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Improving Timbre Similarity : How high’s the sky 7

Jean-Julien Aucouturier Francois Pachet

Abstract—We report on experiments done in an attempt
to improve the performance of a music similarity mea-
sure which we introduced in [2]. The technique aims at
comparing music titles on the basis of their global “tim-
bre”, which has many applications in the field of Music
Information Retrieval. Such measures of timbre similar-
ity have seen a growing interest lately, and every contri-
bution (including ours) is yet another instantiation of the
same basic pattern recognition architecture, only with dif-
ferent algorithm variants and parameters. Most give en-
couraging results with a little effort, and imply that near-
perfect results would just extrapolate by fine-tuning the
algorithms’ parameters. However, such systematic testing
over large, inter-dependent parameter spaces is both diffi-
cult and costly, as it requires to work on a whole general
meta-database architecture. This paper contributes in two
ways to the current state of the art. We report on exten-
sive tests over very many parameters and algorithmic vari-
ants, either already envisioned in the literature or not. This
leads to an improvement over existing algorithms of about
15% R-precision. But most importantly, we describe many
variants that surprisingly do not lead to any substancial
improvement. Moreover, our simulations suggest the exis-
tence of a “glass ceiling” at R-precision about 65% which
cannot probably be overcome by pursuing such variations
on the same theme.

I. INTRODUCTION

The domain of Electronic Music Distribution has gained
worldwide attention recently with progress in middleware,
networking and compression. However, its success depends
largely on the existence of robust, perceptually relevant
music similarity relations. It is only with efficient content
management techniques that the millions of music titles
produced by our society can be made available to its mil-
lions of users.

A. Timbre Similarity

In [2], we have proposed to computing automatically mu-
sic similarities between music titles based on their global
timbre quality. The motivation for such an endeavour was
two fold. First, although it is difficult to define precisely
music taste, it is quite obvious that music taste is often cor-
related with timbre. Some sounds are pleasing to listeners,
other are not. Some timbres are specific to music periods
(e.g. the sound of Chick Corea playing on an electric pi-
ano), others to musical configurations (e.g. the sound of a
symphonic orchestra). In any case, listeners are sensitive
to timbre, at least in a global manner.

The second motivation is that timbre similarity is a very
natural way to build relations between music titles. The
very notion of two music titles that “sound the same”
seems to make more sense than, for instance, query by
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humming. Indeed, the notion of melodic similarity is prob-
lematic, as a change in a single note in a melody can dra-
matically impact the way it is perceived (e.g. change from
major to minor). Conversely, small variations in timbre
will not affect the timbre quality of a music title, consid-
ered in its globality. Typical examples of timbre similarity
as we define it are :

e a Schumann sonata (“Classical”) and a Bill Evans
piece (“Jazz”) are similar because they both are ro-
mantic piano pieces,

o A Nick Drake tune (“Folk”), an acoustic tune by the
Smashing Pumpkins (“Rock”), a bossa nova piece by
Joao Gilberto (“World”) are similar because they all
consist of a simple acoustic guitar and a gentle male
voice, etc.

B. State of the Art

Timbre Similarity has seen a growing interest in the Mu-
sic Information Retrieval community lately ([4], [5], [7],
[12], [13], [18], [22], [25], [32)).

Each contribution often is yet another instantiation of
the same basic pattern recognition architecture, only with
different algorithm variants and parameters. The signal is
cut into short overlapping frames (usually between 20 and
50ms and a 50% overlap), and for each frame, a feature vec-
tor is computed, which usually consists of Mel Frequency
cepstrum Coefficients (MFCC, see section II for more de-
tails). The number of MFCCs is an important parameter,
and each author comes up with a different number: 8([2]),
12([12)), 13 ([4]),14([18]), 19(122]), 20([7).

Then a statistical model of the MFCCs’ distribution is
computed. K-means are used in [4], [7], [13], [22], [25],
and GMMs in [2], [7], [18]. Once again, the number of
kmean or GMM centres is a discussed parameter which has
received a vast number of answers : 3 ([2]), 8 ([7]), 16 ([4],
[7], [22]), 32([7], [18]), 64([7]). [25] uses a computationally
simpler histogram approach computed from Bark Loudness
representation, and [12] uses a supervised algorithm (tree-
based vector quantizer) that learns the most distinctive
dimensions in a given corpus.

Finally, models are compared with different techniques:
sampling ([2]), Earth Mover’s distance ([4], [7], [22]),
Asymptotic Likelihood Approximation ([7]).

All these contributions (including ours) give encouraging
results with a little effort and imply that near-perfect re-
sults would just extrapolate by fine-tuning the algorithms’
parameters.

We should make clear here that this study is only con-
cerned with timbre similarity, and that we do not claim
that its conclusions extend to music similarity in general
(whatever this may mean), or related tasks like classifica-
tion or identification. Recent research in automatic genre
classification and artist identification, for instance, have



shown that the incorporation of other features such as beat
and tempo information ([30]), singing voice segmentation
([17], [6]) and community metadata ([33]) could improve
the performance. However, such techniques are not ex-
plored here as they go beyond the scope of timbre percep-
tion.

C. Evaluation

This article reports on experiments done in an attempt
to improve the performance of the class of algorithms de-
scribed above. Such extensive testing over large, depen-
dent parameter spaces is both difficult and costly.

