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ABSTRACT
Large vocabulary continuous Mandarin speech recognition has
been an important problem for speech recognition researchers
for several reasons [1], [3]. First of all, it is a tonal language
that requires special treatment for the modeling of tones. There
are five tones in Mandarin which are necessary to disambiguate
between confusable words. Secondly, the difficulty of entering
Chinese by keyboard presents a great opportunity for speech
recognition to improve computer usability. Previous approaches
to modeling tones have included using a separate tone classifier
[1] and incorporating pitch directly into the feature vector [3].
In this paper, we describe a large vocabulary Mandarin speech
recognition system based on Microsoft’s Whisper system.
Several alternatives in modeling tones and their error rates on
continuous speech are compared.

The experimental result shows a character error rate of 7.32% on
a test set of 50 speakers and 1000 sentences when no special
tone processing is performed in the acoustic model. When the
final syllable model set is expanded to include tones, the error
rate drops to 6.43% (error rate reduction of 12.2%). When pitch
information and the larger final syllable set are used in
combination, the error rate is 6.03% (cumulative error rate
reduction of 17.6%). This result suggests that other sources of
information such as energy and duration can also contribute
toward disambiguating between different tones.

1. INTRODUCTION
The Microsoft Whisper speech recognition system [4] is a
flexible senone-based recognizer that has previously been
converted to recognize Japanese [5]. We have extended the
system to model the different tones in Mandarin. The system
uses context dependent semi-syllabic units for modeling
Mandarin syllables. A total of 6000 senones with 8 Gaussians
per senone are used in the acoustic model, with the assignment
of senones to semi-syllabic units determined through decision
tree based clustering.

Three variations in modeling tones are studied. In the first case,
no specific tone modeling in the acoustic model is performed.
Instead, a powerful language model is used as the sole method
for disambiguating between tonally confusable words. In the
second case, the final syllable model set is expanded to model
the 5 tones separately. However, the feature vector of the
system is not modified to take pitch into account. Lastly, a fast
pitch extractor that runs in real time was developed. The pitch
track obtained with the pitch extractor is smoothed and added to
the feature vector along with its delta and double delta
components. In Section 2, the acoustic phone sets that were

used in this study are described. In Section 3, we present the
two pass pitch extraction algorithm and its evaluation. In
Section 4, we describe the corpora and the system used in the
experiments and the experimental results. Finally, we conclude
in Section 5.

2. ACOUSTIC UNIT SELECTION
There have been many different acoustic representations for
Mandarin in recent years. For example, there have been syllable
based approach, syllable initial/final approach, and
preme/toneme approach [3]. In this study, we selected the
syllable initial/final approach and then expanded only the
syllable final set according to tones. Table 1 lists the syllable
initial and final units that we used in this work. The acoustic
unit set was constructed in consultation to previous phonological
studies of Mandarin [2]. For syllables with no consonants, such
as a, e, er, and o, we use a psudo-initial syllable so that the
representations are (ga a), (ge e), (ger er), and (go o)
respectively. Syllables chi, ri, shi, and zhi are represented as
(chi ib), (r ib), (sh ib) and (zh ib) respectively. To distinguish
the different tongue palate locations during production, syllables
ci, si, and zi are represented as (c if), (s if), and (z if)
respectively. In addition, we include a silence phone and a
garbage phone to model the background. So we have a total of
187 phone models for the large phone set experiments. For the
small phone set, we have a total of 66 phone models.

Syllable
Initial

b, c, ch, d, f, g, ga, ge, ger, go, h, j, k, l, m, n, p,
q, r, s, sh, t, w, x, y, z, zh

Syllable
Final

a, ai, an, ang, ao, e, ei, en, eng, er, i, ia, ib, ian,
iang, iao, ie, if, in, ing, iong, iu, o, ong, ou, u,
ua, uai, uan, uang, ui, un, uo, v, van, ve, vn

Syllable
Final
with
Tone

a(1-5), ai(1-4), an(1-4), ang(1-5), ao(1-4),
e(1-5), ei(1-4), en(1-5), eng(1-4), er(2-4),
i(1-5), ia(1-4), ib(1-4), ian(1-5), iang(1-4),
iao(1-4), ie(1-4), if(1-4), in(1-4), ing(1-4),
iong(1-3), iu(1-5), o(1-5), ong(1-4), ou(1-5),
u(1-5), ua(1-4), uai(1-4), uan(1-4), uang(1-4),
ui(1-4), un(1-4), uo(1-5), v(1-4), van(1-4),
ve(1-4), vn(1-4)

Table 1: Syllable initial and final units used for experiments
with tone and without tone. (Numbers following syllable final
units indicate the range of tones represented; the number 5
represents the neutral tone.)



3. PITCH EXTRACTION

3.1 Constraints in Practical System
Although there are many pitch extraction algorithms, previous
work [6] which compares the performance of the different
algorithms shows that no one is absolutely better than the others.
On the other hand, for practical use of dictating text, real-time
display of recognized text is desirable. With real-time speech
recognition systems, the front-end module generates acoustic
feature vectors including Mel-scale cepstrum coefficients and
pitch as speech waveform is entered into the system. Therefore,
there is no look-ahead buffer of data that can be used to improve
on pitch extraction accuracy. In addition to working in real
time, the pitch extraction algorithm must be computationally
efficient due to the limited amount of resources that can be
devoted to front-end computation.

