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Abstract. The problem of estimating  the location of a 
radiating  source  from range diflerence measurements  taken 
from a passive,  stationary  array is discussed.  A new closed- 
form  source  location  estimator,  termed  the Spherical In- 
terpolation Estimator, is presented and analyzed. The lo- 
cation  estimates  produced by the Spherical  Interpolation 
Estimator  are  approximate  minimizers of a  weighted  equa- 
tion  error  norm,  and  are shown to  approach  the  maximum 
likelihood source  location  estimator. 

1. Introduction 

The passive  localization  problem is basic in the fields 
of underwater  acoustics,  navigation,  aerospace  and geo- 
physics.  In  many  situations,  measurements of the differ- 
ences in source-sensor range  are available [1,2,3]. These 
measurements, called range difference ( R D )  measurements, 
can  be used to infer the location of a source [2,6]. In  this 
paper, we efficiently solve the problem of converting  a  set 
of RD measurements  to  an  estimate of source  location. 

While  much literature  exists on the  problem of estimat- 
ing RD’S from received  signals [IO], very few papers seem 
to be  available  on the problem of converting R D  values into 
source  location [3,4,6-91. In particular,  there  appear  to  be 
no  computationally inexpensive  source  location estimators 
which have  statistically efficient performance for a  general 
source/sensor  array  geometry [9]. 

This  paper  presents  a new closed-form  location  estima- 
tor,  termed  the Spherical Interpolation (SI) Estimator. The 
SI estimator is derived  from  least-squares  techniques,  and 
is a closed-form  expression for the minimizer of a weighted 
“equation  error” [ I l l .  

2. Problem Formulation 

Let N denote  the  number of sensors, and let dig denote 
the RD between  sensors i and j ( i , j  = 1,. . . , N). The 
vector of spatial  coordinates for the  ith sensor is denoted 
g,, and  the position of the source is denoted E,. We define 
the  coordinate  system  with g1 at  the  coordinate  origin. 
The distance between the  source  and  sensor i is denoted 
Di = I /  gi - E,  1 1 ,  and  the distance  from the origin to  the 
point gi is denoted Ri. Similarly, R, f 1 1  E, 1 1 .  The vector 
of directim cosines from  the origin to  the source is denoted 

by 0, f gs/R, .  These  quantities  appear in Fig. 1. The RD 
values are given by 

d i j f D i - D j ,  i = l ,  ..., N, j = 1 ,  ..., N (1) 

The localization  problem is to  determine cs given d i j  
for i and j between 1 and N .  Note that  there  are N ( N  - 
1)/2 distinct RD’S di j  (excluding i = j ,  and  counting each 

which  form a “minimal  spanning  subtree”  determine all 
the rest  (in  the noiseless case).  The  redundancy of the 
complete  set of R D  measurements  can  be used to increase 
noise  immunity. We present  here  methods  for  estimating  a 
source  location  given a set of N - 1 RD’S: d i l ,  i = 2 , .  . . , N .  

The  Maximum Likelihood  Solution 

d . .  t 3  = - - d . .  J t  pair  once); however,  any N - 1  R D  measurements 

Denote by &,) the  vector of range differences  mea- 
sured  from  sensor i to sensor l predicted  by a hypothesized 
source  location 2, (see Fig. 2), and by d the vector of mea- 
sured RD’S d i l .  Define g M L  as the vector of differences 
between the  measured  and  hypothesized  range differences: 

CALL = d - a@,) (2) 

In the absence of a priori source  location  information, it is 
desirable  to  estimate  the  source  location  as  the  one which 
best  fits the measurements:  e.g., the  source  location which 
minimizes  some  norm of g M L .  If the measured R D  values are 
corrupted by Gaussian noise with covariance matrix R d ,  the 
maximum likelihood (ML), (minimum-variance,  unbiased) 
estimator of source  location is given by [5,8,9] 

- es = [min, -jl ( JML(c , )  4 L L L R ~ ~ L ~ ~  - ) I  (3) 

where Arg[min,f(s)] is the value of IC which  minimizes 
f(z),  and J M L  is termed  the  maximum likelihood  cost  func- 
tion. We note  that  the  estimator (3) is the ML source  loca- 
tion  estimator  under  the  artificial  assumptions  that 1) only 
N - 1 RD’S 4 measured  relative to  an  arbitrarily chosen 
sensor 1 are  available,  and 2) these R D  measurements  are 
Gaussian  distributed. 
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Geometric  Interpretation:  Spherical  Interpolation 