Subjective evaluations are somewhat unreliable and not
practical in a systematic way: in the context of timbre sim-
ilarity, we have observed that the conditions of experiment
influence the estimated precision a lot. It is difficult for
the users not to take account of a priori knowledge about
the results. For instance, if the nearest neighbor to a jazz
piece is also a piece by another famous jazz musician, then
the user is likely to judge it relevant, even if the two pieces
bear no timbre similarity. As a consequence of this, a same
similarity measure may be judged differently depending on
the application context.

Objective evaluation is also problematic, because of the
choice of a ground truth to compare the measure to. In [1],
we have projected our similarity measure on genre meta-
data to study its agreement to the class information, us-
ing the Fisher coefficient. We concluded that there were
very little overlap with genre clusters, but it is unclear
whether this is because the precision of the timbre simi-
larity is poor, or because timbre is not a good classifica-
tion criteria for genre. Several authors have studied the
problem of choosing an appropriate ground truth : [22]
considers as a good match a song which is from the “same
album”, “same artist”, “same genre” as the seed song. [25]
also proposes to use “styles” (e.g. Third Wave ska revival)
and “tones” (e.g. energetic) categories from the All Music
Guide AMG 1. [7] pushes the quest for ground truth one
step further by mining the web to collect human similarity
ratings.

The algorithm used for timbre similarity comes with very
many variants, and has very many parameters to select. At
the time of [2], the systematic evaluation of the algorithm
was so unpractical that the chosen parameters resulted
from hand-made parameter twitching. In more recent con-
tributions, such as [4], [25], our measure is compared to
other techniques, with similarly fixed parameters that also
result from little if any systematic evaluation. More gen-
erally, attempts at evaluating different measures in the lit-
erature tend to compare individual contributions to one
another, i.e. particular, discrete choices of parameters, in-
stead of directly testing the influence of the actual parame-
ters. For instance, [25], [5] compares the settings in [22](19
MFCCs+16Kmeans) to those of [2](8 MFCCs+3GMM).

Finally, conducting such a systematic evaluation is a
daunting task, since before doing so, it requires building a
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general architecture that is able to :

« access and manage the collection of music signals the

measures should be tested on

« store each result for each song (or rather each duplet

of songs as we are dealing with a binary operation
dist(a,b) = d and each set of parameters

« compare results to a ground truth, which should also

be stored

o build or import this ground truth on the collection of

songs according to some criteria

o easily specify the computation of different measures,

and to specify different parameters for each algorithm
variant, etc...

In the context of the European project Cuidado, the mu-
sic team at SONY CSL Paris has built a fully-fledged EMD
system, the Music Browser ([24]), which is to our knowl-
edge the first system able to handle the whole chain of
EMD from metadata extraction to exploitation by queries,
playlists,etc. Metadata about songs and artists are stored
in a database, and similarities can be computed on-the-fly
or pre-computed into similarity tables. Its open architec-
ture makes it easy to import and compute new similar-
ity measures. Similarity measures themselves are objects
stored in the database, for which we can describe the exe-
cutables that need to be called, as well as the arguments of
these executables. Using the Music Browser, we were able
to easily specify and launch all the simulations that we de-
scribe here, directly from the GUI, without requiring any
additional programming or external program to bookkeep
the computations and their results.

This paper contributes in two ways to the current state
of the art. We report on extensive tests over very many
parameters and algorithmic variants, some of which have
already been envisioned in the literature, some others be-
ing inspired from other domains such as Speech Recogni-
tion. This leads to an absolute improvement over existing
algorithms of about 15% R-precision. But most impor-
tantly, we describe many variants that surprisingly do not
lead to any substancial improvement of the measure’s pre-
cision. Moreover, our simulations suggest the existence of
a “glass ceiling” at R-precision about 65% which probably
cannot be overcome by pursuing such variations on the
same theme.

II. FRAMEWORK

In this section, we present the evaluation framework for
the systematic exploration of the parameter space and vari-
ants of the algorithm we introduced in [2]. We first describe
the initial algorithm, and then describe the evaluation pro-
cess.

A. The initial algorithm

Here we sum up the original algorithm as presented in
[2]. As can be seen in Figure 1, it has a classical pat-
tern recognition architecture. The signal is first cut into
frames. For each frame, we estimate the spectral envelope
by computing a set of Mel Frequency Cepstrum Coeffi-
cients. The cepstrum is the inverse Fourier transform of
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Fig. 1. The initial algorithm has a classical pattern recognition
architecture.
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We call mel-cepstrum the cepstrum computed after a
non-linear frequency warping onto a perceptual frequency
scale, the Mel-frequency scale ([27]). The ¢, are called Mel
frequency cepstrum coefficients (MFCC). Cepstrum coeffi-
cients provide a low-dimensional, smoothed version of the
log spectrum, and thus are a good and compact representa-
tion of the spectral shape. They are widely used as feature
for speech recognition, and have also proved useful in mu-
sical instrument recognition ([10]).
We then model the distribution of the MFCCs over all
frames using a Gaussian Mixture Model (GMM). A GMM
estimates a probability density as the weighted sum of M
simpler Gaussian densities, called components or states of
the mixture. ([8]):

m=M
p(ft) = ﬂmN(fta,umaEm)

m=1

(2)

where F; is the feature vector observed at time t, A is a
Gaussian pdf with mean pu,,, covariance matrix ¥,,, and
Tm 18 a mixture coefficient (also called state prior proba-
bility). The parameters of the GMM are learned with the
classic E-M algorithm ([8]).

