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ABSTRACT

Acoustic interference is arguably the most serious problem facing current

speech recognizers. The maturation of statistical pattern recognition techniques

has brought us very low word error rates when the training and test material

both consist solely of speech. However, in real-world situations, any speech

signal of interest will be mixed with background noises coming from the full

range of sources encountered in our acoustic environment.

In this paper we present a new technique that extends conventional speech

recognition to operate in the situation of loud and variable interfering sounds.

Our goal is to develop a technique that decomposes the signal according to the

different original sources, and applies pattern matching only to the parts of the

signal that truly belong to the target voice. In this way, a single set of clean-

speech models can be employed consistently across any range of background

interference. Based on insights into human sound organization, we combine

low-level signal cues indicating that local ‘fragments’ of sound energy belong

together, with the high-level structural constraints on the allowable acoustic

sequences implicit in the trained speech models. This combination is effected

through a modified hidden Markov model decoder that searches both across

subword state and across alternative segregations of the signal between target

and interference. We call this modified system the speech fragment decoder.

The value of the speech fragment decoder approach has been verified through

experiments on small-vocabulary tasks in high-noise conditions. For instance,

in the Aurora-2 noise-corrupted digits task, the new approach improves the

word error rate in the condition of speech babbel at 5 dB SNR from over 90%

for a standard ASR system to around 26%. This is a significant improvement

even over the closely-related missing-data approach (which scores around 32%

in the same condition) because, unlike missing-data, the speech fragment de-

coder can search across different segregation hypotheses to find the set of tar-

get/background labels most consistent with the speech model constraints.
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1. INTRODUCTION

In the real world, the speech signal is frequently accompanied by other sound

sources on reaching the auditory system, yet listeners are capable of holding con-

versations in a wide range of listening conditions. Recognition of speech in such

‘adverse’ conditions has been a major thrust of research in speech technology in

the last decade (refs to various robustness workshops). Nevertheless, the state

of the art remains primitive. Recent international evaluations of noise robust-

ness have demonstrated technologically useful levels of performance for small

vocabularies in moderate amounts of quasi-stationary noise (aurora). Modest

departures from such conditions leads to a rapid drop in recognition accuracy.

A key challenge, then, is to develop algorithms to recognise speech in the

presence of arbitrary non-stationary sound sources. There are two broad cat-

egories of approaches to dealing with interference for which a stationarity as-

sumption is inadequate. Source-driven techniques exploit evidence of a common

origin for subsets of source components, while model-driven approaches utilise

prior (i.e. stored) representations of acoustic sources. Source-driven approaches

include primitive auditory scene analysis ((Brown and Cooke, 1994), (Wang and

Brown, 1999) see review in (Cooke and Ellis, 2001)) based on auditory models of

pitch and location processing, independent component analysis and blind source

separation (Bell and Sejnowski, 1995) which exploit statistical independence of

sources, and mainstream signal processing approaches ((Parsons, 1976), (Den-

bigh and Zhao, 1992), (?)). The prime examples of model-driven techniques are

HMM decomposition (Varga and Moore, 1990) and parallel model combination

(PMC) (Gales and Young, 1993), which attempt to find model state sequence

combinations which jointly explain the acoustic observations. Ellis’s ‘prediction-

driven’ approach ((Ellis, 1996)) can also be regarded as a technique influenced

by prior expectations.

Pure source-driven approaches are typically used to produce a clean signal

which is then fed to an unmodified recogniser. In real-world listening conditions,

this segregate-then-recognise approach fails (see also the critique in (Slaney,



1995)), since it places too heavy a demand on the segregation algorithm to

produce a signal suitable for recognition. Conventional recognisers are highly

sensitive to the kinds of distortion resulting from poor separation. Further,

while current algorithms do a reasonable job of separating periodic signals, they

are less good both at dealing with the remaining portions and extrapolating

across unvoiced regions, especially when the noise background contains periodic

sources. The problem of distortion can be solved using missing data (Cooke et

al., 1994; 2001) or multiband (Bourlard and Dupont, 1997) techniques, but the

issue of sequential integration across aperiodic intervals remains.

Pure model-driven techniques also fail in practice, due to their reliance on the

existence of models for all sources present in a mixture, and the computational

complexity of decoding multiple sources for anything other than sounds which

possess a simple representation.

There is evidence that listeners too use a combination of source and model

driven processes (Bregman, 1990). For instance, vowel pairs presented concur-

rently on the same fundamental can be recognised at levels well above chance, in-

dicating the influence of top-down model-matching behavior, but even small dif-

ferences in fundamental — which create a source-level cue — lead to significant

improvements in identification indicating that the model-driven search is able ef-

ficiently to exploit the added low-level information ((Scheffers, 1983)). Similarly,

when the first 2 speech formants are replaced by sinusoids, listeners recognise the

resulting sine-wave speech at levels approaching natural speech, generally taken

as evidence of a purely top-down speech recognition mechanism, since the tokens

bear very little resemblance to speech at the signal level ((Bailey et al., 1977;

Remez et al., 1981)). However, when presented with a sine-wave cocktail party

consisting of a pair of simultaneous sine-wave sentences, performance falls far

below the equivalent natural speech sentence-pair condition, showing that low-

level signal cues are required for this more demanding condition (Barker and

Cooke, 1997).

In this paper, we present a framework which attempts to integrate source-

and model-driven processes in robust speech recognition. We demonstrate how



the decoding problem in ASR can be extended to incorporate decisions about

which regions belong to the target signal. Unlike pure source-driven approaches,

the integrated decoder does not require a single hard-and-fast prior segregation

of the entire target signal, and, in contrast to pure model-based techniques, it

does not assume the existence of model for all sources present. Since it is an

extension of conventional speech decoders, it maintains all of the advantages

of the prevailing stochastic framework for ASR by delaying decisions until all

relevant evidence has been observed. Furthermore, it allows a tradeoff between

the level of detail derived from of source-driven processing and decoding speed.

speech + drums mixed at 0dB SNR

50 Hz

4 KHz

fragments

F
re

qu
en

cy

speech/drums segregation

Time (s)
0.5 1.0 1.5 2.0

Figure 1: The top panel shows the auditory spectrogram of the utterance “two

five two eight three” spoken by a male speaker mixed with drum beats at 0 dB

SNR. The lower panel shows the correct segregation of speech energy (black)

and drums energy (grey). The centre panel illustrates the set of fragments

generated using knowledge of the speech source and the noise source prior to

mixing.

Figure 1 motivates the new approach. The upper panel shows an auditory

spectrogram of the utterance “two five two eight three” spoken by a male speaker

mixed with drum beats at a global SNR of 0 dB. The centre panel segments the

time-frequency plane into regions which are dominated (in the sense of possess-

ing a locally-favourable SNR) by one or other source. The correct assignment



of regions to the two sources is shown in the lower panel.

In what follows, we refer to these regions as fragments, and use the phrase

“segregation model” to indicate the fragmentation process. The aim of the new

approach is to search over all admissable fragment combinations to generate the

most likely word sequence (or, more generally, model sequence). We show that

this can be achieved by decomposing the output probability calculation into 3

parts: a segregation model, a language model, and an acoustic model modified

to calculate partial likelihoods. Source-driven processes make up the segrega-

tion model, and the resulting fragments occupy arbitrary regions of the time-

frequency plane. For instance, fragments need not be compact, not restricted

to individual time frames or frequency bands. Fragments may occupy regions

of arbitrary size, but will typically be smaller than a syllable and bounded in

frequency extent.