3.2 Algorithm Description
Our target is to design a fast and robust pitch tracker. For a
complete pitch tracker, often there are three major components:
1) A preprocessor, which removes some background noise and
unreasonable frequency components in the frequency domain, 2)
A F0 candidates estimator, which seeks the candidates of the
true period, and 3) A post-processor, the best candidate is
selected and the F0 is refined in this stage.

In the above three components, the F0 candidate estimator is the
most time consuming, because variant forms of correlation are
calculated in this stage. To speed up the traditional F0 candidate
estimator, a two-pass procedure is employed. The idea is to use
the fastest algorithm for finding N possible F0 candidates in the
first pass, and then apply more powerful algorithm to re-score
these N candidates in the second pass. Usually, N is much
smaller than the whole estimating range of possible F0 values.
As a result, computation is reduced dramatically with limited
accuracy loss.

In our implementation, the DC bias is estimated and subtracted
from each speech frame in pre-processing. For the F0 candidate
estimator, we select the average magnitude difference function
(AMDF) [6] as the estimator in the first pass, and normalized
cross correlation function (NCCF) [7] in the second pass.
Because AMDF consists of the subtraction as following, it is
faster than other algorithms.

1,,1,0,
1

, −=−= ∑
−+

=
+ KkssD

nm

mj

kjjki L (3.1)

Where, sj and sj+k are jth and (j+k)th sample in the speech
waveform, Di,k represents the similarity of ith speech frame and
its adjacent neighbor with interval of k samples.

The normalized cross correlation function can be expressed as:
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Because the value of NCCF is independent of the amplitude of
adjacent speech frames, the NCCF overcomes the shortcomings
of the other F0 candidate estimators described in [6], [7], but
computation is increased.

During post-processing, dynamic programming is applied to
select the best F0 and voicing state candidates at each frame
based on a combination of local and transition costs.

Usually, a lattice structure is organized which consists of N
voiced candidates with the pitch value calculated by the
estimator described above and an unvoiced assumption in each
frame. For each speech frame, the local cost is the NCCF value
or score for every candidate assumed to be a voiced segment,
and the average NCCF score for the unvoiced. The transition
cost takes into account many factors, such as ratio of energy,
ratio of zero crossing rate, Itakura distance, and difference of F0
between two adjacent speech frames.

3.3 Evaluation Results
In the ideal case, a physical device measurement such as
larynograph should be used to evaluate the performance of the
pitch tracker. However, a large database of speech from many
speakers and the corresponding larynograph recording are not
available to us. Our solution is to select the commonly used
pitch tracker made by Entropic to generate the reference pitch
track. We use 70,000 sentences enunciated by 250 male
speakers and 100 female speakers as our testing data. The
comparison result of pitch trackers between Entropic and
MSRCN is listed in Table 2. The result shows that the two pass
pitch tracker that we developed is approximately 20 times faster
than the Entropic pitch tracker with limited accuracy loss. Also,
while there are some absolute differences between the pitch
tracks extracted by the Entropic system and our system, the
pitch contour is more important for tone recognition. In later
experiments that incorporate pitch into the feature vector, there
was no error increase when the pitch track from our two pass
system was used instead of the pitch tracks extracted by the
Entropic pitch tracker.

Entropic MSRCN

Accuracy 100% 94%

Speed 1.15 0.057

Table 2: The speed value in the table is the ratio of time spent
by each pitch tracker divided by the speech duration.

4. EXPERIMENTS
The basis of our work is a state of the art speech recognition
system, Whisper, which we have enhanced by adding specific
features that are beneficial for recognizing tonal languages such
as Mandarin.



4.1 System Description
Our contributions in developing the Mandarin recognition
system include refining acoustic models and Chinese language
models. In this section, we will characterize our progress by
percent error rate reduction.

4.1.1 Feature representations

At present, MFCC based feature is the most popular feature used
in speech recognition systems. For Mandarin, as we discussed
above, pitch and its dynamics should be provided in the feature
vector to model the tones.

In our system, a feature vector with 36 dimensions is used. The
36 dimensions consist of:

• Energy based feature (E, ∆E, ∆∆E)
• MFCC based feature (12MFCC, 12∆MFCC, 6∆∆MFCC)
• Pitch based feature (F0, ∆F0, ∆∆F0)

In our early experiments, we found that when the extracted pitch
track is directly added to the feature vector, no accuracy
improvements were found. A smoothing process is necessary to
make pitch information useful in continuous speech recognition.
There are several smoothing methods, but due to the real time
feedback constraint for better user interface, some specific
compromises are made. For example, we should deal with
every frame of speech without looking ahead. For voiced
speech segment, the smoothed value is:
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Where, tp represents the real pitch value in time t, and '
tP the

smoothed pitch value. '
averP is a running average calculated

from previous history or training data, λ is a constant
determined through experiments. x is a small random value that
can prevent the variance of the Gaussians models from being
zero.