We can now use these Gaussian models to match the timbre
of different songs, which gives a similarity measure based
on the audio content of the music. The timbre models are
meant to integrate into a large scale meta-database archi-
tecture, hence we need to be able to compare the models
themselves, without storing the MFCCs. In [2], we use
a Monte Carlo approach to approximate the likelihood of
the MFCCs of one song A given the model of another song
B: we sample a large number of points S# from model A,
and compute the likelihood of these samples given Model
B. We then make the measure symmetric and normalize :

i=DSR i=DSR
D(A,B)= > logP(S}/A)+ Y logP(SF/B)

i=DSR - i=DSR =
= > logP(S/B)= > logP(SF/4)  (3)

=1 =1

The precision of the approximation is clearly dependent
on the number of samples, which we call Distance Sample
Rate (DSR).

B. Test Database, Ground Truth and Evaluation metric

A test database of 350 music titles was constructed as an
extract from the Cuidado database [24] (which currently
has 15,000 mp3 files). It contains songs from 37 artists,
encompassing very different genres and instrumentations.
Table I shows the contents of the database®. While the size
of test database may appear small, we would like to stress
the very heavy computational load of computing a large
number of n? similarity matrices, some of which resulting
from intensive, non optimized algorithms (e.g. HMMs with
Viterbi decoding for each duplet of song). This has pre-
vented us from increasing the size of database any further.
The computation of a single similarity matrix on the full
Cuidado database (15,000 songs) can represent up to sev-
eral weeks of computation, and this study relies on more
than a hundred of such matrices.

Artists and songs were chosen in order to have clusters
that are “timbrally” consistent (all songs in each cluster
sound the same). Hence, we use a variation on the “same
artist/same album” ground truth as described in section
I, which we refine by hand by selecting the test database
according to subjective similarity ratings.

Moreover, we only select songs that are timbrally homo-
geneous, i.e. there is no big texture change within each
song. This is to account for the fact that we only compute
and compare one timbre model per song, which “merges”
all the textures found in the sound. In the case of more
heterogeneous songs (e.g. Queen - Bohemian rapsody), a
segmentation step could increase the accuracy of the mea-
sure, but such techniques are not considered in this study
(see for instance [11]).

We measure the quality of the measure by counting the
number of nearest neighbors belonging to the same cluster
as the seed song, for each song. More precisely, for a given
query on a song S; belonging to a cluster Cs, of size N,
the precision is given by :

card(S,/Cs, = Cs,andR(Sk) < N;)
Ni

where R(Sk) is the rank of song Sj in the query on song
S;.

This framework is very close to traditional IR, where
we know the number of relevant documents for each query.
The value we compute is referred to as the R-precision, and
has been standardized within the Text REtrieval Confer-
ence (TREC) [31]. It is in fact the precision measured after
R documents have been retrieved, where R is the number of
relevant documents. To give a global R-precision score for
a given model, we average the R-precision over all queries.

p(Si) = (4)

III. FINDING THE BEST SET OF PARAMETERS FOR THE
ORIGINAL ALGORITHM

As a first evaluation, we wish to find the best set of
parameters for the original algorithm described above. We

2 The “descriptions” taken from the AMG
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TABLE 11
INFLUENCE OF SIGNAL’S SAMPLE RATE

SR R-Precision
11kHz 0.488
22kHz 0.502
44kHz 0.521

explore the space constituted by the following parameters

« Signal Sample Rate (SR): The sample rate of the mu-
sic signal. The original value in the system in [2] is
11KHz. This value was chosen to reduce the CPU
time.

o Number of MFCCs (N): The number of the MFCCs
extracted from each frame of data. The more MFCCs,
the more precise the approximation of the signal’s
spectrum, which also means more variability on the
data. As we are only interested in the spectral en-
velopes, not in the finer, faster details like pitch, a
large number may not be appropriate. The original
value used in [2] is 8.

o Number of Components (M): The number of gaussian
components used in the GMM to model the MFCCs.
The more components, the better precision on the
model. However, depending on the dimensionality of
the data (i.e. the number of MFCCs), more precise
models may be underestimated. The original value is
3.

« Distance Sample Rate (DSR): The number of points
used to sample from the GMMs in order to estimate
the likelihood of one model given another. The more
points, the more precision on the distance, but this
increases the required CPU time linearly.

« Alternative Distance : Many authors ([22], [7]) pro-
pose to compare the GMMSs using the Earth Mover’s
distance (EMD), a distance measure meant to com-
pare histograms with disparate bins ([28]). EMD com-
putes a general distance between GMMs by combining
individual distances between gaussian components.

o Window Size :The size of the frames on which we com-
pute the MFCCs.

As this 6-dim space is too big to explore completely,
we make the hypothesis that the influence of SR, DSR,
EMD and Window Size are both independent of the influ-
ence of N and M. However, it is clear from the start that
N and M are linked: there is an optimal balance to be
found between high dimensionality and high precision of
the modeling (curse of dimensionality).

A. influence of SR

To evaluate SR, we fix N, M and DSR to their default
values used in [2] (8,3 and 2000 resp.). In Table II, we
see that the SR has a positive influence on the precision.
This is probably due to the increased bandwidth of the
higher definition signals, which enables the algorithm to
use higher frequency components than with low SR.
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Fig. 2. Influence of the distance sample rate

TABLE III
DISTANCE FUNCTION

Distance R-Precision
EMD-KL 0.477
EMD-MA 0.406

DSR=2000 0.488

B. influence of DSR

To evaluate DSR, we fix N = 8, M=3 and SR= 44KHz.
In Figure 2, we see that the DSR has a positive influence
on the precision when it increases from 1 to 1000, and that
further increase has little if any influence. Further tests
show that the optimal DSR does not depend on either N
or M.