Section 2 develops the new formalism, and shows how the segregation model

and partial acoustic model can be implemented in practice. Section 3 demon-

strates the action of the resulting decoder on both artificial and real noises.

Section 4 introduces some extensions to the decoder, and provides results on

AURORA 2 task (Pearce and Hirsch, 2000).

2. THEORETICAL DEVELOPMENT

The simultaneous segregation/recognition approach can be formulated as an

extension of the existing speech recognition theory. When formulated in a sta-

tistical manner, the goal of the speech recogniser is traditionally stated as to

find the word sequence Ŵ = w1w2...wN with the maximum a posteriori prob-

ability given the sequence of acoustic feature vectors observed for the speech,

X = x1x2...xT :

Ŵ = argmax
W

P (W |X) (1)

This equation is rearranged using Bayes’ rule into:

Ŵ = argmax
W

P (X|W )P (W )

P (X)
(2)



which separates the prior probability of the word sequence alone P (W ) (the

language model), the distribution of the speech features for a particular utter-

ance, P (X|W ) (the acoustic model), and the prior probability of those features

P (X) (which is constant over W and thus will not influence the outcome of the

argmax). P (W ) may be trained from the word sequences in a large text corpus,

and P (X|W ) is learned by modeling the distribution of actual speech features

associated with particular sounds in a speech training corpus.

Following our considerations above, we may restate this goal as finding the

word sequence, Ŵ , along with the speech/background segregation, Ŝ, which

jointly have the maximum posterior probability. 1 Further, because the ob-

served features are no longer purely related to speech but in general include

the interfering acoustic sources, we will denote them as Y to differentiate them

from the X used in our speech-trained acoustic models P (X|W ).

Ŵ , Ŝ = argmax
W,S

P (W,S|Y) (3)

To reintroduce the speech features X, which are now an unobserved random

variable, we integrate the probability over their possible values, and decompose

with the chain rule to separate out P (S|Y), the probability of the segregation

based on the observations:

P (W,S|Y) =

∫
P (W,X, S|Y)dX (4)

=

∫
P (W |X, S,Y)P (X|S,Y)dX · P (S|Y) (5)

Since W is independent of S and Y given X, the first probability simplifies

to P (W |X). As in the standard derivation, we can rearrange it via Bayes’ rule

to obtain a formulation in terms of our trained distribution models P (W ) and

1Note, if we were not interested in the speech/background segregation but only in the

most likely word sequence regardless of the actual segregation then it would be more correct

to integrate Equation 3 over the segregation space defining W ′ = argmaxW
∑
S P (W,S|Y).

However, this integration presents some computational complexity so in practise even if we

were not directly interested in the segregation it may be desirable to implement Equation 3

directly and take Ŵ as an approximation of W ′.



P (X|W ):

P (W,S|Y) =

∫
P (X|W )P (W )

P (X)
P (X|S,Y)dX · P (S|Y) (6)

= P (W )

(∫
P (X|W )

P (X|S,Y)

P (X)
dX

)
P (S|Y) (7)

Note that because X is no longer constant, we cannot drop P (X) from the

integral.

In the case of recognition with hidden Markov models (HMMs), the con-

ventional derivation introduces an unobserved state sequence Q = q1, q2, ..., qT

along with models for the joint probability of word sequence and state sequence

P (W,Q) = P (Q|W )P (W ). The Markovian assumptions include making the

feature vector xi at time i depend only on the corresponding state qi, making

P (X|Q) =
∏
i P (xi|qi). The total likelihood of a particular W over all possible

state sequences is normally approximated by the score over the single most-likely

state sequence (the Viterbi path). In our case, this gives:

Ŵ , Ŝ = argmax
W,S

max
Q∈QW

P (S|Y)P (W )P (Q|W )

∫
P (X|Q)

P (X|S,Y)

P (X)
dX (8)

where QW represents the set of all allowable state sequences corresponding to

word sequence W .

Compare equation 8 to the corresponding equation for identifying the word

sequence in a conventional speech recogniser:

Ŵ = argmax
W

max
Q∈QW

P (W )P (Q|W )P (X|Q) (9)

It can be seen that there are three significant differences:

i A new term, P (S|Y) has been introduced. This is the ‘segregation model’,

describing the probability of a particular segragation S given our actual

observations Y, but independent of the word hypothesis W — precisely

the kind of information we expect to obtain from a model of source-driven,

low-level acoustic organization.

ii The acoustic model score P (X|Q) is now evaluated over a range of possible

values for X, weighted by their relative likelihood given the observed signal



Y and the particular choice of segregation mask S. This is closely related

to previous work on missing data theory, and is discussed in more detail

in Section 2.3 below.

iii The maximisation now occurs over both W and S. Whereas conven-

tional speech recognition searches over the space of words sequences, the

extended approach has to simultaneously search over the space of all ad-

missable segregations.

In the terms of Bregman’s ‘Auditory Scene Analysis’ account, (Bregman,

1990), the segregation model may be identified as embodying the so-called ‘prim-

itive grouping process’, and the acoustic model plays the part of the ‘schema-

driven grouping process’. Equation 8 serves to integrate these two complemen-

tary processes within the probabilistic framework of ASR. The maximisation

over W and S can be achieved by extending the search techniques employed by

traditional ASR. These three key aspects of the work, namely, the segregation

model, the acoustic model and the search problem are addressed in greater detail

in the section which follow.

Search algorithm
e.g. modified decoder

Segregation model
source-level grouping processes

Language model
bigrams, dictionary

Acoustic model
schema-driven processes

Segregation weighting
connection to observations

Ŵ ; Ŝ = argmax
W;S

max
Q2QW

P (SjY)P (W )P (QjW )

Z
P (XjQ)

P (XjS;Y)

P (X)
dX

2.1. The Segregation Model

Consider the space of potential speech/background segregations. An acoustic

observation vector, X may be constructed as a sequence of frames x1x2...xT

where each frame is composed of observations pertaining to a series of, say F ,

frequency channels. The observation vector is therefore composed of T × F

spectro-temporal features. A speech/background segregation may be conve-

niently described by a binary mask in which the label ‘1’ is employed to signify



that the feature belongs to the speech source, and a ‘0’ to signify that the fea-

ture belongs to the background. As this binary mask has T × F elements it

can be seen that there are 2TF possible speech/background segregations. So for

example, at a typical frame rate of 100 Hz, and with a feature vector employ-

ing 32 frequency channels, there would be 23200 possible segregations for a one

second audio sample.

Fortunately, most of these segregations can be immediately ruled out as be-

ing highly unlikely and the size of the search space can be drastically reduced.

