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(1) Music Content Analysis

e Music contains information
at many levels

- what is i1t?

« We'd like to get this information out
automatically

- fine-level transcription of events
- broad-level classification of pieces

 Information extraction can be framed as:
pattern classification / recognition
or machine learning

- build systems based on (labeled) training data
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Music analysis

« What information can we get from music?
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e Scorerecovery
- extract the ‘performance’

e |nstrument identification

« Ensemble performance
- ‘gestalts’: chords, tone colors

« Broader timescales
phrasing & musical structure
artist / genre clustering and classification
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Outline

0 Music Content Analysis

@ Classification and Features
- classification
- spectrograms
- cepstra

e Statistical Pattern Recognition
9 Gaussian Mixtures and Neural Nets

6 Singing Detection
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9 Classification and Features

e Classification means:

finding categorical (discrete) labels
for real-world (continuous) observations

time/s

1000

1000 2000
F1/Hz
 Problems
- parameter tuning
- feature overlap
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Classification system parts

Sensor
signal v
Pre-processing/ « STFT
segmentation * Locate vowels
segment v

Feature extraction

feature

vector

Classification

class

Y

Post-processing Costs/risk
osts/ris

 Right features are critical

place upper bound on classifier

Formant extraction

Context constraints

should make important aspects visible
invariance under irrelevant modifications

 Dan Ellis
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The Spectrogram

e Short-time Fourier transform:

X[k, m] = EN 1x[n] win—mL]- exp— J(7Trk(nN ml )

« Plot STFT X[k, m] as a grayscale image:
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Cepstra

e« Spectrograms are good for visualization;
Cepstrum is preferred for classification

- dctof STFT: ¢, = idft(log| X[k, m])

 Cepstra capture coarse information
in fewer dimensions with less correlation:
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Outline

0 Music Content Analysis
9 Classification and Features

6 Statistical Pattern Recognition
- Priors and posteriors
- Bayesian classifier

9 Gaussian Mixtures and Neural Nets

6 Singing Detection
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@  Statistical Pattern Recognition

e Observations are random variables
whose distribution depends on the class:
Class Observation
wj X
O ~O - Pr(wjlx)
(hidden) P(X|wj)
discrete  continuous

e Source distributions p(x|w;)
- reflect variability in feature

- reflect noise in observation

- generally have to be estimated from data
(rather than known in advance)

P(X|wj)
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Priors and posteriors

Bayesian inference can be interpreted as
updating prior beliefs with new information, X:

Bayes’ Rule:
Pr(w;) aallr) Pr(w;|x)
;) - = ; | X
. | 2.p(x|mj)-Pr(mj) "
Prior J Posterior
probability probability

‘Evidence’ = p(x)

Posterior is prior scaled by likelihood
& normalized by evidence (so X(posteriors) = 1)

Objection: priors are often unknown

- but omitting them amounts to assuming they are
all equal

€ /A DanElis
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Labeled
training
examples
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Bayesian (MAP) classifier

Optimal classifier is @ = argmax Pr(w; ‘X)
-

but we don’t know Pr(ooi‘x)

Can model conditional distributions
P(X|w;) then use Bayes’ rule to find MAP class

\

Sort —

according ——
toclass ———

Estimate
conditional pdf
for class 04

4 P(X|oo 1) .

Or, can model directly e.g.train a neural net
to map from inputs xto a set of outputs Pr(w;)

- discriminative model

o>
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Outline

e Music Content Analysis
9 Classification and Features
9 Statistical Pattern Recognition

@ Gaussian Mixtures and Neural Nets
- Gaussians
- Gaussian mixtures
- Multi-layer perceptrons (MLPSs)
- Training and test data

6 Singing Detection
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9 Gaussian Mixtures and Neural Nets

« (Gaussians as parametric distribution models:

p(x|w;) = exp| 50— w) = (x|

d_ 1/2
(N 27) |2i|
« Described by d dimensional mean vector y,
and d x d covariance matrix Z;

0 1 2 3 4 5

« Classify by maximizing log likelihood i.e.

argmax [——(x ul) 2 (x u)——log‘Z‘HogPr(m)
Lab "
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Gaussian Mixture models (GMMSs)

« Weighted sum of Gaussians can fit any PDF:

: weights
P09~ SR my) >
Gaussians p(x|my)

- each observation from random single Gaussian?

resulting
surface

0.6
. Gaussian
components

original data 20 o

« Find ¢.and my parameters via EM
- easy if we knew which my generated each % 4.

