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ABSTRACT

In his 2001 monograph Tonal Pitch Space, Fred Ler-
dahl defined an distance function over tonal and post-tonal
harmonies distilled from years of research on music cog-
nition. Although this work references the toroidal struc-
ture commonly associated with harmonic space, it stops
short of presenting an explicit embedding of this torus. It
is possible to use statistical techniques to recreate such an
embedding from the distance function, yielding a more
complex structure than the standard toroidal model has
heretofore assumed. Nonlinear techniques can reduce the
dimensionality of this structure and be tuned to emphasize
global or local structure. The resulting manifolds high-
light the relationships inherent in the tonal system and of-
fer a basis for future work in machine-assisted analysis
and music theory.

1. INTRODUCTION

Since Gottfried Weber introduced the chart in Figure 1
early in the nineteenth century [11], music theorists have
acknowledged two pivotal axes controlling the relation-
ships among the major and minor keys of the diatonic
tonal system in Western art music: the cycle of fifths, rep-
resented on the vertical axis of the figure, and the cycle
of thirds, represented on the horizontal. 1 (Capital let-
ters designate major keys and lowercase minor, as is tra-
ditional.) Except in the most abstract theoretical formu-
lations, these axes are considered to be periodic, defin-
ing a topological space isomorphic to S1×S1, and by the
end of the twentieth century, Carol Krumhansl’s pioneer-
ing psychological experiments had demonstrated a cogni-
tive basis for this toroidal structure [4]. Krumhansl’s work
also explored topological relationships among harmonies
and pitch classes within each key [5], which Fred Ler-
dahl integrated into the framework of A Generative The-
ory of Tonal Music [7], his 1983 monograph coauthored
with Ray Jackendoff, in a 2001 monograph entitled Tonal
Pitch Space [6].

Although Lerdahl makes much of Krumhansl’s data
and the toroidal topology of harmonic space, he defines
that torus only implicitly, by way of a distance function

1 Vial had organized the keys in a similar fashion three decades earlier,
but Weber’s treatise proved to be more influential.
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Figure 1. Weber’s diagram of tonal space

over harmonies. No other research to date has attempted
to embed it explicitly. David Temperley used a MIDI-
based approach to implement many components of the
theory [9] but has not yet treated the topology of the space.
The Mathematical Music Theory Group at the Techni-
cal University of Berlin uncovered some inconsistencies
in Lerdahl’s theory while developing their HarmoRubette
software tool [8] but did so strictly in terms of distance
functions. Elaine Chew’s spiral model [1, 2] is an explicit
representation of tonal space that has aided the develop-
ment of intelligent musical systems, most notably for key
finding and pitch spelling, but it is founded on music the-
oretical principles (the Riemannian Tonnetz) that, despite
the apparent similarities, are incompatible with Lerdahl’s
and Krumhansl’s. The visualizations of tonal pitch space
presented in this paper complement Chew’s model and
should be especially useful for machine-assisted harmonic
and hierarchical analysis.

2. LERDAHL’S DISTANCES

One of the distinguishing features of Lerdahl’s model is
that it treats pitch classes, chords, and regions (keys) as
unified and inseparable. There is no well defined notion of
distance between pitch classes qua pitch classes or chords
qua chords. Pitch classes have meaning only as elements
of the sets that define chords and regions, and chords are
always understood as functioning within some region. An
important corollary is that there is always a nonzero dis-
tance, albeit usually small, between two instances of the
same nominal chord when these instances are heard in dis-



tinct regions: C/C is not the same as C/F and certainly
not the same as C/D[[[. 2 This corollary gives Lerdahl’s
model more nuance than most alternatives.

For two harmonies x = C1/R1 and y = C2/R2, the sim-
ple distance is given by the equation

δ(x → y) = i+ j + k (1)

where i is the smallest number of steps along the circle
of fifths between R1 and R2 (or their relative majors in
case one or both is minor), j is is the smallest number
of steps along the circle of fifths between the roots of C1
and C2 within each region, and k is a specially weighted
Hamming distance between the sets of pitch classes that
define each chord and region. Lerdahl’s formulation of
the k parameter is asymmetric, and so to create a sym-
metric distance function, we have taken the average of the
two directions. Lerdahl restricts δ to prevent implausible
modulations, allowing it to be defined only when either x
and y are in the same region or at least one of C1 and C2
is a tonic chord and R1 and R2 are in each other’s set of
“pivot regions,” {i, ii, iii,IV,V,vi} for major keys and for
minor keys {I, [[[III, iv,v, [[[VI, [[[VII}. The general distance
function is

∆(C1/R1 → C2/R2) = δ1(C1/R1 → I/P1)
+δ2(P1 → P2)+δ3(P2 → P3)+ · · ·

+δn(I/Pn → C2/R2) (2)

where δ(Pi → Pj) is shorthand for δ(I/Pi → I/Pj), and
the chain of regions P1,P2, . . . ,Pn is chosen to minimize
∆ within the constraint that δ1,δ2, . . . ,δn are defined.