The key to this reduction is to identify spectro-temporal regions for which there

is strong evidence that all the spectro-temporal pixels contained are dominated

by the same sound source. Such regions, which we shall hence force call ‘co-

herent fragments’, constrain the spectro-temporal pixels contained to share the

same speech/background label. So for each permissible speech/background seg-

regation the pixels within any given fragment must either all be labelled as

speech (meaning that the fragment is part of the speech source) or must all

be labelled as background (meaning that the fragment is part of some other

source). So if the spectro-temporal observation vector can be decomposed into

N such fragments, there will be 2N separate ways of labelling the fragments

and hence only 2N valid segregations. In general each fragment will contain

many spectro-temporal pixels, and 2N will be vastly smaller than the size of the

unconstrained segmentation search space, 2TF .

The success of the segregation model depends on being able to identify a

reliable set of coherent fragments. The process of dissecting the representation

into fragments is similar to the process that occurs in visual scene analysis. The

first stage of interpreting a visual scene is to locate regions within the scene

that are components of larger objects. For this purpose all manner of primitive

processes may be employed: edge detection, continuity, uniformity of colour,

uniformity of texture etc. Analogous processes may be used in the analysis of

the auditory ‘scene’, for example, spectro-temporal elements may be grouped

if they form continuous tracks (i.e. akin to visual edge detection), tracks may

be grouped if they lie in harmonic relation, energy regions may grouped across



frequency if they onset or offset at the same time. Figure 2 illustrates some of

the mechanisms that may be used to bind spectro-temporal regions to recover

partial descriptions of the individual sound sources. A detailed account of these

so-called ‘primitive grouping processes’ is given in (Bregman, 1990).

Frequency Proximity HarmonicityCommon Onset

recognisable speech unit
Combine to form a

F0 Continuity

Common Speaker Identity?

Figure 2: An illustration of short-term (above) and long-term (below) prim-

itive grouping cues which may be exploited to recover partial descriptions of

individual sound sources

In the experiments that follow each of the 2N valid segregations is allocated

an equal prior probability. This stands as a reasonable first approximation.

However, a more detailed segregation model could be constructed in which the

segregation prior probabilities would vary across segregations and would take

into account such factors as the relationship between the individual fragments of



which they are composed. For example, if there are two fragments which cover

spectro-temporal regions in which the acoustic data is periodic and has the same

fundamental frequency, then these two fragments are likely to be parts of the

same sound source, and hence segregations in which they are labelled as either

both speech or both background should be favoured. For further discussion of

such ‘between-fragment grouping’ effects and of the modifications to the search

algorithm that they require see Section 5.2.

2.2. The Search Problem

The task of the extended decoder is to find the most probable word sequence and

segregation given the search space of all possible word sequences and all possible

segregations. Given that the acoustic match score, P (X|Q)P (X|S,Y)/P (X),

is conditioned on both the segregation S and the subword state Q, the (S,Q)

search space cannot in general be decomposed into independent searches over

S and Q. Since the size of the S space multiplies the overall search space it is

imperative that the search in the plane of the segregation space is conducted as

efficiently as possible.

To illustrate this point imagine the naive implementation of the search illus-

trated in Figure 3. In this approach each segregation hypothesis is considered

independently, and therefore requires a separate word sequence search. If the

segregation model has identified N coherent fragments, then there will be 2N

segregation hypotheses to consider. Hence, the total computation required for

the decoding will scale exponential with the number of fragments. The total

number of fragments is likely to be a linear function of the duration of the

acoustic mixture being processed, therefore the computation required will be

an exponential function of this duration. For sufficiently large vocabularies the

cost of decoding the word sequence typically makes up the greater part of the

total computational cost of ASR. It is clear that the naive implementation of

the word sequence/segregation search is unacceptable unless the total number

of fragments is very small.
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Figure 3: A naive implementation of the segregation/word-sequence search

The key to constructing an efficient implementation of the search is to take

advantage of similarities that exist between pairs of segregation hypotheses.

Consider the full set of possible segregations. There is a unique segregation

for every possible assignment of speech/background labelling to the set of frag-

ments. For any given pair of hypotheses some fragments will have the same

label. In particular some hypotheses will differ only in the labelling of a single

fragment. For such pairs the speech/background segregation will be identical up

to the time frame where the differing fragment onsets, and identical again from

the frame where the fragment offsets. The brute-force search performs two inde-

pendent word sequence searches for two such similar segregation hypotheses (see

Figure 4, column 1). The computational cost of these two independent searches

may be reduced by allowing them to share processing up to the time frame

where the segregation hypotheses differ - i.e. the onset of the fragment that is

labelled differently in each hypothesis, marked as time T1 in column 2 of Figure

4. This sharing of computation between pairs of segregation hypotheses, can be



generalised to encompass all segregation hypotheses by arranging them in a tree

like structure. As we progress through time, every time a new fragment onsets

all the current segregation hypotheses branch to form two complementary cases

- in one case the onsetting fragment is considered to be speech and in the other

it is considered to be background. However, although this arrangement saves

some computation the number of segregation hypotheses under consideration

at any particular frame still grows exponentially with time. This exponential

growth may be prevented by noting that segregation hypotheses will become

identical again after the offset of the last fragment by which they differ (marked

as time T2 in column 3 of Figure 4). At this point the two competing segrega-

tion hypotheses can be compared and the least likely of the pair can be rejected

without effecting the admissibility of the search. Again this step can be gener-

alised to encompass all segregation hypotheses and effectively brings together

the branches of the diverging segregation hypothesis tree.

1T

Merge decodings when
speech/background
hypotheses converge

each speech/background
Independent decodings for

hypothesis

1T

hypotheses diverge

Split decoding when
speech/background

Decoder
B

Decoder
A

Decoder
A/B

2

T2

A

B

A

B

Decoder
A

Decoder
B

Decoder
A/B

Decoder

Decoder

Decoder

A

B

A/B

31

Figure 4: The efficient segregation search exploits the fact that competing seg-

regation hypotheses only differ over a limited number of frames



Figure 5 illustrates the evolution of a set of parallel segregation hypotheses

while processing a segment of noisy speech which has been dissected into 3

fragments (shown schematically by the shaded regions in the figure). When

the first fragment (white) commences, two segregation hypotheses are formed.

In one hypothesis the white fragment is labelled as speech and in the other

it is assigned to the background. When the grey fragment starts all ongoing

hypotheses are again split with each pair covering both possible labellings for

the grey fragment. When the white fragment ends, pairs of hypotheses are

merged if their labelling only differs with regard to the white fragment. This

pattern of splitting and merging continues until the end of the utterance. Note

that at any instant there are at most 4 active segregation hypotheses, not the 8

required to consider every possible labelling of each of the 3 fragments.

time

Fragments

Speech Source Hypotheses

Figure 5: The evolution of a set of segregation hypotheses. Each parallel path

represents a separate hypothesis, with the shaded dots indicating which ongoing

fragments are being considered as speech part of the speech source.

It is important to understand that the evolution of the segregation hypothe-

ses is dependent on the word sequence hypothesis. For each ongooing word

sequence being considered by the decoder, a particular corresponding optimal

segregation is simultaneously developed.



If the word sequence is modelled using HMMs then the segregation/word-

sequence decoder can be implemented by extending the token-passing Viterbi

algorithm employed in conventional ASR :

• Tokens keep a record of the fragment assignments they have made i.e. each

token stores its labelling of each fragment encountered as either speech or

background.

• Splitting: When a new fragment starts all existing tokens are duplicated.

In one copy the new fragment is labelled as speech and in the other it is

labelled as background.

