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ABSTRACT

The problem of blindly separating signal mixtures with fewer mix-
ture components than independent signal sources is mathemati-
cally ill-defined, and requires suitable prior information on the na-
ture of the sources. Recently, it has been shown that sparse meth-
ods for function approximation using a Laplacian prior can be ef-
fective, but the method fails to separate a single mixture without
further prior information. Other techniques track harmonics, but
assume separability in the time-frequency domain. We show that
a measure of temporal and spectral coherence provides an effec-
tive cue for separating independent acoustical or sonar sources, in
the absence of spatial cues in the monaural case. The technique
is shown to successfully separate single mixtures of sources with
significant spectral overlap.

1. INTRODUCTION

The human brain excels at segregating complex mixtures of un-
known signals from sensory modalities that convey a convoluted
and incomplete version of the co-existing signals from the envi-
ronment. The fact that our auditory system and periphery is able to
distinguish, even from a monaural signal, two simultaneous con-
versations or music instruments playing the same note, suggests
that effective signal processing solutions exist in biology [1, 2].
This motivates a study of architectures for adaptive blind signal
processing which emulate function and structure of information
processing in biological neural systems [3].

Auditory scene analysis [2, 1] synthesizes extensive psy-
chophysical experimentation into a descriptive theory of how
the brain processes auditory information from a cochlear time-
frequency representation to extract and track relevant signals
amidst noise and interference. Separation occurs through bind-
ing and grouping of events in the time-frequency domain. This
approach appears to be the most neuromorphic of techniques pro-
posed for acoustic signal separation, and is the basis for several
algorithms for separating acoustic sources.

This paper addresses the problem of separating a single mix-
ture of signals, such as extraction of independent voice streams
in a monaural acoustic channel, illustrated in Figure 1. This task
is mathematically ill-defined since the problem carries more un-
knowns than supported by the data. The approach to solve the
ambiguity problem, is to specify a suitable prior on the source dis-
tributions, and an answer to the question what is a suitable prior
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Figure 1: Monaural separation of independent acoustic compo-
nents.

depends in on the type of signals considered. In principle, one
could construct general models and train the parameters in the
model from data. A generic Laplacian prior, expressing sparsity
in the source distributions, was proposed in [4], but it requires at
least two mixtures to separate three signals [5]. Real-time tracking
of a group of co-modulated harmonics provides a means to sepa-
rate one source from time-frequency clutter [6], but the success of
the technique depends strongly on the degree of interference from
other sources. This papers considers a source prior that expresses
spectral and temporal coherence, which is capable of the monau-
ral case (separating single mixtures) and applies to a wide range of
acoustic and sonar signals. A related approach based on amplitude
and frequency modulation is given in [7].

In Section 2 we outline a general mathematical framework for
source separation, which we extend in Section 3 to the monaural
case, accounting for a measure of coherence. Results on separating
monaural mixtures of acoustic signals are presented in Section 4.

2. INDEPENDENT COMPONENT ANALYSISAND
SPARSE APPROXIMATION

2.1. Independent Component Analysis

The mathematical tool behind the problem of separating unknown
mixtures of unknown sources is that of independent component
analysis (ICA) [8]-[14], which applies information-theoretic con-
cepts to extract mixture coefficients from the data, mostly using a
linear or convoluting mixing model together with the assumption
that the sources are statistically independent. Adaptive algorithms
of this type offer abstract models of how the brain may separate
multiple streams of sensory information [8], and scalable archi-
tectures can be formulated which are amenable to analog VLSI
implementation [17, 18].

The task of separating linear mixtures of signals into inde-
pendent components to reconstruct the sources of the signals is
mathematically ill-defined in all but a few cases. Clearly, any ob-
served signal can be arbitrarily decomposed as a sum of signals in



an infinite number of ways, and suitable prior knowledge has to be
embedded in the model of the sources to yield meaningful values
of the mixing parameters. Typically, the number of independent
channels of observed signals is assumed to be at least the number
of independent sources. This makes the task relatively straightfor-
ward, and in the case with more independent (sensor) observations
than sources the mixing matrix can be uniquely determined, even
from just second-order statistics of the signal data.

The number of sources can not always be determined a priori
for a given application, and a suitable number of linearly indepen-
dent observations of the sources can not always be guaranteed. Re-
search in ICA on the case of fewer independent observations than
sources has been non-existing until recently, making use of prior
information on the source distribution. We start by formulating
source models as a prior in a general Bayesian framework.