The R D  measurement between sensor 1 and sensor i 
can  be  interpreted geometrically as  the  distance  from sen- 
sor i to  the  sphere  centered at the  source, passing through 
sensor 1, as  illustrated in Fig. 3 for the noiseless case. This 
sphere is a  surface of zero RD to sensor 1, for each hypoth- 
esized source location 2,. The  distance  from  the  sphere 
to  sensor i is therefore d i l .  The ML source  location  esti- 
mate  can  be  seen  as f, such  that d i l  GZ di l  for every i. In 
other  words,  the ML source  location estimate is the  center of 
the  sphere whose radius  and location  minimize a  quadratic 
norm of the  distance  from  the surface of the  sphere  to.the 
points which  have a distance d i l  away from  the i th sensor. 
The  term “Spherical  Interpolation’’ reflects the fact that 
the  optimized  spherical  surface  interpolates  through sensor 
1. In the absence of niose, the  sphere  interpolates all R D  

points. 

3. Closed-Form Source Location Estimation 

In absence of a  priori information,  the ML estimator, 
described above, has good statistical  properties, provid- 
ing the  minimum-variance, unbiased estimate. However, 
in general,  the ML cost function J M L ( ~ ~ )  is nonconvex in 
the  source  location,  and  to find its minimizer  requires com- 
putationally expensive  global search techniques. For this 
reason,  none of the closed-form solutions discussed in this 
paper solve (3).  Instead,  they minimize  (or approximately 
minimize)  the L2 norm of a so-called equation error [11], 
chosen purely  to simplify the  solution. 

3.1. Equation-Error  Formulation  and  Properties 

With sensor 1 at  the  origin,  the  Pythagorean  theorem 
gives 

( d i l  + R,)’ = RZ + R: - 2 g T g s  (4) 

(cf. Fig. 1). Moving all terms  to  the  right side of (4), the 
RZ terms cancel, and we are left with 

The first equation is degenerate so we have N - 1 equations 
in three unknowns 4,. 

As the delays are  not known precisely, an  “equation 
error” Ill] is introduced  into  the left-hand-side of ( 5 )  

~i = R: - d:, - 2R,dLl  - 2gTg,, i = 2 , 3 , .  . . , N ( 6 )  

where E, is the  ith  component of the  equation  error.  The 
set of N - 1 equations ( 6 )  can be written in matrix  notation 
as 

5 = 4 - 2R,d - ZSg, ( 7 )  

where 

Relation to and J M L ( E , ~ )  

The  equation  error vector 5 is closely related  to  the ML 
error vector f M L .  Adding and  subtracting Ra in the defi- 
nition of the  ith  equation  error (6)  gives (upon  introducing 
hats  to  denote  estimated  quantities): 

where g, and R, are  the  estimated source  location and 
range, gi is the  ith sensor  location (known exactly), d i l  is 
the  measured  range difference, and d^il = Ij gi - f ,  1 1  - R, 
denotes  the R D  predicted by the source  location estimate $, 
(cf. Fig. 2 ) .  The  term ( d i l  - & I )  is that  quadratically min- 
imized by the ML source location when the d i l  values are 
measured  with  Gaussian  perturbations.  Equation (9) dis- 
plays the i t 4  equation  error  as  the ith  maxiFum likelihood 
error d i l  - d i l  times  the  term d i l  + d i l  + ZR,. 

From (9), we expect  that choosing $, as  the minimizer 
of the cost function 

J w  f cTWc (10) 

will give an  estimate which closely approximates  the ML 

estimate  (3) for suitable positive  definite W cz diag[l/(dil+ 
dil + 2Zi , )2]R;’ .  - 

3.2. SDherical InterDolation Methods 

Here,  projection SI methods  and  penalty  function SI 

methods for closed-form source  location estimation  are pre- 
sented.  Projection S I  methods find minimizers of the cost 
function J w ( g , )  for a class of weighting matrices W, and 
penalty  function SI methods find approximate minimizers 
of JW (E,) for a general  weighting matrix. 

Projection SI Methods 

It is worth  noting  that  the  equation  equation  error 
( 7 )  is linear in each of the  three  variables g,, R,, ‘and 

by eliminating g,, R,, or Q, from ( 7 ) ,  a linear  least-squares 
solution is available for the remaining  variables to be esti- 
mated. As g,, R,, and Q, appear multiplicatively in (7) ,  
the  appropiate  terms  can  be eliminated from ( 7 )  by use 
of projection operators.  Three equivalent  techniques are 
presented below. 