• Merging: When a fragment ends, then for each state we compare tokens

that differ only in the label of the fragment that is ending. The less likely

token or tokens are deleted.

• At each time frame tokens propagate through the HMM as usual. How-

ever, each state can hold as many tokens as there are different labellings

of the currently active fragments. When tokens enter a state only those

with the same labelling of current active fragments are directly compared.

The token with the highest likelihood score survives and the others are

deleted.

It should be stressed that the deletion of tokens in the ‘merging’ step de-

scribed above does not effect the admissibility of the search (i.e. it is not

a form of hypothesis pruning). The efficient algorithm will return the exact

same result a brute-force approach which separately considered every word-

sequence/segregation hypothesis. This is true as long as the Markov assumption

remains valid. In the context of the above algorithm this means that the future

of a partial hypothesis must be independent of its past. It should be noted that

this places some constraints on the form of the segregation model. For exam-

ple, the Markov assumption may break down if the segregation model contains

between-fragment grouping effects in which the future scoring of a partial hy-

pothesis may depend on which groups it has previously interpreted as part of



the speech source. In this case the admissibility of the search can be preserved

by imposing extra constraints on the hypothesis merging condition (for details

see Section 5.2).

2.3. The Acoustic Model

In Equation 8, the acoustic model data likelihood P (X|Q) of a conventional

speech recognizer is replaced by an integral over the partially-observed speech

features X, weighted by a term conditioned on the observed signal features Y

and the segregation hypothesis S:

∫
P (X|Q)

P (X|S,Y)

P (X)
dX (10)

where P (X|Q) is the feature distribution model of a conventional recognizer

trained on clean speech, and P (X|S,Y)/P (X) is a likelihood weighting fac-

tor introducing the influence of the particular (noisy) observations Y and the

assumed segregation S.

The integral over the entire space of X — the full multi-dimensional feature

space at every time step — is clearly impractical. Fortunately, it can be broken

down into factors. Firstly, the Markov assumption of independent emissions

given the state sequence allows us to express the likelihood of the sequence as

the product of the likelihoods at each time step i: 2

∫
P (X|Q)

P (X|S,Y)

P (X)
dX =

∏

i

∫
P (xi|qi)

P (xi|S,Y)

P (xi)
dxi (11)

Secondly, in a continuous-density (CDHMM) system P (x|q) is modeled as a

mixture of M multivariate Gaussians, usually each with a diagonal covariance

matrix:

P (x|q) =

M∑

k=1

P (k|q)P (x|k, q) (12)

2This step also assumes independence of each timestep for the prior P (X) and for the

likelihood of X given the segregation hypothesis and observations, P (X|S,Y). Both these

assumptions are open to serious question, and we return to them in Section 5.



where P (k|q) are the mixing coefficients. Since the individual dimensions of

a diagonal-covariance Gaussian are independent, we can further factorize the

likelihood over the feature vector elements xj :

P (x|q) =

M∑

k=1

P (k|q)
∏

j

P (xj |k, q) (13)

Assuming a similar decomposition of the prior P (X), we can take the integral

of Equation 11 inside the summation to give:

∫
P (x|q)P (x|S,Y)

P (x)
dx =

M∑

k=1

P (k|q)
∏

j

∫
P (xj |k, q)

P (xj |S,Y)

P (xj)
dxj (14)

where P (xj |k, q) is now a simple unidimensional Gaussian.

We can consider the factor

P (xj |S,Y)

P (xj)
(15)

as the “segregation weighting” — the factor by which the prior probability

of a particular value for the speech feature is modified in light of the segregation

mask and the observed signal. Since we are working with models of subband

spectral energy, we can use a technique closely related to the missing-data idea

of bounded marginalization (Cooke et al., 2001): For subbands that are judged

to be dominated by speech energy (i.e., under the segregation hypothesis S,

not one of the ‘masked’ channels), the corresponding feature values xk can be

calculated directly 3 from the observed signal Y and hence the segregation

weighting will be a Dirac delta at the calculated value, x∗:

P (xj |S,Y) = δ(xj − x∗) (16)

∫
P (xj |k, q)

P (xj |S,Y)

P (xj)
dxj = P (x∗|k, q)/P (x∗) (17)

3The observed signal Y will in general be a richer representation than simply the subband

energies that would have formed x in the noise-free case, since it may include information such

as spectral fine-structure used to calculate pitch cues used in low-level segregation models, etc.

However, the information in x will be completely defined given Y in the case of a segregation

hypothesis that rates the whole spectrum as unmasked for that time slice.



The more interesting case comes when the subband corresponding to x is

regarded as masked under the segregation hypothesis. We can still calculate the

spectral energy x∗ for that band, but now we assume that this level describes

the masking signal, and the speech feature is at some unknown value smaller

than this. In this case, we can model P (x|S,Y) as proportional to the prior

P (x) for x ≤ x∗, and zero for x > x∗. Thus,

P (xj |S,Y) =




F · P (xj) xj ≤ x∗

0 xj > x∗
(18)

∫
P (xj |k, q)

P (xj |S,Y)

P (xj)
dxj =

∫ x∗

−∞
P (xj |k, q) · Fdxj (19)

where F is a normalization constant to keep the truncated distribution a true

pdf i.e.

F =
1∫ x∗

−∞ P (xj)dxj
(20)

In Equation 19, the likelihood gets smaller as more of the probability mass

associated with a particular state lies in the range precluded by the masking

level upper bound; it models the “counterevidence” (Cunningham and Cooke,

1999) against a particular state. For example, given a low x∗ the quieter states

will score better then more energetic ones. Since the elemental distributions

P (xj |k, q) are simple Gaussians, each integral is evaluated using the standard

error function.

Both the scaling factor F in equation 19 and the evaluation of the point-

likelihood in Equation 17 require a value for the speech feature prior P (xj).

In the results reported below we have made the very simple assumption of a

uniform prior on our cube-root compressed energy values between zero and some

fixed maximum xmax, constant across all feature elements and intended to be

larger than any actual observed value. This makes the prior likelihood P (xj)

equal a constant 1/xmax and F = xmax/x
∗ ∝ 1/x∗.



Using Equation 17 for the unmasked dimensions and Equation 19 for the

masked dimensions we can evaluate the acoustic data likelihood (or ‘acoustic

match score’) for a single state at a particular time slice with Equation 14 which

becomes:

∫
P (x|q)P (x|S,Y)

P (x)
dx =

M∑

k=1

P (k|q)
∏

j∈SO

P (x∗j |k, q)
xmax

∏

j∈SM

∫
P (xj |k, q) ·

xmax
x∗j

dxj (21)

where SO is the set of directly observed (not masked) dimensions of x, SM are

the remaining, masked, dimensions, and x∗j is the observed spectral energy level

for a particular band j. This per-time likelihood can then be combined across all

timeslices using Equation 11 to give the data likelihood for an entire sequence.