3. MULTIDIMENSIONAL SCALING

Isomap is an algorithm for extracting low dimensional em-
beddings of high dimensional data that respect the local
geometry of the original data while simplifying the global
geometry [10]. It has three primary steps. The first is to
define a local neighborhood for every point in the data set,
typically a fixed number of nearest neighbor points or the
set of all points within a fixed distance. The next is to de-
fine a graph in which each vertex is a data point and is con-
nected only to its neighbors as defined in the previous step
with edges of length proportional to the distance between
them; in other words, all non-neighboring entries of the
distance matrix are discarded. A new distance matrix is
generated using the lengths of the shortest paths between
all pairs of vertices in the graph. In the last step, classi-
cal multidimensional scaling (MDS) is applied to the new
distance matrix. MDS is a linear statistical technique that
maps a matrix of pairwise distances between data points
to a low dimensional embedding of those points with pair-
wise distances as close as possible to the input matrix. The

2 Lerdahl uses Roman type for chords and boldface type for regions,
and we follow the convention here, e.g., ii/G for the minor supertonic
chord in G major or E[/F for an E[ major chord understood in the key
of F major.

dimensions of the output embedding are ordered accord-
ing to how much variance they preserve from the original
data.

Lerdahl’s distances are isomorphic to the first steps of
the Isomap algorithm. Given the set of all possible har-
monies, Equation 1 defines a restricted set of neighbors for
every harmony: the other harmonies within the same tonal
region and the tonics of the pivot regions. The generalized
distance in Equation 2 is precisely the length of the short-
est path along these edges. We restricted our harmonic
space to the major and minor triads of each the 24 major
and minor keys and the chromatically altered major and
minor triads that can be reached via simple, secondary, or
double mixture. This space includes 22 triads per key (ev-
ery triad except the major and minor triads rooted a tritone
away from the tonic) for a total of 528 harmonies. Un-
derstanding Lerdahl’s model in this way, visualizing the
structure of his tonal space requires only one more step:
MDS. The lower bar in Figure 2 illustrates the distribu-
tion of information across the dimensions of the output.
Although the leading two dimensions dominate, at least
the leading four are significant and fifteen would be re-
quired to capture even 75% of the information contained
in Lerdahl’s model.

Figure 3(a) is a plot of major-key harmonies the leading
two dimensions. Each tonal region is colored in its own
shade of gray and labeled with capital letters. The pat-
tern is a tightly organized regional circle of fifths, which
confirms that Lerdahl’s model conforms in at least one re-
gard to the Weber-Krumhansl model it seeks to emulate. 3

One thus would expect the second and third dimensions
to trace a cycle of thirds, but the structure is more com-
plicated than that. Figure 3(b) unwraps the circle from
Figure 3(a) by converting the first two dimensions to po-
lar coordinates and plots the third and fourth dimensions
of the embedding with respect to the polar angle. These
dimensions form a spiral with three periods to the first di-
mension’s one. Figure 3(c) attempts to clarify the relation-
ship between these structures by converting the third and
fourth dimensions to polar coordinates as well and plot-
ting their angular component against the angular compo-
nent of the first two dimensions (again, major keys only

3 If space had permitted the minor keys to be plotted in the form of
3(a), they would be interspersed with the major keys but form their own
circle of fifths corresponding to the lowercase labels. In contrast to both
the Krumhansl model and most theory textbooks, major keys are paired
with neither their relative or parallel minors but the minor key a whole
tone higher. This relationship arose early in harmonic theory with David
Heinichen’s General-Bass in der Composition [3]. It arises as a neutral
statistical compromise between the parallel and relative key relationships
so as to allow the third and fourth dimensions to account for them prop-
erly.

