors in the
decoder output. This can be explained by the ob-
servation (see Figs. 3-5) that, in the a priori masks,
periods without speech energy are noise dominated
and therefore not present in the mask even for high
SNRs. For any frame in which very little reliable
evidence is available, the missing data output

probability calculation will yield similar likeli-
hoods for all model states. In the limit where no
data is available at all, these will collapse to unity.
If the period of little or no reliable data is short,
the decoder may overcome this temporary lack of
discriminatory evidence. However, an extended
period will produce equalised path likelihoods and
hence the decoder result will, in the absence of
priors (e.g. from a language model), contain arbi-
trary insertions. An analysis of the correctness
versus accuracy scores confirms that the insertions
occur when there is no speech energy and are
evenly distributed across models. Without addi-
tional information, this is the best that the decoder
can achieve.

Fortunately, more information is available in
the form of bounds on the spectro-temporal en-
ergy surface. Intuitively, this constraint measures
the degree to which the hypothesised acoustics
could fit beneath the observed total energy. For
high SNRs, we would expect the relatively low
noise level to provide an effective masker for the
silence model, but not for others. The use of
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restricted bandwidth

noisy speech (SNR:IOdB)

restored speech

restored full bandwidth

Fig. 7. Illustration of data imputation and applications. The middle row shows restoration of limited bandwidth speech. The bottom
row shows restoration of noisy speech. Comparison with the rightmost panel illustrates the benefits of the imputation approach over

spectral subtraction alone.

bounds leads to a very significant reduction in
error rate at most SNRs. For car noise at —5 dB
SNR, the error rate is reduced from 95% to 30% by
spectral subtraction alone, to 11% using the neg-
ative energy criterion, and to 5% with both criteria
and bounds. In helicopter noise, use of the SNR
criterion and bounds produces even larger gains:
at +5 dB SNR, whereas the negative energy cri-
terion reduces error rate from 80% to 52%, the
additional constraints produce 12%. The less sta-
tionary factory noise shows a similar pattern of
improvement.

5.3. Criteria for choosing unreliable regions

This study confirms the finding of Drygajlo and
El-Maliki (1998) that negative energy artefacts
resulting from noise overestimation can be han-
dled using missing data. However, we have also

shown that a far larger gain in accuracy can be
obtained by thresholding points based on local
SNR estimates. Masks of present/absent compo-
nents in Figs. 3-5 illustrate the negative energy
criterion (column 3) and the SNR criterion (col-
umn 4). It is clear that these criteria differ sub-
stantially in their assignment of reliability:
negative energy alone produces masks which are
only loosely related to the a priori masks (column
2), while SNR yields a much closer approximation
to the ideal.

Comparison of columns 2 and 4 shows that the
estimated noise masks differ less from frame to
frame than the a priori masks. This is a conse-
quence of using a constant noise estimate. In re-
ality, the noise level varies somewhat from frame
to frame. The limitations of a stationary noise
estimate can be seen in the case of factory noise,
where energy from intermittent impulsive hammer
blows escapes spectral subtraction. This effect is
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visible, for instance, at the beginning and the end
of the column 4 mask in Fig. 5 at 10 dB SNR.

Such unpredictable non-stationarity could also
escape adaptive noise estimation schemes and
points to the need for techniques with an auditory
motivation. A preprocessor based on computa-
tional auditory scene analysis makes few assump-
tions about the number or type of sources present.
These techniques (Cooke, 1993; Brown and
Cooke, 1994; Ellis, 1996) are informed by experi-
mental studies (Bregman, 1990; Darwin and
Carlyon, 1995) which have explored the perceptual
organisation of sound. For example, components
that are harmonically related, or have synchro-
nous onsets, or arrive from the same location,
appear to be grouped into a single perceptual de-
scription. Harmonic- and location-based grouping
processing was illustrated in Fig. 1. The need for
such processing is revealed, for example, in our
factory noise results where simple noise estimation
cannot capture the unpredictable impulsive com-
ponents. A system using principles based on hu-
man sound source separation is needed so that
such components can be treated as part of a dif-
ferent structure. Ellis (1996) uses an initial de-
composition of arbitrary sound ‘scenes’ into
impulsive, noise-like and periodic objects which
are suitable for subsequent grouping into coherent
source descriptions. We are currently pursuing
such approaches in conjunction with the missing
data techniques.