Consider the effect of xmax in Equation 21. Holding everything else constant,

the likelihood is proportional to (xmax)#M−#O where #M is the number of

channels treated as masked, and #O is the count of channels believed to be

directly observable. Since the decoder is searching through segregation space S

the hypotheses that it compares do not necessarily share the same mask. Some

hypotheses have more missing data than others, and hence these hypotheses will

be effected to a greater degree by any bias to the likelihood term introduced by

the missing feature likelihood computation. As a result it may be observed that

using equation 21 leads to a bias toward hypotheses in which too many fragments

have been labelled as background, or alternatively toward hypotheses in which

too many fragments have been labelled as speech. As an approximate solution

to this problem, the results of the integrations across the masked dimensions

(only) are scaled by a tuning parameter α shifting the relative likelihood of

missing and present dimensions. Giving α a high value tunes the decoder toward

favouring hypotheses in which more fragments are labelled as background, while

a low value favours hypotheses in which more fragments are labelled as speech.

Experience has shown that the appropriate value of α depends largely on the

nature of the fragments (i.e. the segregation model) and little on the noise type

or noise level. Hence, it is easy to tune the system empirically using a small



development data set.
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Figure 6: An overview of the speech fragment decoding system. Bottom-up

processes are employed to locate ‘coherent fragments’ (regions of representation

that are due entirely to one source) and then a top-down search with access

to speech models is used to search for the most likely combination of fragment

labelling and speech model sequence.

Finally, it is instructive to compare the speech fragment decoding approach

being proposed here with the missing data approach proposed in earlier work

(Cooke et al., 1994; 2001). Basic missing data recognition consists of two sep-

arate steps performed in sequence: first a ‘present-data’ mask is calculated,

based, for instance, on estimates of the background noise level. Second, missing

data recognition is performed by searching for the most likely speech model

sequence consistent with this evidence. By contrast, the speech fragment de-

coding approach integrates these two steps, so that the search includes building

the present-data mask to find the subset of features most likely to correspond

to a single voice, as well as the corresponding word sequence.

3. EXPERIMENTS EMPLOYING SNR-BASED FRAGMENTS

The first set of experiments employ a connected digit recognition task and com-

pare the performance of the speech fragment decoding technique with that of

previously reported missing data techniques in which the speech/background

segregation is effectively decided before proceeding with recognition (Cooke et

al., 2001). The segregation model employed has been kept extremely simple.

The coherent fragments are approximated directly from the acoustic mixture



by using a simple noise estimation technique. The techniques presented here

serve as a useful baseline against which the performance of more sophisticated

segregation models can be compared.

3.1. Procedure

Generating the feature vectors

The experiments in this section employ TIDigit utterances (Leonard, 1984)

mixed with NOISEX factory noise (Varga et al., 1992) at various SNRs. NOI-

SEX factory noise has a stationary background component but also highly un-

predictable components such as hammer blows etc. which make it particularly

disruptive for recognisers.

To produce the acoustic feature vectors the noisy mixtures were first pro-

cessed with a 24 channel auditory filterbank (Cooke, 1991) with centre frequen-

cies spaced linearly in ERB-rate from 50 to 8000 Hz. The instantaneous Hilbert

envelope at the output of each filter was smoothed with a first order filter with

an 8 ms time constant, and sampled at a frame-rate of 10 ms. Finally, cube-root

compression was applied to the energy values. This forms a spectro-temporal

sound energy representation that is suitable for segregation. This representation

will henceforth be referred to as an ‘auditory spectrogram’.

Constructing the fragments

The fragments were generated by the following steps:

i For each noisy utterance the first 10 frames of the auditory spectrogram

are averaged to estimate a stationary noise spectrum.4

ii The noise spectrum estimate is used to estimate the local SNR for each

frame and frequency channel of the noisy utterance.

4This technique assumes that there is a delay before the speech source starts and hence

the first frames provide a reliable measure of the noise background



iii The spectro-temporal region where the local SNR is above 0 dB is iden-

tified. This provides a rough approximation of the speech/background

segregation.

If the additive noise source were stationary then the first three steps would

provide the correct speech/background segregation and the speech frag-

ment decoder technique would not be needed. However, if the competing

noise source is non-stationary then some of the regions that are identified

as speech will in fact be due to the noise. Hence we now proceed with

the following steps which allow the speech fragment decoder technique to

improve on the recognition result that would have been achieved if we had

used the initial approximation to the speech/background segregation.

iv The initial approximation of the speech segment is dissected by first di-

viding it into four frequency bands.

v Each contiguous regions within each of the four subbands is defined to be

a separate fragment.

vi The set of fragments and the noisy speech representation are passed to

the speech fragment decoder.

The fragmentation process is summarised in Figure 7.

Training the acoustic models

An 8-state HMM was trained for each of the eleven words in the TIDigit corpus

vocabulary (digits “one” to “nine”, plus the two pronunciations of 0, namely

“oh” and “zero”). The HMM states have two transitions each; a self transi-

tion and a transition to the following state. The emission distribution of each

state was modelled by a mixture of 10 Gaussian distributions each with a di-

agonal covariance matrix. An additional 3-state HMM was used to model the

silence occurring before and after each utterance, and the pauses that may occur

between digits.
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Figure 7: The speech fragment decoder with SNR-based fragments.

The scaling constant, α, that is required to balance missing and present data

(see Section 2.3), was empirically tuned by maximising recognition performance

on a small set of noisy utterances with an SNR of 10 dB. The value, α = 0.3,

was found to give best performance. This value was then used for all noise levels

during testing.

3.2. Artificial Examples

As explained above, if the background noise is non-stationary the local SNR es-

timates (which have been based on the assumption that the noise is stationary),

may be grossly inaccurate. A local peak in noise energy can lead to a spectro-

temporal region that is mistakenly labelled as having high local SNR. This error

then generates a region in the initial estimate of the speech/background segre-

gation that is incorrectly identified as belonging to the speech source. If this

segregation is used directly in conjunction with standard missing data tech-

niques then the error will lead to poor recognition performance.

Fragmenting the initial speech segregation and applying the speech frag-



ment decoder should allow incorrectly assigned regions to be rejected from the

speech source, thereby producing a better recognition hypothesis. This effect

is illustrated in figure 12, where broad-band noise bursts have been artificially

added to the noisy data representation. These unexpected components appear

as bands in the present data mask and hence disrupt the standard missing data

recognition technique (“1159” is recognised as “81o85898”). The third image

in the figure shows how the mask is now dissected before being passed into the

speech fragment decoder. The final panel shows a backtrace of the fragments

that the speech fragment decoder marks as present in the winning hypothe-

sis. We see that the noise pulse fragments have been dropped (i.e. relabelled

as “background”). Recognition performance is now much improved (“1159” is

recognised as “61159”).

Figure 8 shows a further example with a different pattern of artificial noise

— a series of chirps — imposed upon the same utterance. Again, noise contam-

inated fragments are mostly placed into the background by the decoder.

Noisy Data ("1159 + 10 dB factory + chirps)

20 40 60 80 100 120 140 160

5

10

15

20

Output speech/background segregation (recognised as "61159")

20 40 60 80 100 120 140 160

5

10

15

20

Figure 8: Another example of the speech fragment decoding for data corrupted

with artificial chirps.



3.3. Results with real noise

The examples discussed in the previous section were artificial and the back-

ground intrusions in the data mask were very distinct. The experiments in this

section test the technique with speech mixed with factory noise taken from the

NOISEX corpus (Varga et al., 1992). NOISEX factory noise provides a chal-

lenge for robust ASR systems as although it has a stationary background, it

also has high intensity non-stationary components such as hammer blows etc.

which are highly unpredictable.

