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ABSTRACT

In this paper, we are interested in detecting changes in
speaker identity, environmental condition and channel con-
dition; we call this the problem of acoustic change detec-

tion. The input audio stream can be modeled as a Gauss-
ian process in the cepstral space. We present a maximum
likelihood approach to detect turns of a Gaussian process;
the decision of a turn is based on the Bayesian Informa-

tion Criterion (BIC), a model selection criterion well-known
in the statistics literature. The BIC criterion can also be
applied as a termination criterion in hierarchical methods
for clustering of audio segments: two nodes can be merged
only if the merging increases the BIC value. Our experi-
ments on the Hub4 1996 and 1997 evaluation data show that
our segmentation algorithm can successfully detect acoustic
changes; our clustering algorithm can produce clusters with
high purity, leading to improvements in accuracy through
unsupervised adaptation as much as the ideal clustering by
the true speaker identities.

1. INTRODUCTION

Automatic segmentation of an audio stream and automatic
clustering of audio segments according to speaker identi-
ties, environmental conditions and channel conditions have
received quite a bit of attention recently [4, 8, 6, 10]. For
example, in the task of automatic transcription of broadcast
news [3], the data contains clean speech, telephone speech,
music segments, speech corrupted by music or noise, etc.
There are no explicit cues for the changes in speaker iden-
tity, environment condition and channel condition. Also
the same speaker may appear multiple times in the data.
In order to transcribe the speech content in audio streams
of this nature,
� we would like to segment the audio stream into homo-
geneous regions according to speaker identity, environ-
mental condition and channel condition so that regions
of di�erent nature can be handled di�erently: for ex-
ample, regions of pure music and noise can be rejected;
also, one might design a separate recognition system
for telephone speech.

� we would like to cluster speech segments into homoge-
neous clusters according to speaker identity, environ-
ment and channel; unsupervised adaptation can then
be performed on each cluster. [8, 10] showed that a
good clustering procedure can greatly improve the per-
formance of unsupervised adaptation such as MLLR.

Various segmentation algorithms have been proposed in

the literation [2, 4, 6, 8, 10, 14], which can be categorized
as follows:
� Decoder-guided segmentation. The input audio stream
can be �rst decoded; then the desired segments can be
produced by cutting the input at the silence locations
generated from the decoder [14, 8]. Other informations
from the decoder, such as the gender information, could
also be utilized in the segmentation [8].

� Model-based segmentation. [2] proposed to build dif-
ferent models, e.g. Gaussian mixture models, for a
�xed set of acoustic classes, such as telephone speech,
pure music, etc, from a training corpus; the incoming
audio stream can be classi�ed by maximum likelihood
selection over a sliding window; segmentation can be
made at the locations where there is a change in the
acoustic class.

� Metric-based segmentation. [4, 6, 10] proposed to seg-
ment the audio stream at maxima of the distances
between neighboring windows placed at every sample;
distances such as the KL distance, the generalized like-
lihood ratio distance have been investigated.

In our opinion, these methods are not very successful in
detection the acoustic changes present in the data. The
decoder-guided segmentation only places boundaries at si-
lence locations, which in general has no direct connection
with the acoustic changes in the data. Both the model-
based segmentation and the metric-based segmentation rely
on thresholding of measurements which lack stability and
robustness. Besides, the model-based segmentation does
not generalize to unseen acoustic conditions.
Clustering of audio segments is often performed via hier-

archical clustering [10, 8]. First, a distance matrix is com-
puted; the common practice is to model each audio segment
as one Gaussian in the cepstral space and to use the KL
distance or the generalized likelihood ratio as the distance
measure [6]. Then bottom-up hierarchical clustering can be
performed to generate a clustering tree. It is often di�cult
to determine the number of clusters. One can heuristically
pre-determine the number of clusters or the minimum size
of each cluster; accordingly, one can go down the tree to
obtain desired clustering [14]. Another heuristic solution

