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ABSTRACT

This paper reports on our first experiments in using the
feature extraction tools of the MPEG-7 international stan-
dard for multimedia content description on a novel prob-
lem, the automatic identification and analysis of score-
based performance features in audio recordings of mu-
sic. Our test material consists of recordings of two pieces
of 17th- and 18th-century lute music in which our aim
is to recognise and isolate performance features such as
trills and chord-spreadings. Using the audio tools from
the MPEG-7 standard facilitates interoperability and al-
lows us to share both score and audio metadata. As well as
using low-level audio MIR techniques within this MPEG-
7 context, the work has potential importance as an ’or-
namentation filter’ for MIR systems. It may also form a
useful component in methods for instrumental performer
identification.

1. INTRODUCTION

A perennial challenge in Music Information Retrieval is
the reconciliation of the audio and symbolic domains of
music representation, [4]. While it can be argued that au-
dio represents everything that most audiences might rea-
sonably be expected to perceive about a piece of music,
it lacks significant information that is explicitly present in
a symbolic representation. The task of recovering infor-
mation like formal and harmonic structure, voice-leading
and even note-detail from any but the simplest of audio
textures is still the subject of much research activity. [1,
2, 8, 9, 11, 12, 13, 14, 15, 18, 19].

One way in which score and audio representations of
a piece of music differ is in the matter of those low-level
performance gestures that are generally classed under the
heading of ’ornamentation’. We use the term here some-
what broadly to include all ’extra’ note events; this em-
braces some classes of the temporal redistribution of notes,
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in particular the spreading of chords which are basically
notated as a single event or a set of simultaneously-starting
notes but are performed as a succession of discrete note
onsets.

Scores usually indicate ornaments by the use of sym-
bols from a quite extensive lexicon of signs which has
accumulated and evolved over several centuries,[10]. A
standard subset of at most a few dozen is more-or-less
universally accepted in today’s Common Music Notation,
and each has a roughly standard conventional interpreta-
tion.

Intermediate representations such as MIDI files may,
or may not, include ’realisations’ of these ornament signs;
they may be separated from the ’score’ notes in the file,
or they might simply be included in the general ’mix’ of
notes. Ornament realisations in MIDI files might be his-
torically appropriate to the music or merely fanciful or in-
stinctive, just as those in audio recordings might be.

Often ornamentation gestures are added to music even
when they are not prescribed explicitly in a score. This
is true for genres other than classical instrumental music;
for example, opera, jazz, blues, soul and all kinds of pop-
ular and traditional music have their own lexica of orna-
ments which can be added spontaneously, even when de-
vices such as tempo deviation are not used, [22, 16].

We would like to automate the process of recognising
performance gestures directly from audio for various rea-
sons. Firstly, the analysis of performance on audio record-
ings is rapidly gaining ground as an important area of mu-
sicological research, bearing strongly as it does on how
people understand and ’feel’ music; see [5]. Most re-
search in this field has to operate at the broad-brush level
of tempo-deviation comparisons, or by manual examina-
tion of spectographic images; see [6]; see also [20]. As
far as we can see, very little if any work has been done on
tools that can locate, identify and measure detailed orna-
mental gestures within an audio recording. Secondly, an
audio performance of a piece of music with ornamenta-
tion naturally contains significantly more ’notes’ than the
score representation; for MIR or analysis techniques that
depend on matching score and audio, this strongly raises
the chances of false or confused matches. An ’ornamentation-
filter’ might prove to be a useful pre-processing tool for
MIR systems. Thirdly, a further interesting MIR challenge



is whether it is possible to use the output of an ornament-
recognition tool to aid in the problem of identifying in-
strumental performers directly from audio where timbral
features are more-or-less invariant between players (such
as in piano or organ recordings, for example).