2.2. A General Bayesian Framework

In the Bayesian approach to independent component analysis [16,
15, 4], prior model information on the source s is used to construct
the optimal maximum a posteriori (MAP) estimator through ap-
plication of Bayes’s rule:

max : P(s|x) x P(x|s) P(s) (1)
The key is a suitable formulation of a source and mixture models.

They could be specified, for instance, as an auto-regressive source
model and linear mixture model

si(k) = gi(si(k—1),8:(k—2),...)+ei(k) Vi
x(k) As(k) + n(k) @

respectively, where the g; are (possibly nonlinear) scalar functions
characterizing the sources i, e; represent generative errors in these
source models, and n(k) represents the observation noise in the
mixture model.

A full implementation of the general model (2) can be ob-
tained, in principle, by expanding g; in parametric form, and
adapting the autoregressive parameters of g; on-line. The prob-
lem with this approach is that training data in the regressive source
model (2) is not available, since both g; and s; are unknown. A
possible solution which estimates the parameters on-line is demon-
strated in [15]. Parametric techniques of this type work well when
there is sufficient data in the observations to estimate all model
parameters.

2.3. Sparse Approximation in Overcomplete Bases

The case of source separation with fewer observation channels
than sources has been addressed by techniques of sparse approx-
imation in an overcomplete representation, assuming a Laplacian
(L1-norm) prior on the source distributions [4]. This is a special
case of (2) where g; = 0, e; is Laplacian distributed, and n is
normally distributed. Then (1) yields

A 2
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which can be solved through resursion of an algorithm closely re-
lated to ICA [4]. The technique has been applied in an experimen-
tal setting to separate three speech sources using only two micro-
phones [5].

The success in separating three sources from only two obser-
vation channels is quite remarkable, especially because the meth-
ods makes no assumptions on the source distributions themselves
(g; = 0). For acoustic signals, we can expect improvement from
a source model that incorporates some general knowledge about
acoustics. A more informative source model is necessary in the
monaural case, because a Laplacian prior on itself fails to separate
more than one speech signal from a single microphone recording.

In this paper, we consider a measure of spectral and tempo-
ral coherence as a suitable prior to separate monaural mixtures of
acoustical signals in the time-frequency domain.

3. MONAURAL SEPARATION IN THE
TIME-FREQUENCY DOMAIN

3.1. Time-Frequency Wavelet Decomposition and Reconstruc-
tion

Wavelets [20] provide a powerful mathematical tool for analyzing
temporal data that contain pertinent features both in the time do-
main and the frequency domain, such as with acoustical [3] wave-
forms.

Wavelet decomposition and reconstruction can be performed
on analog continuous-time temporal data using a complex gaussian
kernel [21]:
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where the center frequencies wy, are equally spaced on a logarith-
mic scale. The constant « sets the relative width of the frequency
bins in the decomposition, and can be adjusted together with C to
accommodate compact support of the wavelet kernel.

The computation (4) is efficiently implemented in custom ana-
log VLSI technology, using a parallel architecture. In previous re-
search we have developed several versions of wavelet transform
processors in analog and hybrid analog-digital technology [21].

Wavelet decomposition provides a convenient signal represen-
tation for blind separation in the time-frequency domain.

3.2. Time-Frequency Domain Coherent Signal Segregation

A distribution-invariant prior can be defined on the sources in the
form of an error functional which expresses a direct measure of
short-term coherence between sources in the time-frequency do-
main. This of course requires that short-term coherence is a mean-
ingful metric, which it is for most acoustical and sonar signals.

Results from psychophysical experiments of hearing discrim-
ination [1, 2] show that coherence and harmonic relationships be-
tween acoustic sources plays a crucial role in identifying indepen-
dent sounds. Developments of this idea have led to several algo-
rithms for music separation, e.g., [6, 7]. Most techniques, how-
ever, ignore relative phase information present in interfering signal
components, and thus discard one of the most discriminatory fea-
tures to distinguish independent signals. The argument to what ex-
tent and in what form the auditory periphery employs phase infor-
mation is subject to an intense debate among neurophysiologists;
and it is clear that phase information plays a crucial role, e.g., for
localization in the auditory periphery of bats [22].