is to threshold the distance measures during the hierarchi-
cal process; the thresholding level is tuned on a training
set [10]. Jin et al. [7] shed some light on automatically
choosing a clustering solution.
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ian process in the cepstral space. We present a maximum
likelihood approach to detect turns of a Gaussian process;
the decision of a turn is based on the Bayesian Information
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literature. The BIC criterion can also be applied as a ter-
mination criterion in the hierarchical methods for speaker
clustering: two nodes can be merged only if the merging
increases the BIC value. Our experiments on the Hub4
1996 and 1997 evaluation data show that our segmenta-
tion algorithm can successfully detect acoustic changes; our
clustering algorithm can produce clusters with high purity
and enhance unsupervised adaptation as much as the ideal
clustering by the true speaker identities.

This paper is organized as follows: section 2 describes
model selection criterions in the statistics literature; section
3 and section 4 explains our maximum likelihood approach
for acoustic change detection and our clustering algorithm
based on BIC; we present our experiments on the Hub4
1996 and 1997 evaluation data; we compare our algorithms
with other recent works in the literature.

2. MODEL SELECTION CRITERIA

The problem of model identi�cation is to choose one among
a set of candidate models to describe a given data set. We
often have candidates of a series of models with di�erent
number of parameters. It is evident that when the number
of parameters in the model is increased, the likelihood of the
training data is also increased; however, when the number
of parameters is too large, this might cause the problem of
overtraining. Several criteria for model selection have been
introduced in the statistics literature, ranging from non-
parametric methods such as cross-validation, to parametric
methods such as the Bayesian Information Criterion (BIC)

[11].

BIC is a likelihood criterion penalized by the model com-
plexity: the number of parameters in the model. In detail,
let X = fxi : i = 1; � � � ;Ng be the data set we are mod-

eling; let M = fMi : i = 1; � � � ;Kg be the candidates
of desired parametric models. Assuming we maximize the
likelihood function separately for each model M , obtaining,
say L(X ;M). Denote #(M) as the number of parameters

in the model M . The BIC criterion is de�ned as:

BIC(M) = log L(X ;M)� �
1

2
#(M)� log(N) (1)

where the penalty weight � = 1. The BIC procedure is to
choose the model for which the BIC criterion is maximized.
This procedure can be derived as a large-sample version of
Bayes procedures for the case of independent, identically
distributed observations and linear models [11].

The BIC criterion is well-known in the statistics liter-
ature; it has been widely used for model identi�cation in

statistical modeling, time series [13], linear regression [5],
etc. It is commonly known in the engineering literature as
the minimum description length (MDL). It has been used in

the speech recognition literature, e.g. for speaker adapta-
tion [12]. BIC is closely related to other penalized likelihood

criterions such as AIC [1] and RIC [5]. One can vary the

penalty weight � in (1), although only � = 1 corresponds
to the de�nition of BIC.

3. CHANGE DETECTION VIA BIC

In this section, we describe a maximum likelihood approach
for acoustic change detection based on the BIC criterion.

Denote x = fxi 2 Rd; i = 1; :::;Ng as the sequence of
cepstral vectors exacted from the entire audio stream; as-
sume x is drawn from an independent multivariate Gaussian
process:

xi � N(�i;�i)

where �i is the mean vector and �i is the full covariance
matrix.

3.1. Detecting One Changing Point

We �rst examine a simpli�ed problem: assume that there
is at most one changing point in the Gaussian process.
We are interested in the hypothesis testing of a change

occurring at time i:
H0 : x1 � � �xN � N(�;�)

versus
H1 : x1 � � �xi � N(�1;�1);xi+1 � � �xN � N(�2;�2):

The maximum likelihood ratio statistics is

R(i) = Nlogj�j �N1logj�1j �N2logj�2j (2)

where �;�1 and �2 are the sample covariance matrices from
all the data, from fx1; � � � ; xig and from fxi+1; � � � ; xNg,
respectively. Thus the maximum likelihood estimate of the
changing point is

t̂ = argmax
i
R(i):

