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Lost Functions: Overview

 Motivation: Determine a criterion according to which
we will assess the quality of an target estimation
based on observations during the learning
 Non-trivial: the options are plenteous

 Definition:
 The mapping c of the triplex (x, y, f(x)) into [0,

infinite) with c(x, y, y) = 0
 The minimum of the loss is 0 and obtainable, at

least for a given x, y
 In practice: the incurred loss is not always the

quantity that we will attempt to minimize
 Feasibility, confidence level consideration, …
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Some Examples
 In classification

 Misclassification error

 Input-dependent loss

 Asymmetric loss
 Soft margin loss

 Logistic loss
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Some Examples (cont.)
 In regression

 Usually associated with the degree of the difference

 Squared error

 _-insensitive loss

 Criterion in practice
 Cheap to compute
 Small number of discontinuities in the first derivative
 Convex to ensure the uniqueness of the solution
 Outlier resistance
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Test Error & Expected Risk

 Motivation: Given errors penalized on specific
instances (x, y, f(x), how to combine these penalties
to assess a particular estimation f

 Definition of test error

 Hard to resolve

 Definition of expected risk

 Situation is not becoming better: P(x, y) is unknown
 Simplification: empirical estimation using training patterns
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Approximations

 Assumptions
 The existence of a underlying probability distribution P(x, y)

governing the data generation
 Data (x, y) are drawn i.i.d. from P(x, y)
 pdf p(x,y) exists

 Empirical density

 Lead to a quantity “reasonably close” to the expected risk

 Empirical risk

 Risk of rising ill-posed problems
 Overfitting
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Ill-posed Problem: Example

 Address a regression problem using quadratic loss
function

 Dealing with a linear class of functions

where

 If we have more basis functions fi  than observations,
there will be a subspace of solutions
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A Statistical Perspective
 For a given observation and its estimation, besides

what risk we can expect for it, we may be interested
in which probability the corresponding loss is going to
occur

 Need to compute p(y|x)
 Should be aware there are two approximations

 Model the density p firstly
 Compute a minimum of the expected risk

 This could lead to inferior or at least not easily predictable
results

 Additional approximation steps might make the estimates
worse
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Maximum Likelihood Estimation
 Likelihood

 Log-Likelihood

 Minimization of Log-likelihood coincides with
empirical risk if the loss function c is chosen
according to
 For regression:

 _ is the additive noise to f(x) with density p_

 For classification:
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Density Modeling
 Possible models

 Logistic transfer function
 Probit model
 Inverse complementary log-log model
 Q: what’s the policy to select a suitable model?

 For classification:Logistic model & loss function

 For regression: see next page
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Loss Functions & Density Models

_ density models for regression
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Practical Consideration
 Loss functions resulting from a maximum likelihood

reasoning might be non-convex
 Strong assumption: explicitly we know P(y|x, f)
 The minimization of log-likelihood depends on the

class of functions
 No better situation than by minimizing empirical risk

 Is the choice of loss function arbitrary?
 Does there exist good means of assessing the performance

of an estimator?
 Solution: efficiency

 How noisy an estimator is with respect to a reference estimator
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Estimator
 Denote by P(y|_) a distribution of y depending on the

parameters _ (might be a vector), and by Y={y1, …,
ym} an m-sample drawn i.i.d. from P(y|_)

 Estimator        of the parameter _ based on Y

 Unbiased assumption

 The efficient way to compare unbiased estimators is
to compute their variance
 The smaller the variance, the lower the probability that

will deviate from _
 Use variance as a one-number performance measure
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Fisher Information, etc. 
 Score function

 Indicating how much the data affect the choice of _

 Covariance of V_(Y) is called the Fisher information
matrix I

 Covariance of the estimator
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Cramer & Rao Boundary 

 Any unbiased estimator       satisfies
        deviates from _ by more than a certain

amount
 The definition of a one-number summary of the

properties of an estimator, namely how closely the
inequality is met

 Efficiency:
 The closer e is to 1, the lower the variance of the

estimator       .
 For a special class of estimators, B and e can be

computed efficiently
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Efficiency 

 Asymptotic variance

 Maximum Likelihood(ML) is asymptotically efficient
 I.e., e=1, as m -> infinite
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 ML In Reality: No Perfect
 ML is efficient “asymptotically”

 For finite sample size, it is possible to do better other than
ML estimation

 Practical considerations such as the goal of sparse
decomposition (?) may lead to the choice of a non-
optimal loss function

 We may not know the true density model P(y|_),
which is required to define the ML estimator
 Definitely we can guess
 While a bad guess can lead to large errors
 Solution: robust estimators
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 Robust Estimators
 Practical assumptions

 A certain class of distributions from which P(Y) is chosen
 Training and testing data are identically distributed

 Robust estimators are used to safeguard us against
the cases where the above assumptions are not true

 Avoid  a certain fraction _ of ‘bad’ observations
(outliers) seriously affecting the quality of the
estimate
 The influence of individual patterns should be bounded

from above
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 Robustness via Loss Functions
 Basic idea (Huber): take a loss function as provided

by the ML framework, and modify it in such a way
as to limit the influence of each individual patter
 Achieved by providing an upper bound on the slope of

-ln[p(Y|_)]
 Examples

 trimmed mean or median

 _-insensitive loss function
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 Robust Loss Function Theorem
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 Practice Consideration
 Even though a loss function defined in Theorem

3.15 is generally desirable, we may be less cautious,
and use a different loss function for improved
performance, when we have additional knowledge
of the distribution

 Trimmed mean estimator (Remark 3.17)
 Discards _ of the data: effectively all _i deviating

from the mean by more than _ are ignored and
the mean is adjusted

 When _ -> 1, we recover the median estimator:
all patterns but the median one are discarded (?)
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 Efficiency & _-Insensitive Loss
Function

 Use efficiency theorem, the performance of
_-insensitive loss function can be estimated when
applied to different types of noise model

 Gaussian Noise
 If the underlying noise model is Gaussian with variance _ and

_-insensitive loss function is used, the most efficient estimator
from this family is given by _=0.612_

 More general:

 _ has to be known in advance
 Otherwise: adaptive loss functions
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 Adaptive Loss Functions
 In _-insensitive loss function case, adjust _ with a

small enough _ and see the loss changes
 Idea: for a given p(y|_), determine the optimal

value of _ by computing the corresponding fraction
_ of patterns outside the interval [-_+_, _+_].

 _ is found by Theorem 3.21

 Given the type of additive noise, we can determine the
value of _ such that it yields the asymptotically efficient
estimator

 Case study: polynomial noise model
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Summary

 Two complementary concepts as to how risk and loss
functions should be designed
 Data driven: uses the incurred loss as its principal guideline

 Empirical risk
 Expected risk

 Idea of estimating the distribution which may generate the
data

 ML is conceptually rather similar to the notions of risk & loss
 Evaluate the estimator performance using Cramer-Rao theorem
 How loss functions adjust themselves to the amount of noise,

achieving optimal performance
 _-insensitive loss function is extensively discussed as case study