3.2.1. Incoherence and Independence

The key idea to solve the underconstrained source separation prob-
lem is to exploit temporal rather than spatial correlations in distin-
guishing among independent signal components. The principle is
illustrated in Figure 2. We consider scalar mixtures of signals in
the monaural case; this assuption is not essential and simplifies the
analysis. Information on temporal structure is conveniently ob-
tained from the time-frequency decomposition (4):

s(t) =) s*(t) exp (—jwit) (5)

k

where the constant C' is dropped for notational convenience. Tem-
poral incoherence between two signals expresses randomness in
the relative phase (or, more specifically, time difference) between
the two signals. We generalize this notion to include both random
time 8 and amplitude A fluctuations:

5()) = A()3(¢—6(t) ©)
= A1) D5 (1) exp (jwrb(t)) exp (—jwnt)
k

where 5 represents a periodic waveform®. While amplitude vari-
ations scale the spectrum uniformly, we see that time fluctuations
(jitter) modulate the spectrum nonuniformly. Incoherence in mix-
tures of independent sources thus provides a key to distinguish
components based on a measure of fluctuations in relative ampli-
tude and phase.

3.2.2. Time-Frequency Separation of Quasi-Coherent Sources

Separation of mixtures of sources based on incoherence (6) only
works provided that the sources s themselves are sufficiently co-
herent over an extended period of time, for fluctuations in relative
A(t) and 6(t) to be observable. In particular, let the observed sig-
nal z(t) be composed of an incoherent mixture of sources §;(t),
i=1---N:

x(t) ® Y E() = DAt silt — 6i(t)) )
= DD A 5 (1) exp (juwrbi(t)) exp (—jwst)
i k
which can be reformulated in the time-frequency domain as
2H(t) m ) Ailt) 5E(t) exp (jwrbi(?)) - ®

The only knowledge available about the coefficients 35 (¢) is that
they represent periodic sources s;. From (8), the assumption of
incoherence across sources reduces the complex autocorrelation
of z* to

E(z*(t) 2" (t — ot))
~y E(Ai(t) At — 5t) 55 (1) 3 (¢ — 5t) x
exp (jor (6:(8) — 0:(t — 6t))) )

~ Y E(A)) B(EHE) 38 (¢ - ot))

1We cannot assume that the coefficients 5% (¢) are constant. Periodicity
implies, to first order, that the 5% (¢) oscillate with constant frequency.

Figure 2: Coherence-based monaural separation.
separation from a single mixture z(¢) is ambiguous, unless the
sources z;(t) have a known structure. (b) Short-term coherence
of a source can be expressed in terms of time § and amplitude A
fluctuations of a periodic waveform. (c) These fluctuations allow
to distinguish and separate the sources even if they overlap in the
spectral domain.

(a) Source

where the last equality assumes that &t is shorter than the coher-
ence time, i.e., characteristic time scale of A; and 6;. Finally, if
5%(t) = SP(t) exp(—jQFt) represents the harmonic precession
of source ¢ in band k, then

E(5F(t) 5" (t — 6t)) =~ |SF (t)]> exp(—jQf 6t) . (10)

and the coefficients 5% (¢) can be completely determined, up to a
constant phase, from a number of autocorrelation observations (9)
larger than the number of sources. The remaining unknowns are
then derived from (7).

3.2.3. Time-Domain Separation

A simpler procedure is obtained by directly implementing (7) in
the time domain. For any fragment of s;(t), a greedy correlation-
based search over neighboring time intervals produces a match-
ing segment s;(t — 6;), for a value 6; that best satisfies the con-
straint (6) for s;. Both segments are updated towards each other
in order to refine the constraint (6), along with additional soft con-
straints that enforce smoothness in the sources®. The procedure is
repeated until all pairs of matching segments converge to within
the noise level of condition (6).

4. EXPERIMENTS

Best results were obtained using the time-domain separation
method. For the experiments, we considered single mixtures of 2

2In particular, an update &s;(t) towards s;(¢t — ;) is one of two fixed
amplitudes: the larger one if the update is in the direction of the spatial
average, and the smaller one otherwise. The same applies for the update
ds;(t — 0;) towards s;(t).
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Figure 3: Monaural separation in the time domain. Top: Two
sources with overlapping spectra. Center: Single mixture. Bot-
tom: Reconstructed sources from the mixture.

sources with overlapping spectra. Figure 3 demonstrates success-
ful separation of two frequency-chirped and amplitude-modulated,
quasi-periodic waveforms. The separation succeeds even though
harmonics of the instantaneous frequencies of the sources coin-
cide at two instances in time. We are continuing experiments to
characterize the method on real-world signals, such as acoustical
and sonar recordings with overlapping spectra, in the presence of
background noise.

5. CONCLUSIONS

We proposed and demonstrated a technique for monaural sepa-
ration of acoustical sources, based on a metric of coherence that
expresses each source as a periodic waveform with random short-
term time and amplitude fluctuations. We plan to implement a
coherence-based separation network in parallel VLSI, and further
research is directed towards simple on-line variants of the pre-
sented algorithms both in the frequency and time domain.
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