On the other hand, we can view the hypothesis testing
as a problem of model selection. We are comparing two
models: one models the data as two Gaussians; the other
models the data as just one Gaussian. The di�erence be-
tween the BIC values of these two models can be expressed
as

BIC(i) = R(i)� �P (3)

where the likelihood ratio R(i) is de�ned in (2), the penalty

P =
1

2
(d+

1

2
d(d+ 1)) logN

and the penalty weight � = 1; d is the dimension of the
space. Thus if (3) is positive, the model of two Gaussians
is favored. Thus we decide there is a change if

fmax
i

BIC(i)g > 0: (4)

It is clear that the m.l.e. of the changing point also can be
expressed as

t̂ = argmax
i

BIC(i): (5)

Comparing with the metric-based segmentation described
in the introduction, our BIC procedure has the following
advantages:
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Figure 1. Detecting one changing point

� Robustness. [10, 4] proposed to measure the variation
at location i as the distance between a window to the
left and a window to the right; typically the window
size is short, e.g. two seconds; the distance can be cho-

sen to be the log likelihood ratio distance [6] or the
KL distance. In our opinion, such measurements are
often noisy and not robust, because it involves only
the limited samples in two short windows. In contrast,
the BIC criterion is rather robust, since it computes
the variation at time i utilizing all the samples. Fig-
ure 1 shows an example which indicates the robustness
of our procedure. We experimented on a speech sig-
nal of 77 seconds which contains two speakers. Panel

(a) plots the �rst dimension of the cepstral vectors;
the dotted line indicates the location of the change.
One can clearly notice the changing behavior around
the changing point. We computed both the log like-
lihood ratio distance (i.e. the Gish distance) and the

KL2 distance [10] between two adjacent sliding win-

dows of 100 frames. Panel (b) shows the log likelihood
distance: it attains local maximum at the location of
the change; however, it has several maxima which do
not correspond to any changing points; it also seems
rather noisy. Similarly Panel (c) shows the KL2 dis-

tances: there is a sharp spike at the location of the
change; however, there are several other spikes which
do not correspond to any changing points. Panel (d)
displays the BIC criterion; it clearly predicts the chang-
ing point.

� Thresholding-free. Our BIC procedure is able to au-
tomatically performs model selection, whereas [10] is

based on thresholding. As shown in Figure 1 (b) and

(c), it is di�cult to set a thresholding level to pick the

changing points. Figure 1(d) indicates there is a change
since the BIC value at the detected changing point is
positive.

� Optimality. Our procedure is derived from the theory
of maximum likelihood and model selection. It can
be shown that our estimate (5) converges to the true
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Figure 2. The detectability of a change

changing point as the sample size increases.
The performance of our procedure relies heavily on the

amount of data available for each of the two Gaussian mod-
els separated by the true changing point. We de�ne the
detectability of a changing point at t as

D(t) = min(t;N � t): (6)

In general the BIC procedure is less accurate as the de-
tectability decreases. This can be demonstrated in the fol-
lowing experiment. We placed multiple windows of the
same size around a speaker changing point in an audio
stream, with each window corresponding to di�erent de-
tectability. Within each window, the BIC procedure was
performed to detect if there was a change. Figure 2 plots
the BIC value against the detectability of the sampling. The
BIC value starts as negative, suggesting that there is only
one speaker. As the detectability increases, the BIC value
also increases sharply; it is well above zero for detectabil-
ity greater than 2 seconds, strongly supporting the change
point hypothesis.

3.2. Detecting Multiple Changing Points

We propose the following algorithm to sequentially detect
the changing points in the Gaussian process x:

(1) initialize the interval [a; b] : a = 1; b = 2.

(2) detect if there is one changing point in [a; b] via BIC.

(3) if (no change in [a; b])
let b = b+ 1;

else
let t̂ be the changing point detected;

set a = t̂+ 1 ; b = a+ 1;
end

(4) go to (2).

By expanding the window [a; b], the �nal decision of a

change point is made based on as much data points as pos-
sible. In our view, this can be more robust than decisions
based on distance between two adjacent sliding windows of
�xed sizes [10], though our approach is more costly.