C. influence of EMD

To evaluate the EMD against our sampling scheme using
DSR, we fix N = 8, M=3 and SR= 11KHz. We compare
EMD with Kullback-Leibler, EMD with Mahalanobis and
sampling with DSR=2000. In Table In III, we see that
EMD with Mahalanobis distance performs worst, and that
EMD with Kullback Leibler and sampling are equivalent
(with a slight advantage to sampling). The difference be-
tween MA and KL is probably due to the fact that MA
takes less account of covariance differences between com-
ponents (2 gaussian components having same means and
different covariance matrices have a zero Mahalanobis dis-
tance).

D. influence of N,M

To explore the influence of N and M, we make a com-
plete exploration of the associated 2-D space, with N vary-
ing from 10 to 50 by steps of 10 and M from 10 to 100 by
steps of 10. These boundaries result from preliminary tests
(moving N while M=3, and moving M while N=8) showing
that both default values N=8 and M=3 are not optimal,
and that the optimal (N,M) was well above (10,10). Fig-
ure 3 shows the results of the complete exploration of the
(N,M) space.

We can see that too many MFCCs (N > 20) hurt the pre-
cision. When N increases, we start to take greater account
of the spectrum’s fast variations, which are correlated with
pitch. This creates unwanted variability in the data, as we
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Influence of the number of MFCCs and the number of com-

want similar timbres with different pitch to be matched
nevertheless.

We also notice that increasing the number of compo-
nents at fixed N, and increasing N at fixed M is eventually
detrimental to the precision as well. This illustrates the
curse of dimensionality mentioned above. The best preci-
sion p = 0.63 is obtained for 20 MFCCs and 50 components.
We can also note that the number of MFCCs is a more
critical factor than the number of Gaussian components :
VM,N # 20,p(No =20,M) > p(N,M). This means we can
decrease M to values smaller than optimum without much
hurting the precision, which is an interesting point as the
computational cost of comparing models depends linearly
on M.

E. influence of Windows Size

To evaluate the influence of the window size used to seg-
ment the waveforms, we fix N = 20, M=50, SR=44 KHz
and DSR = 2000. In Figure 4, we see that the window
size has a small positive influence on the precision when it
increases from 10 ms to 30ms, but that further increase up
to 1 second has a negative effect. This behaviour results
from the fact that MFCCs are only meaningful on station-
ary frames (larger frames may include more transients and
variations) and that larger frames means less data avail-
able for the training, which decreases the precision of the
models.

F. Conclusion

In conclusion, this systematic exploration of the influ-
ence of 4 parameters of the original algorithm results in an
improvement of the precision of more than 16%, from the
original p = 0.48 to the optimal p = 0.63 for (SR=44kHz,
N=20, M=50, DSR=2000).

While this 63% of precision may appear poor, it is impor-
tant to note that our evaluation criteria necessarily under-
estimates the quality of the measure, as it doesn’t consider
relevant matches that occur over different clusters (false
negatives), e.g. a Beethoven piano sonata is timbrally close

5
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Fig. 4. Influence of the windows size

to a jazz piano solo). Indeed, the subjective performance
reported in [2] was much better than the corresponding
p = 0.48 evaluated here. The current test is mainly mean-
ingful in a relative way, as it is able to objectively measure
an increase or loss of performance due to some parameter
change.

In the next 2 sections, we examine the influence of a
number of algorithmic variants concerning both the front-
end and the modeling, and see if they are able to further
improve the R-precision.

IV. EVALUATING FRONT-END VARIATIONS
A. Processing commonly used in Speech Recognition

MFCCs are a very common front-end used in the Speech
Recognition community (see for instance [27]), and a vari-
ety of pre and post-processing has been tried and evaluated
for speech applications. Here we examine the influence of
7 common operations :

e ZMeanSource : The DC mean is removed from the
source waveform before doing the actual signal anal-
ysis. This is used in speech to remove the effects of
A-D conversion.

e Pre-emphasis: It is common practice to pre-emphasize
the signal by applying the first order difference equa-
tion :

s =5, —ksp_1 (5)

n

to the samples s, in each window, with k£ a preem-
phasis coefficients, 0 < k < 1. Pre-emphasis is used
in speech to reduce the effects of the glottal pulses
and radiation impedance and to focus on the spectral
properties of the vocal tract.

e Dither : Certain kind of waveform data can cause nu-
merical problems with certain coding schemes (finite
wordlength effects). adding a small amount of noise
to the signal can solve this. The noise is added to the
samples using :

Sy, = Sp + QRND (6)

where RAND is a uniformly distributed normalized
random value and q is a scaling factor.

o Liftering : Higher order MFCCs are usually quite
small, and this results in a wide range of variances
from low to high order. this may cause problems in



distribution modeling. Therefore it is common prac-
tice in speech to rescale the coefficients to have similar
magnitude. This is done by filtering in the cepstrum
domain (LiFtering) according to :

(7)

=01+ % sin %cn)
where L is a liftering parameter.

o Cepstral mean compensation (CMC) : The effect of
adding a transmission channel on the source signal is
to multiply the spectrum of the source by a channel
transfer function. In the cepstral log domain, this mul-
tiplication becomes an addition which can be removed
by subtracting the cepstral mean.

o 0’th order coefficient : The 0’th cepstral parameter Cy
can be appended to the c¢,. It is correlated with the
signal’s log energy :

(8)

o Delta and acceleration coefficients : The performance
of a speech recognition system can be greatly en-
hanced by adding time derivatives to the basic static
parameters. Delta Coeflicients are computed using the
following formula :

d, — S O(cero — ci—o)
250 62
where d; is a delta coefficient at time t, computed
using a time window ©. The same formula can be
applied to the delta coefficients to obtain the acceler-
ation coefficients.