Figure 9 compares the performance of the speech fragment decoding tech-

nique, over that of a recogniser using the stationary SNR-based speech/background

segregation in conjunction with missing data techniques.

It can be seen that speech fragment decoding provides a significant improve-

ment at the lower SNRs, e.g. at 5 dB recognition accuracy is improved from

70.1% to 78.1% — a word-error rate reduction from 29.9% to 21.9%, or 26.7%

relative.

Also shown on the graph are results using a traditional MFCC system with

13 cepstral coefficients, deltas and accelerations, and cepstral mean normali-

sation (labelled MFCC+CMN). This demonstrates that the speech fragment

decoding technique is providing an improvement over a missing data system

that is already robust by the standards of traditional techniques.

3.4. Discussion

The results in figure 9 labelled “a priori” show the performance achieved using

missing data techniques if prior knowledge of the noise is used to create a perfect

local SNR mask. Even using the speech fragment decoding technique results

fall far short of this upper limit as the noise level rises above 10 dB SNR.

One possible cause of this this significant performance gap is that the frag-

ments supplied to the speech fragment decoder are not sufficiently coherent.

In this work we have used a simple set of fragments generated by clumping

high energy regions in the SNR mask. If the noise and speech sources occupy
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Figure 9: Recognition results for a baseline MFCC system, a missing data

system, and the speech fragment decoder system. The “a priori” line represents

results that are potentially achievable if the speech can be perfectly segregated

from the noise.

adjoining spectro temporal regions this technique will not be able to separate

them. This is evident is figures 12 and 8 where, as a result of both noise and

speech being mixed in the same fragment, a lot of clean speech energy has been

removed from the masks and some of the noise energy has survived.

The artificial examples highlight that the point that the success of the system

is strongly dependent on the quality of the segregation model. By producing

incoherent fragment the segregation model limits the performance of the recog-

niser as it has effectively made hard decisions that can not be undone at a later

stage. Of course, the coherence of the fragments can be easily increased by split-

ting them into smaller and smaller pieces. At the extreme each fragment may

contain a single spectro-temporal pixel which by definition must be coherent.



However, over zealous fragmentation also has undesirable consequences. First,

it greatly increase the size of the segregation search space and hence increases

the computational cost of the decoding process. Second, it weakens the con-

straints imposed by the segregation model. If there are a very large number of

small fragments the decoder is more able to construct spurious speech descrip-

tions by piecing together spectro-temporal pieces from the collection of sound

sources present.

4. SPEECH FRAGMENT DECODING WITH SOFT DECISIONS

In the previous experiment the speech fragment decoder assumed a discrete

speech/background classification for each time-frequency ‘pixel’. That is to

say that each time frequency element belongs exclusively to one fragment, and

each fragment is hypothesised to be either part of the speech source or part of

another competing sound source. However recent research has shown that, when

using missing-data techniques to handle masked speech, better ASR results

are obtained by softening the speech/background decisions and assigning pixels

with a probability of being speech rather than a binary speech/background label

(Barker et al., 2000).

This section employs an extension to the theory described thus far designed

to carry the advantages of soft speech/background decisions through to the

speech fragment decoder architecture. The new system is similar to that of

previous experiment in that it employs estimated local SNR to produce the

initial set of fragments and the decoder hypothesises hard speech/background

assignments at the level of fragments. However, following the soft missing data

approach reported in (Barker et al., 2000), the acoustic model is adapted to

employ estimated P (SNR > 0) probabilities at the ‘pixel’ level within each

fragment when calculating the likelihood of matches to the clean speech models

given the hypothesised speech/background segregation.



4.1. Procedure

Generating the feature vectors

The experiments employed speech data from the Aurora 2.0 speaker independent

connected digit recognition task (Pearce and Hirsch, 2000). The feature vectors

were generated in a similar manner to those described in Section 3.1 except

this time 32 channels were employed rather than 24, and the centre frequencies

were evenly spaced (on an ERB scale) between 50 Hz and 3750 Hz rather than

between 50 Hz and 8 kHz.5

Constructing the fragments

The fragmentation of the auditory spectrogram follows a similar procedure to

that employed in the previous experiment. A local SNR estimate is employed

to make an initial speech/background segregation. The speech segment, which

will generally contain some erroneous background regions due to error in the

SNR estimation, is then split into a number of fragments.

There are three details in which the fragmentation procedure differs from

that employed previously.

First, the local SNR estimate is based on an adaptive noise estimation tech-

nique rather than a stationary noise estimate. The adaptive noise estimate is

initialised using the stationary noise estimate computed by averaging the first

ten frames of the representation (as employed previously). Then starting at the

11th frame the noise estimate is adapted using spectro-temporal points at which

the estimated local SNR is below some minimum threshold i.e. glimpses of the

noise that are observed in low energy speech regions. Both the noise mean and

variance are computed and from this P (SNR > 0) is computed at each point

(i.e. the probability that the energy is predominantly speech energy). Then the

initial speech/background segregation is made by taking the speech segment to

be those point where P (SNR > 0) > 0.5.

5Note, the Aurora data has a 8 kHz sampling rate, whereas the TIDigit data employed in

the previous experiment is sampled at 20 kHz.



Second, the initial speech segment is cut across frequency at certain points

along the temporal axis. These cuts are made at points where the signals changes

from being predominantly harmonic to predominantly inharmonic or vice versa.

This extra step helps to separate harmonic from inharmonic sound sources that

happen to have energy in overlapping spectro-temporal regions and would thus

otherwise merge to form an incoherent fragment. The degree of harmonicity at

each frame is measured using a technique based on the autocorrelogram (see

(Barker et al., 2001) for details).

Third, fragments are identified without the prior splitting into frequency

subbands that was employed in the previous experiment. The auditory spec-

trogram employed in this experiment has a higher resolution on the frequency

axis (32 channel spanning 50 Hz to 4 kHz, as opposed to 24 channels spanning

50 Hz to 8 kHz) and therefore better resolves speech formants and harmonics.

The resulting peakier nature of the spectral cross-sections means that the initial

estimate of the speech segment tends to be composed of a fairly large number

of separated regions. This natural separation of the energetic regions reduces

the need to split the frequency axis into arbitrary subbands.