The BIC criterion can be viewed as thresholding the log
likelihood distance, with the thresholding level automati-

cally chosen as � 1
2
(d+ 1

2
d(d+1)) logN where N is the size

of the decision window and d is the the dimension of the
feature space.
Again we emphasize that the accuracy of our procedure

depends on the detectabilities of the true changing points.
Let T = ftig be the true changing points; the detectability

can be de�ned as

D(ti) = min(ti � ti�1 + 1; ti+1 � ti + 1):

When the detectability is low, the current changing point is
often missed; moreover, this error contaminates the statis-
tics for the next Gaussian model, thus a�ects the detection
of the next changing point.
Our algorithm has a quadratic complexity; however, one

can reduce the complexity dramatically by performing a
crude search without much sacri�ce of the resolution.

3.3. Change detection on the Hub4 1997 evaluation
data

We applied our algorithm on the Hub4 1997 evaluation
data, which consists of 3 hour broadcasting news programs;
detection was performed using 24-dimensional Mel-cepstral
vectors exacted at 10ms frame rate.
NIST provided hand-segmentation of this data according

to di�erent categories: clean prepared speech, clean sponta-
neous speech, telephone-quality speech, speech with back-
ground music and speech with background noise. As com-
mented in [4], it is very hard to come up with a standard for
analyzing the errors in segmentation since segmentation can
be very subjective; even two people listening to the same
speech may segment it di�erently. Nevertheless, we analyze
the performance of our detection by comparing with the
hand-segmentation provided by NIST.
We �rst examine whether our detected changing points

were true, i.e. the Type-I errors. Among the 462 detected
changes, there were 19 (4:1%) errors which happened in the
middle of speaker turns. Our BIC criterion seems sensi-
tive in pure music region. There were 14 (3:0%) detected

changes in the middle of pure music segments; we did not
count them as errors since �rst one can argue that the mu-
sic tune changed in those areas, second the pure music seg-
ments were discarded by the classi�er and did not a�ect
the recognition accuracy. There were 20 (4:3%) detected
changes slightly biased from the true changes. The biases
were less than 1 seconds, as shown in panel (a) in Figure 3.

We did not count these as errors since they came so close
to the true changes. The bias might be caused by contami-
nation of the statistics for estimating the Gaussian models
by outliers, or by the statistics from the previous turn if the
previous change point was missed in the detection. Usually
these errors can be �xed, for example, by moving to the
nearest silence. It is also possible to re�ne the boundary by
�ner analysis in the detected region.
We also examine whether true changing points were

missed in our detection, i.e. the Type-II errors. In the NIST

segmentation, there were 620 changes. Totally 207 (33:4%)

changes were missed. 154 (25:0%) errors were caused by
short turns with duration less than 2 seconds. Examples

Type-I

Error
4:1%

Type-II � 2s 25:0%

Error
33:4%

> 2s 8:4%

Table 1. Change detection error rates
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Figure 3. Error analysis of change detection

of these short turns are sentences made up of only brief
phrases such as \Good morning" and \Thank you". About
50 of these short turns contained voices from more than one
speaker. They were labeled as \excluded regions" by NIST
and were not included in the �nal scoring of the recogni-
tion system but were included in determining the change
detection accuracy. Figure 3 analyzes the Type-II errors

in detail. Panel (b) shows the histogram of the detectabil-
ity of the true changes; there were 223 true changes with
detectability less than 2 seconds. Panel (c) shows the his-
togram of the detectability of the true changes which were
missed in the detection; it is clear that most of the errors
came from low detectabilities less than 2 seconds. Panel (d)

describes the Type-II error rates according to di�erent de-
grees of detectability: when detectability is below 1 second,
as the type-II error rate is 78%, most such changing points
were missed; as the detectability increases, the Type-II er-
ror drops.