Table IV shows the results on the test database. We
notice that subtracting the cepstral mean and comput-
ing delta and acceleration coefficients for large time win-
dows severely degrade the performance. Pre-emphasis and
Dither have little effect compared to the original MFCCs.
Nevertheless, liftering, normalizing the original signal, ap-
pending short-term delta and acceleration coefficients and
appending the 0’th coefficient all improves the precision of
the measure.

We have tried to combine this operations (this is referred
to as “Best 3” and “Best 4” in Table IV), however this
does not further improve the precision. We should also
consider fine-tuning the number of Gaussian components
again considering the increase in dimensionality due to the
appending of delta and acceleration coefficients.

We should note here that the finding that including cO
slightly improves the performance is at odds to some of the
results reported in [7]. In any case, the overall influence
(either positive here or negative elsewhere) of this variant
is small (a few percent). We further discuss these results
in the concluding section.

(9)

B. Texture windows

The previous experiment shows that adding some short-
term account of the MFCC statistics (i.e. delta or accelera-
tion coefficients) has a positive (although limited) influence
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TABLE IV
INFLUENCE OF PRE/POST PROCESSING

Variant R-Precision
Acceleration © = 50 0.179
Delta © =50 0.522
Cepstral Mean Compensation 0.525
Delta © =10 0.60
Acceleration © = 10 0.610
Delta © =2 0.624
Delta © =5 0.625
Acceleration © =5 0.625
Pre Emphasis £ = 0.97 0.628
Acceleration © =1 0.628

| Original MFCC | 0.629 |

Dither g = 5% 0.629
Lifter L =22 0.630
Delta © =1 0.631
ZMeanSource 0.631
Acceleration © = 2 0.631
0’th coefficient 0.652
Best 3 0.605
Best 4 0.609

on the R-precision. In this paragraph, we investigate the
modelling of the long-term statistics of the feature vectors.

It has been shown that, for modeling music, using a
larger scale texture window and computing the means and
variances of the features over that window results in sig-
nificant improvements in classification. Tzanetakis in [30]
reports a convincing 15% precision improvement on a genre
classification task when using accumulations of up to about
40 frames (1 second). This technique has the advantage of
capturing the long-term nature of sound textures, while
still assuring that the features be computed on small sta-
tionary windows (as proved necessary in section IIT)

We report here the evaluation results using such texture
windows, for a texture window size w; growing from 0 to
100 frames by steps of 10. w; = 0 corresponds to using
directly the MFCCs without any averaging, like in section
III. For w; > 0, we compute the mean and average of the
MFCCs on running texture windows overlapping by w; — 1
frames. For an initial signal of n frames of N coefficients
each, this results in n —w;+ 1 frames of 2N coefficients : N
means and N variances. We then model the resulting fea-
ture set with a M-component GMM. For the experiment,
we use the best parameters obtained from section III, i.e.
N =20 and M = 50. Figure 5 shows the influence of w;
on the R-precision. It appears that using texture windows
has no significant influence on the R-precision of our simi-
larity task, contrary to the classification task reported by
Tzanetakis : the maximum increase of R-precision is 0.4%
for wy = 20, and the maximum loss is 0.4% for w; = 10.

Several directions could be further explored to try to
adapt Tzanetakis’ suggestion of texture windows. First,
the computation of N-dimensional means and variances
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doubles the dimension of the feature space, hence the op-
timal number of GMM components M should be adapted
accordingly. Second, the use of one single mean (and vari-
ance) vector for each window may create a “smearing” of
very dissimilar frames into a non-meaningful average. It is
likely that using a small size GMM for each texture win-
dow would increase the precision of the modelling. How-
ever, this raises a number of additional issues which were
not studied here, among which :
e Which is the optimal number of gaussians, for each
frame, and then for the global model ?
o Should the gaussian centres be tracked between neigh-
boring frames ?
Finally, in the single-component case, the mean of the
frame-based means (with no overlap) of a signal {a;} is
trivially equal to the global mean :

(10)

Although the extension of this behaviour in the case of
multi-component GMMs cannot be written explicitely (as
it results from a learning algorithm), this suggests that the
real influence of this processing remains unclear. The extra
information captured by texture windows may be more
appropriately provided by an explicit segmentation pre-
processing, or time-sensitive machine learning techniques
like hidden Markov models, as we investigate in section V.

C. Spectral Contrast

In [15], the authors propose a simple extension of the
MFCC algorithm to better account for music signals. Their
observation is that the MFCC computation averages the
spectrum in each sub-band, and thus reflects the average
spectral characteristics. However, very different spectra
can have the same average spectral characteristics. No-
tably, it is important to also keep track of the relative
spectral distribution of peaks (related to harmonic com-
ponents) and valleys (related to noise). Therefore, they
extend the MFCC algorithm to not only compute the av-
erage spectrum in each band (or rather the spectral peak),
but also a correlate of the variance, the spectral contrast

(namely the amplitude between the spectral peaks and val-
leys in each subband). This modifies the algorithm to
output 2 coefficients (instead of one) for each Mel sub-
band. Additionally, in the algorithm published in [15],
the authors replace the Mel filterbank traditionally used
in MFCC analysis by an octave-scale filterbank (Cp-C1,
C1-C4, ete.), which is assumed to be more suitable for mu-
sic. They also decorrelate the spectral contrast coefficients
using the optimal Karhunen-Loeve transform.