- Cl, g , /R ,  given  either of the  remaining  two. Therefore, 
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Multiplying (7) by projection  operators  orthogonal to  
4, 6, and S give 

P i s  - = P i 6  - - ZPiSg, - 

1 _ _ _  2R, P'E a- - - P'd ,-+p,'szS - 
P i c  = P i &  - 2P&r/R, 

where P i ,   P i ,   P i  are  idempotent  projection  operators  of 
rank N 2, &' - 2, and N - 4, respectively,  defined  by 

P i  - f I - d(dTd)-'dT 
P i  - !A I - S ( & T 6 ) - 1 6 T  

P i  4 I - S(STS)-'ST 

Note that in (11) the first  equation is linear in g,, the sec- 
ond is linear in Q,, and  the  third is linear in R,. The source 
location,  range  and  direction may  be estimated using  least- 
squares  techniques. Let V be  a  positive-definite  weighting 
matrix.  Minimizing Jw for W = P,'VP,', P tVPi ,  and 
PiVP;, we find 

_ _ _ _  

$, = - 1 (STPiVPiS) - 1  STPiVPi6 

- ii, = - (s'P;vP,Is) - -  STPiVPid - -  (12) 

R, = z dTP$VPid 

2 - -  - -  

- 1  

1 dTP$VP&6 

The  quantities b, and k., can  be used  as estimates  of  source 
direction and  range,  multiplied to  estimate g,, or used  in 
(7) and (10) to  estimate g,: 

t,,' = RA, 

gs,3 = +s'us)-'s'u(6 - 2 R . 4  

= - [(d + S4,)'U6& + S4,)TU(d + Sb,)] 4, 1 
2 

2 
(13) 

where U is a  positive  definite  weighting  matrix.  The  esti- 
mators  defined in (12,13) give source  location  estimates in 
closed form  as  minimizers of the cost  function Jw. Since 
the weighting  matrices W used  above are  not of full rank, 
four or more  range difference  measurements  are  required to 
find  a  unique  minimizer of Jw. It  appears likely that  for 
the  appropriate choices of V and U,  the above estimators 
can  be  made  identical.  Further,  note  that 1, and R, aze 
designated  with  tildes,  and  not  hats,  since  the  norm of sl, 
is not necessarily one,  and R, is not  necessarily the  norm 
of the  resulting 2,. In results  not  presented  here,  these dis- 
crepancies  were  seen to  be negligible  for moderate levels of 
RD noise. 

Penalty  Function SI Methods 

If g, and R, are  treated  as  variables  to be  indepen- 
dently  estimated, 5 can  be  written  as 

and Jw(g, ,  R,) (cf. (10)) would be minimized for 

[ 3 = pTWC)-'CTW& 
1 

where, 'c ?l i d  S ] and W i s  a positive  definite  weighting 
matrix.  This  form is a  generalization of (12,13). 

However, it is desired to  incorporate  the  constraint 
R, = / /  E, 1 1  into  the  minimization of Jw.  Here, we_ present 
a penalty function method for estimating $, and R, which 
allows a cost towbe placed on  the  disparity between the 
norm of $, and R,. Define the  penalty  function P(g,, R,) 
as 

P(Z,, R,) 2 Iz:cs - q 
Define a , ,  2 0 such  that (Y + E = 1. The  source loca- 
tion  estimate, chosen  as the minimizer of aJw(;c,, R,) + 
aP(g,,  R,) is seen to be - 

[ = a(2aETWE  &ZM)-'CTW& (16) 

where M is a  diagonal  matrix  with  main diagon_al given 
by [ -1  1  1 11, and + is taken  when g:gs > RZ. The 
estimator (16) can  be viewed as an  approximation  to  the 
constrained  minimizer of JW . 

Note that  the choice ofx, determines  the  importance 
of the discrepency  between R, and ( 1  &, 11;  also  when cy = 1, 
the  solution (15) and  the  projection  solutions  can  be ob- 
tained. Also note, in the case of nonzero E ,  the SI estimate 
(16) requires  only  three R D  measurements to  estimate  the 
source  location. 

4. Conclusion 

In  this  paper,  several closed-form  expressions  for  esti- 
mating  the  location of a  source  given the RD measurement 
set dil, from a passive,  stationary  array, were  presented. 
It was  shown that  the cost  function  minimized in obtain- 
ing the source  location  estimates  was  closely  related to  the 
maximum likelihood  cost  function.  In results  not  presented 
here,  the SI estimators were  found to have a  mean  square 
error  comparable  to  the  Cramer-Rao lower bound 191. In 
addition,  other  results showed the SI estimators  to have 
smaller  bias  and  variance  than two other closed-form meth- 
ods [8]. As a final note, when a  complete  set of R D  measure- 
ments dij, i , j  = 1 , .  . . , N is available,  the  source  location 
may  be  estimated by averaging the N SI source  location 
estimates  made using  each  sensor  as a reference  sensor. 
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