4. CLUSTERING VIA BIC

In this section, we describe how to apply the BIC criterion
in clustering. Let S = fsi : i = 1; � � � ;Mg be the collection
of signals we wish to cluster; each signal is associated with

a sequence of independent random variables X i = fxij :

j = 1; � � � ; nig. In the context of speech clustering, S is a

collection of audio segments; X i can be the cepstral vectors

exacted from the i'th segment. Denote N =
P

i
ni as the

total sample size of the vectors X i.

Let Ck = fci : i = 1; � � � ; kg be the clustering which
has k clusters. We model each cluster ci as a multivariate
Gaussian distribution N(�i;�i), where �i can be estimated
as the sample mean vector and �i can be estimated as the
sample covariance matrix. Thus the number of parameters



for each cluster is d+ 1

2
d(d+ 1). Let ni be the number of

samples in cluster ci. One can show that

BIC(Ck) =

kX

i=1

f�
1

2
ni log j�ijg � �P (7)

where the penalty

P =
1

2
(d+

1

2
d(d+ 1)) logN

and the penalty weight � = 1. We choose the clustering
which maximizes the BIC criterion.

4.1. Hierarchical Clustering via greedy BIC

As one can imagine, it is often very costly to search globally
for the best BIC value, since clustering has to be performed
to obtain di�erent numbers of clusters. However, for hier-
archical clustering methods, it is possible to optimize the
BIC criterion in a greedy fashion.
Bottom-up methods start with each signal as one initial

node, then successively merge two nearest nodes according

to a distance measure. Let S = fs1; � � � ; skg be the cur-
rent set of nodes; suppose s1 and s2 are the candidate pair
for merging, and the merged new node is s. Thus we are
comparing the current clustering S with a new clustering

S 0 = fs; s3; � � � ; skg. We model each node si as a multi-

variate Gaussian distribution N(�i;�i). It is clear from (7)
that the increase of the BIC value by merging s1 and s2 is

BIC = n log j�j � n1 log j�1j � n2 log j�2j � �P (8)

where n = n1 + n2 is sample size of the merged node, �
is the sample covariance matrix of the merged node, the
penalty

P =
1

2
(d+

1

2
d(d+ 1)) logN

and the penalty weight � = 1.
Our BIC termination procedure is that two nodes should

not be merged if (8) is negative. Since the BIC value is
increased at each merge, we are searching for an \optimal"
clustering tree by optimizing the BIC criterion in a greedy
fashion.
Note that we merely use our criterion (8) for termina-

tion. It is possible to use our criterion (8) as the distance

measure in the bottom-up process. However, in many ap-
plications, it is probably better to use more sophisticated
distance measures. It is also clear that our criterion can be
applied to top-down methods.

4.2. Speaker Clustering on the Hub4 1996 evalua-

tion data

The data set consists of the clean prepared and the clean
spontaneous portion of the HUB4 1996 evaluation data [2],
hand-segmented into 824 short segments. Cepstral coe�-

cients were extracted as feature vectors X i for each segment.
We used the log likelihood ratio distance measure; Bottom-
up clustering was performed with maximum linkage, with
the BIC termination criterion (8).
The true number of speakers is 28; the BIC termination

criterion chose 31 clusters. For each cluster, we de�ne the
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Figure 4. Clustering Purities

Prepared Spontaneous

Baseline 18.8% 27.0%

MLLR w/o clustering 18.7% 26.9%

MLLR w/ ideal clustering 17.5% 24.8%

MLLR w/ BIC clustering 17.5% 24.6%

Table 2. MLLR adaptation enhanced by BIC clus-

tering

purity as the ratio between the number of segments by the
dominating speaker in that cluster and the total number
of segments in that cluster. Figure 3 shows the purities
of each cluster. Clearly our algorithm results in not only
clusters with high purity, but also the appropriate number
of clusters.
Speaker clustering can enhance the performance of un-