We have implemented and evaluated two variants of
Spectral Contrast here. For convenience, both variants use
the MFCC Mel filterbank instead of the authors’ Octave
filters, and use the MFCC’s Discrete Cosine Transform to
approximate the K-L Transform. This has the advantage
of being data independent, and thus better adapted to the
implementation of a similarity task, where one wish to be
able to assess the similarity between any duplet of song
without first having to consider the whole available corpus
(as opposed to the authors’ supervised classification task,
where the KL can be trained on the total data to be clas-
sified). Moreover, it has already been reported that the
DCT was a satisfying approximation of the K-L transform
in the case of music signals ([21]. In the first implemen-
tation (SC1), the 2N, pqn coefficients (where Nep g, is the
number of subbands in the filterbank) are all appended in
one block, and reduced to N cepstrum coefficients using
the dct. In the second implementation, both streams of
data (the Ncpqn peaks and the Npq, Spectral Contrast)
are decorrelated separately with the DCT, resulting in 2NV
cepstral coefficients, as if we used e.g. delta coefficients.

Also, following the intuition of [15], we investigate
whether removing the percussive frames in the original sig-
nal would improve the MFCC modeling of the music sig-
nals. As a pre-processing, we do a first pass on the signal
to compute its frame-based Spectral Flatness ([16]), with
the following formula :

G
SFMd(, = 1010g10 A—m

m

(1)

where G, is the geometrical mean and A,, the arithmetical
mean of the magnitudes of the spectrum on each window.
Spectral Flatness is notably used in Speech to segment
voiced and unvoiced signals. Here, we discard frames with
a high spectral flatness (using the 3o criteria) before com-
puting traditional MFCCs on the remaining frames. This
is way to bypass the limitations of MFCCs stressed in [15]
(poor modeling of the noisy frames), without providing any
cure for it, as does Spectral Contrast.

We see that all three front-ends perform about 1% better
than standard MFCCs, and that the 2N implementation
performs best. For further improvement, Spectral Contrast
could be combined with traditional Pre/Post Processing as
seen above.

V. DYNAMIC MODELING WITH HIDDEN MARKOV
MODELS

In section IV, we have shown that appending delta and
acceleration coefficients to the original MFCCs improves



TABLE V
INFLUENCE OF SPECTRAL CONTRAST
Implementation | R-Precision
SC1 0.640
SC2 0.656
SFN 0.636
standard MFCC 0.629

the precision of the measure. This suggests that the short-
term dynamics of the data is also important.

Short-term dynamical behavior in timbre may describe
e.g. the way steady-state textures follow noisy transient
parts. These dynamics are obviously important to com-
pare timbres, as can be shown e.g. by listening to reverted
guitar sounds used in some contemporary rock songs which
bear no perceptual similarity to normal guitar sounds
(same static content, different dynamics). Longer-term
dynamics describe how instrumental textures follow each
other, and also account for the musical structure of the
piece (chorus/ verse, etc.). As can be seen in section IV,
taking account of these longer-term dynamics (e.g. by us-
ing very large delta coefficients) is detrimental to the sim-
ilarity measure, as different pieces with same “sound” can
be pretty different in terms of musical structure.

To explicitly model this short-term dynamical behavior
of the data, we try replacing the GMMs by hidden Markov
models (HMMs, see [26]). A HMM is a set of GMMs (also
called states) which are linked with a transition matrix
which indicates the probability of going from state to an-
other in a Markovian process. During the training of the
HMM, done with the Baum-Welsh algorithm, we simul-
taneously learn the state distributions and the markovian
process between states.

To compare HMMs with one another, we adapt the
Monte Carlo method used for GMMs : we sample from
each model a large number Ng of sequences of size Np,
and compute the log likelihood of each of these sequences
given the other models, using equation 3. The probabilities
P(S7/B) are computed by Viterbi decoding.

Previous experiments with HMMs by the authors ([3])
have shown that models generalize across the songs, and
tend to learn short-term transitions rather than long-term
structure. This suggests that HMMs may be a good way
to add some dynamical modeling to the current algorithm.
In figure 6, we report experiments using a single HMM per
song, with a varying number of states. The output distri-
bution of each state is a 4-component GMM (the number
of component is fixed). To compare the models, we use
Ng =200 and Nr = 100.

From figure 6, we see that HMM modeling performs
no better than static GMM modeling. The maximum
R-precision of 0.632 is obtained for 12 states. Interest-
ingly, the precision achieved with this dynamic model with
4*12=48 gaussian components is comparable to the one ob-
tained with a static GMM with 50 states. This suggests
that although dynamics are a useful factor to model the
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Fig. 6. Influence of the number of states in HMM modelling

timbre of individual monophonic instrument samples (see
for instance [13]), it is not a useful addition to model poly-
phonic mixtures like the ones we are dealing with here.
Probably, the dynamics modeled here by the HMMs are
not meaningful, since they are a mix from all the individ-
ual sources, which are not synchronised.

VI. CONCLUSIONS
A. Best Results

The systematic evaluation conducted here gives the fol-
lowing conclusions :

o by fine-tuning the original algorithm’s parameters, we
are able to increase the precision by more than 15%
(absolute), to a maximum of 63%.

« the best number of MFCCs and GMM Components is
20 and 50 respectively.