This paper reports our first steps in developing orna-
ment detection and recognition applications using MPEG-
7 feature extraction tools. At this early stage we have con-
centrated on a specialised repertory that crucially depends
on ornamentation for its effect, 18th-century lute music.
The music involved is a very small part of a considerable
repertory of lute music being acquired and studied in the
ECOLM corpus-building project, funded by the UK Arts
and Humanities Research Board, [7]. Though audio does
not form part of the scope of that project, it may provide
us with suitably marked-up encodings which represent the
scores down to a sufficient level of detail.

Two contrasting pieces by Silvius Leopold Weiss (1687-
1750) were examined for this paper, each of them existing
in commercial recordings.

The first is his best-known work, the ’Tombeau pour
le Comte de Logy’ (1721). A Tombeau is a doleful work
which commemorates the death of a famous person, some-
what in the manner of a musical funeral oration, in this
case Count Jan Antonin Losy (or Logy) (c1650-1721),
said to be the finest aristocratic lute player of his age. Its
marking is ’Adagio’ and it is taken very slowly indeed
by each of our players. At the opening of the piece is a
series of repeated chords marked to be spread rather than
played in a single stroke. The second piece is a Passacaille
in D major. This is composed on a falling ground bass,
which is repeated 12 times and over which the composer
weaves a varied texture of chordal and melodic variations.
Chord-spreading does not form an explicit feature of the
notation of this piece. Both pieces contain performance
markings such as trills or appoggiaturas (the same sign
is used for both), left-hand slurs and (at the beginning of
the Tombeau only) explicit chord-spreading. However, in
fact, all performances contain examples of chords that are
spread despite not being explicitly so marked in the score.
See Figure 1 and Figure 3 for tablature and scores of the
opening phrases of these works.

For both pieces, we prepared special MIDI files of the
scores; these contain, as well as the sounding notes indi-
cated in the tablature, the ornament and chord-spreading
signs represented as Meta Text events. This provided a
symbolic reference point to which the recorded perfor-
mances can be related.

For the Tombeau we looked at three commercial CD
recordings played on typical baroque lutes of the period.
In the case of the Passacaille, we were able to use five
recordings in all, two on baroque lute and three on other
instruments: modern classical guitar, piano and lute- harp-
sichord. The lute- harpsichord was a gut-strung harpsi-
chord specifically designed to imitate the sound of the
lute; JS Bach, a friend of SL Weiss, is said to have taken a
special interest in the instrument’s development.

2. APPROACH

Our corpus consisted of uncompressed commercial record-
ings of performances of the two above-mentioned works
by SL Weiss; Tombeau and Passacaille.

The works are polyphonic and were written for the 18th-
century 13-course baroque lute, an instrument played in
similar fashion to the guitar, but with a series of diatonically-
tuned bass strings extending an octave below the six nor-
mal playing strings. All but the two highest-sounding
strings are arranged in pairs (known as ’courses’); the
eight lowest-pitched courses (A1-A2) are tuned in octaves.

Each piece consists of multiple sections that may be
optionally repeated by the performer. There were three
lute performances of each piece by different performers;
there were also further performances of the Passacaille in
arrangements for another three instruments: modern clas-
sical guitar, modern piano and lute-harpsichord (an 18th-
century hybrid gut-strung harpsichord specifically designed
for keyboard players to imitate the lute).

The scores in which the music has come down to us
are written in the special form of notation known as tabla-
ture, which, as well as the notes to be played, indicates
certain other performance features by means of special
signs at the appropriate point. Just as with harpsichord,
organ or piano music, most of these ornamental markings
involve the addition of notes which are extra to the main
notes. In these cases the ornament signs can be thought
of as a short-hand to instruct the performer to insert addi-
tional notes from a note pattern ’codebook’. Other cases,
such as chord-spreading or vibrato signs involve the ap-
plication of procedures to the notes, rather than adding
note patterns. This codebook varies significantly between
periods, composers, performers, instruments and musical
styles. Thus, we have in general little prior knowledge
about how a given ornament will be performed. Even if
concrete rules for a given period are derived from histori-
cal sources, these sources tend to disagree in detail, and in
any case there is no guarantee that a performer would feel
obliged to follow any particular set of rules consistently.
Furthermore, even when following prescribed rules, a per-
former has the liberty to add ornamentation even when not
explicitly notated in the score.