Figure 2. Relative variance



C

F

Bb
Eb

Ab

Db

F#

B

E
A

D

G

d

g
c f

bb

eb

g#

a
e b f#

c#
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(c) A regional Tonnetz

Figure 3. Tonal pitch space as viewed with multidimensional scaling

to aid visualization in black and white). Here, the cy-
cles of thirds emerge. Crisscrossing the spiral in a form
that looks much like a Riemannian Tonnetz, the cycles
of minor thirds in regional space travel from the top left
to the bottom right of the figure and the cycles of major
thirds move horizontally. The horizontal axis of the figure
is stretched to aid comparison with the other figures, but
when scaled equally, the distances along these cycles of
thirds are as close as those along the circle of fifths.

The presence of the circle of fifths and the cycles of
thirds is sufficient for isomorphism to the toroidal regional
model of the psychological literature. The remaining two
dimensions, the radial components of the two sets of po-
lar coordinates, distinguish our model. Together, they or-
ganize the chords within each region around the toroi-
dal structure of the regions themselves. Weber first pre-
sented the regional structure, Krumhansl and Kessler as-
signed an embedding to it, Lerdahl developed a theory to
incorporate inter-regional relationships, and our work em-
beds that. Our embedding should allow machine analysis
systems to synthesize key finding and harmonic analysis
more smoothly.

4. MAXIMUM VARIANCE UNFOLDING

The inter-regional structures in this embedding are less
consistent than the intra-regional ones. This shortcom-
ing is tied to MDS, which can optimize only over the
global structure of its input data. There are nonlinear algo-
rithms, however, that can shift the emphasis to local struc-
tures. One very effective such technique is maximum vari-
ance unfolding [12]. It begins with the choice of a neigh-
borhood surrounding each point. The pairwise distances
within these neighborhoods are locked, and then semidef-
inite programming is used to expand the data as much as
possible without violating these locks. The procedure is
analogous to stretching a ball-and-stick model in which
the balls correspond to data points and the sticks corre-
spond to the locked distances.

Maximum variance unfolding can fail when the orig-
inal distances are non-Euclidean, and as Noll and Gar-
bers note, Equation 2 is not a true distance function be-
cause its special handling of pivot regions causes it to
violate the triangle inequality. For our experiments, we

Euclideanized the ∆-derived distance matrix before com-
puting neighborhoods by converting it to a Gram matrix
of inner products, replacing all negative eigenvalues with
zeros, and converting back.

By tuning the size of the neighborhoods, one can con-
trol the level of structure in the output embedding. Large
neighborhoods yield more global structures and behave
comparably to algorithms like MDS, while small neigh-
borhoods preserve local structure and can provide much
better dimensionality reduction. Figure 2 illustrates the
difference. The top bar represents the distribution of infor-
mation after using the semidefinite programming method
on the Euclideanized distance matrix with neighborhoods
including the four nearest neighbors to each harmony. The
leading four dimensions account for 98% of the informa-
tion after SDP, after MDS only 57%.

Figure 4(a) presents the leading two dimensions of this
embedding. As in the linear case, they form a circle of
fifths. The third and fourth dimensions, however, serve
different purposes. The histograms in Figures 4(b) and
4(c) show that the data is bimodal in each of these dimen-
sions. The third dimension separates regions into two iso-
morphic planes a whole tone apart; the fourth dimension
separates the major keys from the minor keys. These pat-
terns are evident in Figure 4(d) and form a very different
regional network than the one from the MDS embedding
in Figure 3(c). These dimensions also preserve consistent
chordal structures across the regional structure. As seen in
Figures 4(e) and 4(f), dimension 3 keeps tonics with the
tonics of their relative keys while dimension 4 puts them
closer to the dominant and subdominant.

Notably absent from the embedding produced by SDP
are the cycles of thirds. The planes of the third dimension
keep relative major and minor regions together, but paral-
lel regions are separated in all four dimensions. This is an
unavoidable cost of the greatly reduced dimensionality of
the nonlinear embedding overall.

5. SUMMARY AND FUTURE WORK

Linear and nonlinear statistical methods can produce em-
beddings that emphasize the global or local structure of
data defined by pairwise distances and can help visualize
models of tonal pitch space, including structure is more
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Figure 4. Tonal pitch space as viewed with maximum variance unfolding

complex than the three-dimensional toroidal model com-
monly cited in psychological literature. These higher di-
mensional embeddings incorporate more subtle details of
the harmonic system that are helpful to visualize and can
serve as foundational models for machine-assisted anal-
ysis. Lerdahl’s theory also includes an extension to what
has been summarized here that incorporates hexatonic, oc-
tatonic, and other non-diatonic tonal models, which we
hope to incorporate into our existing framework.
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