supervised adaptation. The reason is that most of the 824
segments here are quite short, around 2 � 3 seconds. With-
out speaker clustering, unsupervised adaptation techniques
such as MLLR [9] has small improvements due to lack of
data. Good speaker clustering can bring the segments of
the same speaker together thus improving the performance
of unsupervised adaptation. We started from a baseline sys-
tem which had about 90k Gaussians. The decoding results
were scored according to two conditions: clean prepared
and clean spontaneous. As shown in Table 2, the baseline
error rates were 18:8% and 27:0% for the two conditions
respectively. Without clustering, MLLR reduced the error
rates by only 0:1%. With our clustering, MLLR reduced
the error rates by 1:3% for the clean condition and by 2:4%
for the spontaneous condition. Table 2 also shows the error
rates of MLLR using the ideal clustering by the true speaker
identities. It is clear that our speaker clustering enhanced
the performance of MLLR as much as the ideal clustering.

4.3. Discussion

Jin et al. of BBN [7] proposed a similar automatic speaker
clustering algorithm. They also used the log likelihood ratio

distance measure proposed in Gish et al. [6], however, with
the distances between consecutive segments scaled down by
a parameter �. They performed hierarchical clustering; for
any given number k, the clustering tree was pruned to ob-



tain k tightest clusters. A heuristic model selection criterion

kX

j=1

n
�

j j�
�

j j �
p
k (9)

was then used to search through the space of (�;k) for the
best clustering. They applied this algorithm to cluster the
HUB4-96 evaluation data for the purpose of unsupervised
adaptation. Similar to our results above, this automatic
clustering enhanced the unsupervised adaptation as much
as the ideal clustering according the the true speaker iden-
tities.
This heuristic model selection criterion (9) resembles the

BIC criterion (7): they both penalize the likelihood by the
number of clusters. However, the BIC criterion has a solid
theoretical foundation and seems more appropriate. Indeed
the number of speaker clusters found in [7] is considerably
less than the truth. Moreover, extra information such as

the adjacency of the segments was utilized in [7].

Siegler et al. of CMU [10] proposed another speaker
clustering algorithm. They chose the symmetric Kullback-
Leibler metric as the distance measure, and performed hi-
erarchical clustering. The clusters were obtained by thresh-
olding the distances. Unlike our method and the BBN clus-
tering, this clustering is not fully automatic: the thresh-
olding level was tuned in a delicate fashion: it had to be
small enough such that the clusters created were made up
of segments from only one speaker and yet large enough to
improve the performance of the unsupervised adaptation.

5. CONCLUSION

We presented a maximum likelihood approach to detecting
changing points in a independent Gaussian process; the de-
cision of a change is based on the BIC criterion. The key
features of our approach are:

� Instead of making local decision based on distance be-
tween two adjacent sliding windows of �xs sizes, we ex-
pand the decision windows as wide as possible so that
our �nal decision of change points can be more robust.

� Our approach is thresholding-free. The BIC criterion
can be viewed as thresholding the log likelihood dis-
tance, with the thresholding level automatically cho-

sen as � 1
2
(d+ 1

2
d(d + 1)) logN where N is the size of

the decision window and d is the the dimension of the
feature space.

We also proposed to apply the BIC criterion as a termi-
nation criterion in the hierarchical clustering. Our change
detection algorithm can successfully detects acoustic chang-
ing points with reasonable detectability (> 2s); Our exper-
iments on clustering demonstrated that the BIC criterion
is able to choose the number of clusters according to the
intrinsic complexity present in the data set and produce
clustering solution with high purity.
We applied our algorithms on the Hub4 1997 evaluation

data [3]. Table 3 shows the recognition error rates. Our

segmentation was only 0:6% worse than the NIST hand-
segmentation. After clustering, the unsupervised adapta-
tion further reduced the error rate by 2:7%.

Error Rate
NIST hand-segmentation 19.8%

IBM segmentation 20.4%

adaptation after clustering 17.7%

Table 3. Segmentation and clustering in Hub4 1997

task

We comment that the penalty weight � in the BIC crite-
rion could be tuned to obtain various degrees of segmenta-
tion and clustering. A smaller weight would result in more
changes and more clusters. In this paper, we simply choose
� = 1 according to the BIC theory.
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