« among common speech processing front-ends, delta co-
efficients and Oth order MFCCs increase the precision
by an unsubstantial extra 2% (absolute), to a maxi-
mum of 65,2%.

e dynamic modeling with hidden Markov models do not
increase the precision any further.

Once again, we can argue that the R-precision value,
measured using a simple ground truth based on artists
is necessarily underestimating the actual precision of the
measure. Moreover, the precision-recall curve of the best
measure (using 20MFCCs + 0th order coefficient + 50
GMMs) in Figure 7 shows that the precision decreases lin-
early with the recall rate (with a slope of about —5% per
0.1% increase of recall). This suggests that the measure
gets all the more so useful and convincing as the size of
the database (i.e. the size of the set of relevant items to
each query) grows.

We should also emphasize that such an evaluation qual-
ifies more as a measure of relative performance (“is this
variant useful ?”) rather than as an absolute measure. It
is a well-known fact that precision measures depend criti-
cally on the test corpus and on the actual implementation
of the evaluation process. Moreover, we do not claim that
these results generalize to any other class of music similar-
ity /classification/identification problems.

B. “FEverything performs the same”

The experiments reported here show that, except a few
critical parameters (sample rate, number of MFCCs), the
actual choice of parameters and algorithms used to imple-
ment the similarity measure make little difference if any.
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We notice no substantial improvement by examining the
very many variants investigated here : Complex dynamic
modelling performs the same as static modeling. Complex
front-ends, like spectral contrast, performs the same as ba-
sic MFCCs. Complex distance measures, such as EMD
or ALA as reported in [7], performs the same as Monte
Carlo, or even simpler centroid distances as also reported
in [7]. This behaviour has been mentioned before in the
published partial comparisons between existing distance
measures : Baumann ([5]) compares [22],[2] and [4] and
observes that “the different approaches reach similar per-
formance”. Pampalk in [25] remarks that the cluster or-
ganization of [22] and [2] are similar. Berenzweig et al.
in [7] also conclude that the “different training techniques
for GMMs (Kmeans or EM)” and “MFCC or anchor space
feature achieve comparable results”.

C. Existence of a glass ceiling

The experiments reported here also suggest that the pre-
cision achievable by variations on the same classical pat-
tern recognition scheme adopted by most contributions so
far (including ours) be bounded. Figure 8 shows the in-
crease in R-precision achieved by the experiments in this
paper, over a theoretical parameter space A (which ab-
stracts together all the parameters and algorithm variants
investigated here). The curve shows an asymptotic be-
haviour at around 65% (although this actual value de-
pends on our specific implementation, ground truth and
test database).

Obviously, this paper does not cover all possible vari-
ants of the same pattern recognition scheme. Notably,
one should also evaluate other low-level descriptors (LLDs)
than MFCCs, such as the one used in MPEGT ([14]), and
feature selection algorithms such as discriminant analysis.
Similarly, newer methods of pattern recognition such as
support vector machines have proved interesting for music
classification tasks ([20], [23]) and could be adapted and
tested for similarity tasks. However, the set of features
used here, as well as the investigation of dynamics through
delta coeflicients and HMMS is likely to capture most of
the aspects covered by other LLDs. This suggests that
the “glass ceiling” revealed in Figure 8 may also apply for
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Fig. 8. Increase in R-precision over the whole parameter space used
in this paper

further implementations of the same kind.

D. Fulse Positives are very bad matches

Even if the R-precision reported here does not account
for a number of false negatives (songs of different clusters
that actually sound the same), the manual examination of
the best similarity measure shows that there also remain
some false positives. Even worse, these bad matches are
not “questionably less similar songs”, but usually are very
bad matches, which objectively have nothing to do with
the seed song.

We show here a typical result of a 10-nearest neighbors
query on the song “HENDRIX, Jimi - I Don’t Live Today”
using the best set of parameters found above :

1. HENDRIX, Jimi - I Don’t Live Today

HENDRIX, Jimi - Manic Depression
MOORE, Gary - Cold Day in Hell
HENDRIX, Jimi - Love or Confusion
MITCHELL, Joni - Dom Juan’s Reckless
Daughter

CLASH, The - Give Them Enough Rope
CLASH, The - Stay Free

MARDI GRAS BB - Bye Bye Babylon
HENDRIX, Jimi - Hey Joe

1O HENDRIX, Jimi - Are You Experienced

oﬂpww

LOOO\IO)

All songs by Hendrix, Moore and the Clash sound very
similar, consisting in the same style of rock electric guitar,
with a strong drum and bass part, and strong, male vocals.
However, the song by Joni Mitchell ranked in 5th position
is a calm folk song with an acoustic guitar and a female
singer, while the 8th item is a big band jazzy tune. Similar
bad matches are sometimes reported in the literature, e.g.
in [25] “a 10-second sequence of Bolero by Ravel (Classical)
is mapped together with London Calling by The Clash
(Punk Rock)”, but most of the times, the very poor quality
of these matches is hidden out by the averaging of the
reported results.

Interestingly, in our test database, a small number of
songs seems to occur frequently as false positives. Table VI
ranks songs in the test database according to the number
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of times they occur in the first 10 nearest neighbors over all
queries (N1g) divided by the size of their cluster of similar
songs (card(Cg)). It appears that there are a small num-
ber of very frequent songs, which can be called “hubs”. For
instance, the first song, MITCHELL, Joni - Don Juan’s
Reckless Daughter occurs more than 6 times more than
it should, i.e. is very close to 1 song out of 6 in the database
(57 out of 350). Among all its occurrences, many are likely
to be false positives. This suggests that the 35% remain-
ing errors are not uniformly distributed over the whole
database, but are rather due to a very small number of
hubs (less than 10%) which are close to all other songs.
These hubs are especially intriguing as they usually stand
out of their clusters, i.e. other songs of the same cluster as
a hub are not usually hubs themselves.