The acoustic model

Each of the eleven words in the Aurora 2.0 vocabulary (digits one to nine, plus

the two pronunciations of 0, namely “oh” and “zero”) are modelled with a 16-

state HMM. An additional 3-state model is used to model the silence before and

after each utterance, and the pauses that may occur between digits. Each state

of the digit models has only two transitions; a self transition and a transition to

the following state. The emission distribution for each state is modelled using a

mixture of 7 (XXX-CHECK-XXX) Gaussian distributions each with a diagonal

covariance matrix. These models are trained on the Aurora 2.0 clean speech

training set using HTK and the Aurora 2.0 training scripts.6

During testing the acoustic match probability is modified to take advantage

6The Aurora 2.0 training scripts are adapted to employ the auditory spectrogram repre-

sentation and to extend the number of Gaussian mixtures from three to seven.



of the fact that each spectro-temporal pixel has a ‘probability of speech’ value

rather than a discrete speech/background label. Previously, each element of

the feature vector was either labelled as speech (i.e. a reliable observation) or

background (i.e. an unreliable speech observation). Given these discrete labels

the acoustic match score is given by equation 21 from section 2.3, repeated

below:

∫
P (x|q)P (x|S,Y)

P (x)
dx =

M∑

k=1

P (k|q)
∏

j∈SO

P (x∗j |k, q)
xmax

∏

j∈SM

∫
P (xj |k, q)

αxmax
x∗j

dxj (22)

where SO is the set of channels tagged as directly observable (not masked) in the

corresponding segregation hypothesis, SM is the set of masked (missing) chan-

nels, k indexes across the diagonal-Gaussian mixture elements used to model

state q, and α is our empirical ‘balancing’ factor between observed and masked

dimensions (see Section 2.3). If the jth element of the observation vector has

a probability pj of being a reliable speech observation — i.e. j ∈ SO — and a

probability 1− pj of being speech that has been masked by the background —

j ∈ SM — then the acoustic match score becomes:

M∑

k=1

P (k|q)
∏

j

pj
P (x∗j |k, q)
xmax

+ (1− pj)
∫
P (xj |k, q)

αxmax
x∗j

dxj (23)

So to recap, the speech fragment decoder explores hypotheses in which the

fragments are themselves assigned discrete speech/background labels, but these

fragment level discrete labellings are translated into a set of continuous proba-

bilities at the time-frequency pixel level. In the current system when a fragment

label is hypothesised to be speech then the pixels it contains are assigned the

speech probabilities, pj = P (SNR > 0) directly from the adaptive noise esti-

mate, and when a fragment is label is hypothesised to be background then the

pixels are assigned speech probabilities of 1−P (SNR > 0). These continuous pj

values are then employed in the evaluation of the acoustic model f(x|q) through

the use of Equation 23.



For the most part the P (SNR > 0) of data in the fragments are close to 1

meaning that the pj values will be valued as either 1 or 0. For discrete values

of pj equation 23 becomes 22 and hence the acoustic model becomes equivalent

to the discrete speech/background version employed in the previous sections.

However, in the areas around the edge of each fragment the background noise

may make a significant contribution to the observed energy. In these areas

P (SNR > 0) may be closer to 0.5, this means that the values of P (SNR > 0)

and 1 − P (SNR > 0) become more similar and hence the data at the edge of

the fragment effectively makes a reduced contribution to the speech/background

fragment labelling decision. So although the fragments are themselves still dis-

crete entities, the change in the acoustic model means they have ‘softer’ edges

and hence the recognition system is more able to tolerate errors in the frag-

ment boundaries that arise due to the approximate nature of the fragmentation

process.

4.2. Artificial Examples

Figure 13 (A) shows the spectrogram of the utterance “seven five”, to which a

stationary background noise and a series of broadband high-energy noise bursts

have been added. Adaptive noise estimation identifies the stationary compo-

nent, leaving the unmasked speech energy and the nonstationary noise bursts

as candidate ‘present data’, as shown in panel C. This however must be broken

up into a set of fragments to permit searching by the speech fragment decoder.

In order to confirm that the top-down process in the decoder is able to iden-

tify the valid speech fragments, its performance was tested using a small set of

‘ideal’ coherent fragments. These can be generated by applying a priori knowl-

edge of the clean speech, i.e. comparing the clean and noisy spectrograms to

mark out the exact regions where either the speech or the noise bursts domi-

nate. The ideal fragments are simply the contiguous regions which are formed

by this segregation process (see Panel D of Figure 13).

Given these fragments, the decoder is able to correctly recognise the utter-



ance as “seven five”, using the fragments in panel E as evidence of the speech.

The correct speech/noise fragment labelling is shown in panel F. Comparing E

and F, it can be seen that the decoder has accepted all the speech fragments,

while correctly rejecting all the larger fragments of noise. (Some small noise

regions have been included in the speech, implying their level was consistent

with the speech models.)

4.3. Experiments Employing the Aurora 2 Connected Digit Task
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Figure 10: Results for the Aurora Test Set A (see text)

The soft speech fragment decoder system was tested using the Aurora 2.0

speaker independent connected digit recognition task (Pearce and Hirsch, 2000).

Experiments compared the full speech fragment decoder system as described

above with a fixed-mask soft-decision missing data system based on the same

P (SNR > 0) probabilities calculated from the adaptive noise estimates.

Results for the four noise conditions is the Aurora test set A are shown in



Figure 10.7 For three of the four noise conditions the speech fragment decoder

processing achieves a better performance than the standard missing data system.

For the highly non-stationary speech babble noise the performance improve-

ments at low SNRs are fairly large. The only noise for which no improvement is

seen is the car noise (N3). Examination of the noises shows that the car noise is

the most stationary of the four and is well modelled by the adaptive noise esti-

mate. It is therefore not surprising that for this noise type the speech fragment

decoding technique, which is designed to deal with non-stationary noise events,

can do little to improve over the already strong performance of the standard

missing data technique.

5. DISCUSSION

Having explained the motivation and form of the speech fragment decoder, in

this section we discuss some of the issues that have arisen with our current

implementation, and the directions we plan to pursue in the future.

5.1. Improvements to fragment generation

The fragments in the current system rely on a very simple and crude model

- mainly that energy below an estimate ‘noise floor’ is to be ignored, and the

remainder can be divided up according to some simple heuristics. It is likely

that more powerful fragmentation will result in significant improvement gains

for the technique. In general, one can imagine a two-phase process in which cues

for auditory grouping (as listed, for example, in (Bregman, 1990) and table 1 of

(Cooke and Ellis, 2001)) are applied to aggregate auditory filter outputs across

time and frequency, followed by the application of segregation principles which

serve to split the newly-formed regions. In contrast with earlier approaches to

grouping and segregation, such a strategy can afford to be conservative in its

7The results presented here are for systems that are not employing temporal difference

features and hence the baseline is somewhat lower than similar results published in previous

papers e.g. (Barker et al., 2000)



application of grouping principles, since some of the work of aggregation can be

left to the decoder. In fact, since any groups formed at this stage cannot later

be split, it is essential that any hard-and-fast decisions are based on reliable

cues for grouping. In practice, this can be achieved both by adopting more

stringent criteria for incorporation of time-frequency regions into groups and by

weakening criteria for the splitting of groups.

For instance, within the regions currently marked as ‘voiced’, subband peri-

odicity measures could indicate whether frequency channels appear to be excited

by a single voice, or whether multiple pitches suggest the division of the spec-

trum into multiple voices (as in (Brown and Cooke, 1994)). Sudden increases in

energy within a single fragment should also precipitate a division, on the basis

that this is strong evidence of a new sound source appearing.

The application of stringent grouping criteria may appear to result in a loss

of valuable information about which regions are likely to belong together, we

show in the following section how such information can be employed during the

decoding stage.

5.2. Between-fragment grouping

Psycho-acoustic experiments provide evidence that weak grouping effects may

exist between the tightly bound local spectro-temporal fragments. For example,

a sequence of tonal elements are more likely to be perceived as emanating from

the same sound source if they have similar frequency. These grouping effects

may allow a fragment to have an influence on the evolving source interpretation

that spans over a considerable temporal window. However such intra-fragment

grouping effects have a probabilistic nature and their influence can be overcome

by learned patterns, such as musical melody or speech.