N
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GMM examples

e Vowel data fit with different mixture counts:
1 Gauss logp(x)=-1911 2 Gauss logp(x)=-1864
T T T . T 1600 T T T . T
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Neural networks

« Don’t model distributions p(X|w;) ,
instead, model posteriors Pr(m; |X)

e Sums over nonlinear functions of sums
— large range of decision surfaces

o e.g. Multi-layer perceptron (MLP)
with 1 hidden layer:

Y = F[E Wiy F[E Wi X ]

h,
X, ® 0
X, <7 = h, Wikm{ oY,
X305 SWij3o- | lhoo "
: ~\ : y2

XD O :

Input Hidden Output
layer layer layer

* Train the weights w;; with back-propagationzs

N
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Neural net example

o 2input units (normalized F1, F2)

« 5hidden units, 3 output units (“*U”,“O”,“A”")

 Sigmoid nonlinearity:

1 dF _
- = — =F(-F)

F[x] =
l1+e

0.8
ool sigm(x)
0.4
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Neural net training
2:5:3 net: MS error by training epoch
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Aside: Training and test data

« Arich model can learn every training example

(overtraining)

\ Test
data

/

Training
data —

error
rate

\ Overfitting

training or parameters

 But, goal is to classify new, unseen data
I.e. generalization

- sometimes use ‘cross validation’ set to decide
when to stop training

 For evaluation results to be meaningful:
don’t test with training data!
don’t train on test data (even indirectly...)

Lab
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Outline

0 Music Content Analysis

9 Classification and Features

e Statistical Pattern Recognition

0 Gaussian Mixtures and Neural Nets

@ singing Detection
- Motivation
- Features
- Classifiers
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(5) Singing Detection

(Berenzweig et al. '01)

« Can we automatically detect when singing is
present?

File: /Users/dpwe/projects/aclass/aimee.wav

0: 08

- for further processing (lyrics recognition?)
- as a song signature?
- as a basis for classification?

Lab
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Singing Detection: Requirements

« Labeled training examples
- 60 x 15 sec. radio excerpts
- hand-mark sung phrases

0
trn/mus/8 :

1. Labeled test data

- several complete tracks from
CDs, hand-labelled

e Feature choice

- Mel-frequency Cepstral Coefficients (MFCCs)
popular for speech; maybe sung voice too?

- separation of voices? temporal dimension?

» Classifier choice

MLP Neural Net

GMMs for singing / music
- SVM?

Lab
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GMM System

 Separate models for p(xjsing), p(x|no sing)
- combined via likelihood ratio test

% p(x‘singing’)
/ |
; — Co Log I'hood SN
Mmusic > MFCC [ C ratio test sSinging:
calculation : log PXI'singing’) ’
p(X“not™)

I C A
12 GMM2
% P(X|“no singing”)

« How many Gaussians for each?
- say 20; depends on data & complexity

« What kind of covariance?
- diagonal (spherical?)

Lab
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GMM Results

« Raw and smoothed results (Best FA=84.9%):

Aimee Mann : Build That Wall + handvox
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« MLP has advantage of discriminant training
« Each GMM trains only on data subset
— faster to train? (2 x 10 min vs. 20 min)
Lab
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MLP Neural Net

« Directly estimate p(singing | x)

music MECC
—

calculation

- net has 26 inputs (+A), 15 HUs, 2 o/ps (26:15:2)

« How many hidden units?
- depends on data amount, boundary complexity

e Feature context window?
- useful in speech

e Delta features?
- useful in speech

« Training parameters...

Dan Ellis Pattern Recognition 2003-07-01 - 26
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MLP Results

« Raw net outputs on a CD track (FA 74.1%):
Aimee Mann : Build That WaII + handvox
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Artist Classification
(Berenzweig et al. 2002)

» Artist label as available stand-in for genre
« Train MLP to classify frames among 21 artists

 Using only “voice” segments:
Song-level accuracy improves 56.7% — 64.9%

Track 117 - Aimee Mann (dynvox=Aimee, unseg=Aimee)
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Summary

« Music content analysis:
Pattern classification

« Basic machine learning methods:
Neural Nets, GMMs

e Singing detection: classic application

but... the time dimension?
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