4.1.2 Detailed acoustic modeling by parameter sharing

Decision tree has been successfully used for improved sharing
of HMM parameters in many speech recognition systems. In
decision tree based clustering, a binary tree is built for each state
of every phone. Each tree has a yes or no phonetic question at
each node. In our system, a set of questions is prepared based
on Chinese phonetics [2]. There are 187 questions that
summarize the enunciation property of Mandarin. Clustering at
a state level provides the freedom to use a larger number of
states for each tri-phone model. In our system, we use 6000
senones with 8 Gaussians in each senone.

4.1.3 Language modeling

A stochastic grammar such as bigram or trigram provides an a
priori estimate of the probability of each word in context to its
preceding words. We used a trigram language model during the
decoding process.

For language model training, we used a large text corpus that
contains 1.6 billion characters. The content of the corpus comes
from many different domains including newspaper articles,
novels, web texts, and technical documents. There are 52,000
words in our vocabulary, and the size of the language model is
approximately 124 MB. The detailed process of building the
language model is described in [8].

4.2 Experimental Results
Several experiments have been done to demonstrate the
improvements step by step. In particular, we will show the result
of using a small phone set, a large phone set and a large phone
set with pitch in the feature vector.

4.2.1 Data

Having a lot of data is essential for establishing a modern state
of the art speech recognition system. We collected a speech
database including 500 speakers (half male, half female), with
200 sentences per speaker. The scripts read by the speakers
were carefully selected to ensure broad triphone coverage. The
data were recorded at a 16k sampling rate and 16 bits per
sample. These data are training data for all of our experiments.
All the speakers were recruited in the Beijing area.

We also collected a testing database of 1000 sentences from 50
speakers, 25 males and 25 females, with 20 sentences per
speaker. The average perplexity of the sentences is less than
200 based on our language model. For convenience, we will
call the male test set as m-msr, and the female test set as f-msr.

4.2.2 Experiments

In order to observe how well the tone is modeled, we
constructed a baseline system with a small phone set that
contains 66 phoneme like units. In small phone set, only
syllable initials and non-tone-specific syllable finals of
Mandarin syllables are used and no tone information is
represented.

To study whether tones can be distinguished without
incorporating pitch into the feature vector, we used a large
phone set as described in Section 2, but keeping the feature
vector the same as the baseline system. Lastly, we added pitch
based feature in the feature vector by the method discussed
above.

The error rate of each test set is shown in Table 3. The
experimental results show a character error rate of 7.32% on
average when no special tone processing is performed in the
acoustic model. When the final syllable model set is expanded
to include tones, the error rate drops to 6.43% (error rate
reduction of 12.2%). When pitch information and the larger
final syllable set are used in combination, the error rate is 6.03%
(cumulative error rate reduction of 17.6%). More than 17%
error rate reduction on average is achieved by introducing pitch
based feature and the large phone set. The error rate reductions
are consistent across different gender. The improved accuracy
with the larger tone-dependent syllable final set even without the
inclusion of pitch information matches the result previously
presented in [9]. This shows that spectral information present in
the MFCC feature vector also contains information for
discriminating between different tones.



Female Male Average

Small Phone Set 6.35 8.28 7.32

Large Phone Set
without Pitch

5.64 7.21 6.43

Large Phone Set
with Pitch

5.35 6.71 6.03

Table 3: Error rate on each test set.

Another series of experiments showed us that the amount of
improvement is different for each pitch based feature such as
pitch, delta pitch and double delta pitch. We used the male large
phone set model with pitch and left only one of the three pitch-
based features used at a time. Then we repeated the decoding
experiments using the same male test set described above. The
error rate of each configuration is shown in Figure 1.
Comparing the results of using each pitch-based feature
separately with the original result using all three pitch based
features, it is clear that the delta pitch parameter is the most
important factor in improving accuracy.

Figure 1: The error rate for each feature configuration on the
male test set.

5. CONCLUSION
Three variations in modeling tones are studied. In the first case,
no specific tone modeling in the acoustic model is performed.
Instead, a powerful language model is used as the sole method
for disambiguating between tonally confusable words. In the
second case, the final syllable model set is expanded to model
the 5 tones separately. However, the feature vector of the
system is not modified to take pitch into account. Lastly, a fast
pitch extractor that runs in real time was developed . The pitch
track obtained with the pitch extractor is smoothed and added to
the feature vector along with its delta and double delta
components.

The experimental result shows a character error rate of 7.32%
when no special tone processing is performed in the acoustic
model. When the final syllable model set is expanded to include
tones, the error rate drops to 6.43% (error rate reduction of
12.2%). When pitch information and the larger final syllable set
are used in combination, the error rate is 6.03% (cumulative
error rate reduction of 17.6%). In the future, we intend to better
incorporate tonal contextual information such as the identity of
the previous tone and the following tone to further improve
accuracy.
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