Between-fragment grouping effects may be best modelled as soft biases rather

than hard and fast rules. One approach would be to estimate prior probabilities

of the segregation hypotheses according to various distance measures between

the fragments composing the sources that the segregation describes. A suitable



distance measure may be based on the similarity of a vector of fragment prop-

erties such as mean frequency, spectral shape, spatial location, mean energy.

The posterior probability of pairs of fragments belonging to the same source

given their properties could then be learnt using training data employing a pri-

ori fragments similar to those employed in Section 4.2. Such probabilities could

be added into the segregation model by appropriately adjusting the scores for

each evolving segregation hypotheses as each new fragment is considered by the

decoding process.

When including long term between-fragment grouping probabilities into the

segregation model some care has to be taken with the speech fragment decod-

ing algorithm to ensure that the Markov property is preserved and that the

segregation/word-sequence search remains admissible. In the version of the al-

gorithm described in section 2.2 decisions about the best labelling of a fragment

are made at the instant at which the fragment offsets. However, allowing for

intra-fragment effects, it is not possible to know at this time point how the

labelling of the present fragment will influence the labelling of fragments occur-

ring in the future. This problem can be overcome by first limiting the temporal

extent of the intra-fragment grouping effects to a fixed number of frames, say T

frames8, and second, delaying the decision over how to label a given fragment

until the decoder has passed the offset of the fragment by T frames.

Note that the delay in fragment labelling decisions necessitated by intra-

fragment grouping effects will mean that there are on average more active hy-

potheses at any instant. The growth in the number of hypotheses will in general

be an exponential function of the length of the delay which, in turn, has to be

the same duration as the extent of the temporal influence between fragments. So

there is a trade-off between the temporal extent of the intra-fragment grouping

influences and the size of the segregation search space (and hence computational

cost of the decoding procedure). The exact nature of this trade-off will depend

8That is to say that intra-fragment grouping probabilities are included for interactions

between the fragment that is ending and each fragment that overlaps a window that extends

back T frames before the fragment ended



on the form of the fragments themselves. As an example see Figure 11, which

is generated using ideal coherent fragment data generated from a 0 dB SNR

mixture of speech and noise. The graph plots the average number of active

segregation hypotheses per frame that would result from a range of values for

the temporal extent of intra-fragment grouping effects.
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Figure 11: Average simultaneous segregation hypotheses versus temporal extent

of intra-fragment grouping effects. The graph has been calculated from fragment

data generated from speech plus noise at 0 dB SNR.

5.3. Approximating P (X)

In equation 11, we factored the ratio of the likelihood of the speech features con-

ditioned on segregation and mask to their prior values by essentially assuming

their values were independent at each time step i, i.e. we took:

P (X|S,Y)

P (X)
=

∏

i

P (xi|S,Y)

P (xi)
(24)

This independence assumption is certainly incorrect, however if we are cal-

culating only the ratio of two unrealistically low probability estimates, it may

be that the ratio itself comes out somewhat closer to the the ideal ‘true’ value.

On the other hand, when the segregation hypthesis considers certain dimen-

sions to be directly observed, the math requires scaling by P (xi) alone. This



is another potential source of imbalance between directly-observed and masked

dimensions, which we have patched for the time being with the tuning factor α.

Apart from the independence assumption, our model for the prior distri-

bution of speech feature vector elements within a single time frame, P (xj),

as uniform between zero and some global constant xmax is clearly very weak.

It would be relatively simple to improve this, e.g. by using individual single-

Gaussian models of the prior distribution of features in each dimension. Since

this applies only to the clean speech features X rather than to the unpredictable

noisy observations Y, we already have the training data we need.

5.4. Three-way labelling of time-frequency cells

Although the primary purpose of the current system is to decide which time-

frequency pixels can be used as evidence for the target voice, we note that

there is actually a three-way classification occurring, firstly between stationary

background and foreground (by the initial noise estimation stage), then of the

foreground energy into speech and nonspeech fragments (by the decoding pro-

cess). This special status of the stationary background is not strictly necessary

— those regions could be included in the search, and would presumably always

be labelled as nonspeech — but it may reveal something more profound about

sound perception in general. Just as it is convenient and efficient to identify and

discard the ‘background roar’ as the first processing stage in this system, per-

haps biological auditory systems perform an analogous process of systematically

ignoring energy below a slowly-varying threshold.

5.5. Computational complexity

In the Aurora experiments, the number of fragments per utterance often ex-

ceeded 100. However, as illustrated in Figure 13 (G), the maximum number of

simultaneous fragments was never greater than 10 and the average number of

hypotheses per frame computed over the full test set was below 4. Although

the decoder is evaluating on average roughly four times as many hypothesis as



a standard missing data decoder, much of the probability calculation may be

shared between hypotheses and hence the computational load is increased by a

much smaller factor.

5.6. Decoding multiple sources

A natural future extension would be to search for fits across multiple simultane-

ous models, possibly permitting the recognition of both voices in simultaneous

speech. This again resembles the ideas of HMM decomposition (Varga and

Moore, 1990; Gales and Young, 1993). However, because each ‘coherent frag-

ment’ is assumed to correspond to only a single source, the likelihood evaluation

is greatly simplified. The arguments about the relationship between large, co-

herent fragments and search efficiency remain unchanged.

6. CONCLUSION

We have presented a technique for recognising speech in the presence of other

sound sources that combines i) a bottom up processing stage to produce a

set of source fragments, with ii) a top-down search which, given models of

clean speech, uses missing data recognition techniques to find the most likely

combination of source speech/background labelling and speech model sequence.

Preliminary ASR experiments show that the system can produce recognition

performance improvements even with a simplistic implementation of the bottom-

up processing. We believe that through the application of more sophisticated

CASA-style sound source organization techniques, we will be able to improve

the quality of the fragments fed to the top-down search and further improve the

performance of the system.



Noisy Data ("1159" + 10 dB factory + bursts)

20 40 60 80 100 120 140 160

5

10

15

20

Initial foreground estimate (recognised as "81o85898")

5

10

15

20

Fragmented foreground

5

10

15

20

Output speech/background segregation (recognised as "81159")

20 40 60 80 100 120 140 160

5

10

15

20

Figure 12: An example of the speech fragment decoder system performance

when applied to data corrupted by artificial transients (see text).
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A:  Clean speech spectrogram “seven five”


B:  Noise bursts plus speech

C:  Time-frequency mask for P(SNR > 0) > 0.5

D:  Mask divided into a priori ‘coherent’ fragments

E:  Speech fragments selected by decoder

F:  ‘Ground truth’ fragment assignments
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Figure 13: An example of the speech fragment decoder’s operation on a single

noisy utterance: Panel A shows a spectrogram of the utterance “seven five”.

Panel B shows the same signal but after adding a two state noise source. Panel

C shows the components of the mixture that are not accounted for by the adap-

tive background noise model. Panel D displays a test set of perfectly coherent

fragments generated using a priori knowledge of the clean signal. Panel E

shows the groups that the speech fragment decoder identifies as being speech

groups. The correct assignment is shown in panel F. Panel G plots the number

of grouping hypotheses that are being considered at each time frame.
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