A further study should be done with a larger test
database, to see if this is only a boundary effect due to
our small, specific database or a more general property of
the measure. However, this suggests ways to improve the
precision of the measure by boosting([29]), where alterna-
tive features or modeling algorithms are used to specifically
deal with the hubs.

E. Need for another approach ?

The limitations observed in this paper, namely a glass
ceiling at about 65% R-precision, and the existence of very
bad “hubs”, suggest that the usual route to timbre similar-
ity may not be the optimal one. The problem of the actual
perception of timbre is not addressed by current methods.
More precisely, modelling the long-term statistical distri-
bution (accounting for time or not - HMMs or GMMs)
of the individual “atoms” or “grains” of sound (frames
of spectral envelopes), and comparing their global shape
constitutes a strong, hidden assumption on the underlying
cognitive process. While it is clear that the perception of
timbre results from an integration of some sort (indivivual
frames cannot be labelled independently, and may “come”
from very different textures), other important aspects of
timbre perception are not covered by this approach.

First, all frames are not of equal importance, and these
weights does not merely result of their long-term frequen-
cies(i.e. the corresponding component’s prior probability
Tm) - Some timbres (i.e. here sets of frames) are more
salient than others : for instance, the first thing than one
may notice while listening to a Phil Collins song is his
voice, independently of the instrumental background (gui-
tar, synthesizer, etc...). This saliency may depend on the
context or the knowledge of the listener and is obviously
involved in the assessment of similarity.

Second, cognitive evidence show that human subjects
tend not to assess similarity by testing the significance of
the hypothesis “this sounds like X”, but rather by compar-
ing two competing models “this sounds like X” and “this
doesn’t sounds like X”([19]). This also suggests that com-
paring the mean of the log likelihoods of all frames may
not be the most realistic approach.

These two aspects, and/or others to be investigated, may
explain the paradoxes observed with the current model, no-
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tably the hubs. We believe that substantial improvement
of the existing measures may not result from further vari-
ations on the usual model, but rather come from a deeper
understanding of the cognitive processes underlying the
perception of complex polyphonic timbres and the assess-
ment of their similarity.
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TABLE 1

COMPOSITION OF THE TEST DATABASE

Artist Description Size
ALL SAINTS Dance Pop 9
APHEX TWIN Techno 4
BEATLES British Pop 8
BEETHOVEN Classical Romantic 5
BRYAN ADAMS Pop Rock 8
FRANCIS CABREL French Pop 7
CAT POWER Indie Rock 5
CHARLIE PATTON Delta Blues 10
THE CLASH Punk Rock 21
VARIOUS ARTISTS West Coast Jazz 14
DD BRIDGEWATER Jazz Singer Trio 12
BOB DYLAN Folk 13
ELTON JOHN Piano Pop 5
FREHEL French Prewar Singer | 8
GARY MOORE Blues Rock 9
GILBERTO GIL Brazilian Pop 15
JIMI HENDRIX Rock 7
JOAO GILBERTO Jazz Bossa 8
JONI MITCHELL Folk Jazz 9
KIMMO POHJONEN World Accordion 5
MARDI GRAS BB Big Band Blues 7
MILFORD GRAVES Jazz Drum Solo 4
VARIOUS “Musette” Accordion | 12
PAT METHENY Guitar Fusion 6
VARIOUS ARTISTS Jazz Piano 15
PUBLIC ENEMY Hardcore Rap 8
QUINCY JONES Latin Jazz 9
RASTA BIGOUD Reggae 7
RAY CHARLES Jazz Singer 8
RHODA SCOTT Organ Jazz 10
ROBERT JOHNSON Delta Blues 14
RUN DMC Hardcore Rap 11
FRANK SINATRA Jazz Crooner 13
SUGAR RAY Funk Metal 13
TAKE 6 Acapella Gospel 10
TRIO ESPERANCA Acapella Brasilian 12
VOCAL SAMPLING Acapella Cuban 13
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TABLE VI
15 MosT FREQUENT FALSE POSITIVES

Song Nyp | card(Cys) CWZ%“CS)
MITCHELL, Joni - Don Juan’s Reckless Daughter 57 9 6.33
RASTA BIGOUD - Tchatche est bonne 30 7 4.23
MOORE, Gary - Separate Ways 35 9 3.88
PUBLIC ENEMY - Cold Lampin With Flavor 27 8 3.37
GILBERTO, Joao - Tin tin por tin tin 25 8 3.12
CABREL, Francis - La cabane du pcheur 22 7 3.14
MOORE, Gary - Cold Day In Hell 27 9 3.0
CABREL, Francis - Je t’aimais 20 7 2.86
MOORE, Gary - The Blues Is Alright 25 9 2.77
MARDI GRAS BIG BAND - Funkin’Up Your Mardi Gras | 19 7 2.71
RASTA BIGOUD - Kana Diskan 18 7 2.57
BRIDGEWATER, DD - What Is This Thing Called Love | 30 12 2.5
Frehel - A la derive 20 8 2.5
ADAMS, Bryan - She’s Only Happy When She’s Dancin’ 20 8 2.5
MITCHELL, Joni - Talk To Me 22 9 2.44
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