5.4. Further improvements

Our focus to date has been on the performance
of missing data techniques within a relatively
simple ASR system. A variety of improvements
can be envisaged. First, the auditorily motivated
rate map parameterisation, employed for com-
patibility with our interest in auditory scene anal-
ysis preprocessing, is known to result in
suboptimal performance on ASR tasks. This is
partly due to variability caused by the resolution
of individual harmonics in the low-frequency re-
gion. Such resolution is beneficial for source sep-
aration. Additionally, spectral representations
typically perform less well than those which have
undergone cepstral transformation, as illustrated

by our baseline results. Unfortunately, the cepstral
transform smears localised spectral uncertainty
into global cepstral uncertainty, so such ap-
proaches are not viable here. However, it has re-
cently been demonstrated that certain localised
spectral filtering operations can produce parame-
terisations which are competitive with MFCCs
(Nadeu et al., 1997). These operations result in far
less uncertainty smearing and may be applicable to
the missing data approach.

Further optimisations may be gained by con-
sidering an adaptive local SNR threshold rather
than the single global threshold used in the studies
reported here. For high noise levels, data sparsity
may be a limiting factor on performance, and in
such circumstances it may be preferable to lower
the reliable data threshold. At low noise levels, a
higher threshold could be employed since sufficient
components of the observation vector are avail-
able.

5.5. Relation to other approaches

It is interesting to contrast the missing data
approach with other robust recognition tech-
niques:

HMM decomposition (Varga and Moore, 1990)
is a search of model state combinations for that
combination sequence which has maximum likeli-
hood. It is a general technique applicable to any
signals for which models are available. In contrast,
the missing data approach attempts to exploit
properties of speech (redundancy, harmonicity,. . .)
and the auditory scene (source location, physics of
sound,...), in order to inform the recognition de-
coding.

In ‘full-combination multistream recognition’
(Morris et al., 1999), the ‘union model’ (Ming and
Smith, 1999) and ‘acoustic back-off’ (de Veth et al.,
1999) the assumption is that nothing is known a
priori about which portions of the speech evidence
are clean and which are corrupted. The full-com-
bination and union approaches attack this prob-
lem by considering all possible noise positions, in
order to find the best match. Acoustic back-off
equates unreliable data with distribution outliers.
In contrast, missing data techniques employ prior
knowledge of the location of the reliable regions.
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Two possibilities for combining these approaches
are likelihood weighting in multiple streams and
the introduction of a ‘soft’ reliable/unreliable de-
cision.

6. General discussion and conclusions

Missing data methods can produce striking
performance benefits for connected digit recogni-
tion in noise when used in combination with a
simple noise estimation technique. We have re-
cently reported results with more advanced noise
estimation approaches (Vizinho et al., 1999): some
modest further gains are obtained. The framework
we have developed for classification with missing
data for robust ASR has a number of potential
advantages. It makes no assumptions about the
noise (or, more generally, the collection of unat-
tended sources) and is viable where the noise cannot
be modelled in advance. Thus, there is no require-
ment to retrain models for each noise condition.
Within a CDHMM system, it requires only minor
modifications to the output probability calculation.

Finally, outside the context of speech technol-
ogy, we are investigating the role that missing data
processing may play in a general account of speech
perception in listeners (Cooke and Green, in press).
Since many experimental manipulations such as
bandpass filtering involve a potential reduction in
the amount of information available to listeners, it
is of interest to determine how well the missing
data approach is able to predict any reduction in
intelligibility. To date, missing data processing has
been used to model the perception of sine-wave
speech (Barker and Cooke, 1997, 1999), low and
high pass filtered digits (Lippmann and Carlson,
1997), narrow band speech (Cunningham and
Cooke, 1999) and vowels (de Cheveigne and
Kawahara, 1999).
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