We therefore chose to limit our investigations to a small
subset of the possible performance options open to a player.
These all involve the occurrence of note-events extra to
those notated in the score (or MIDI file). In the case of
appoggiaturas, trills, mordents, turns, etc., the extra notes
tend to be manifested as very short events clustered around
the point where the ’main’ note is expected to be. In the
case of chord-spreading, the chord (a single multi-note
event in the score) actually is performed as a sequence of
note-onsets (each generating a sustained tone) clustered
around the point where the chord might be expected to
sound if it were a single event. The spreading of chords,
especially in slow music, is crucial in suggesting metri-
cal or harmonic stress and expressive intent; for this rea-
son it is often very precisely notated in 19th-century pi-



ano music, yet one always expects a performer to spread
all chords to some extent (indeed it is almost technically
impossible not to do so).

2.1. Ornament Classifier Construction

2.1.1. MPEG-7 Standard Features

We used standardised features from the MPEG-7 Interna-
tional Standard for constructing the ornament classifier,
[23]. Both Matlab and C++ reference software implemen-
tations are available from musicstructure.com. From the
audio low-level descriptor framework (LLD) we used Au-
dioSpectrumEnvelopeD, AudioSpectrumBasisD and AudioSpec-
trumProjectionD. The following spectral attributes were
used in all the experiments:

Attribute Value
loEdge 62.5 Hz
hiEdge 8000 Hz
resolution 8 bands per octave
sampleRate 44100 Hz
windowLength 30 ms
window Hamming
hop 10 ms
FFT Length 2048

Table 1. MPEG-7 spectral parameters used for ornament
detection.

AudioSpectrumEnvelopeD was calculated by transfor-
mation of a Short-Time Fourier Transform (STFT) Power
Spectrum:

X = |FT |
2
N

2
+1

T (1)

The linear transform matrix, T, partitions the STFT
values into 1

8
th octave logarithmically-spaced frequency

bands in the range 62.5 − 8000Hz such that the sum of
powers in each spectral band is preserved under transfor-
mation. In practice, the low-frequency resolution of the
resulting log frequency spectrum is dependent upon care-
ful multi-resolution implementation of the linear trans-
form, detailed discussion of which is outside the scope
of this paper.

The primary feature used was AudioSpectrumProjec-
tionD and was calculated by converting AudioSpectrumEn-
velopeD to a decibel scale and applying a decorrelating
linear transform matrix, V, consisting of K cepstral basis
functions. In MPEG-7, the decorrelating basis is called
AudioSpectrumBasisD:

Y = 10 log10 (X)V (2)

Equations 1 and 2 describe a feature that is similar
to the widely-used Mel-frequency Cepstral Coefficients
(MFCC) feature. If we choose T to be the linear-to-Mel
frequency map and V to be the discrete cosine transform
(DCT) then AudioSpectrumProjectionD will be equivalent
to MFCC. Most MFCC-based studies use the first few

cepstrum coefficients,K ≤ 20, which relate to wide-band
spectral features such as formants.

It is our view that this feature ranking disregards narrow-
band pitch-based information in the spectrum which is
contained in the higher order coefficients. To admit sen-
sitivity to pitch content, a large number, K > 20, of
MFCC coefficients would need to be used. This is disad-
vantageous because higher dimensional features perform
poorly in classification tasks. This negative property of
larger feature vectors is known as the curse of dimension-
ality in machine learning and pattern recognition litera-
ture, [24].

To achieve a balance between feature compactness and
sensitivity, MPEG-7 uses SVD or ICA analysis of the cep-
stral feature space, [25] [26]. Thus AudioSpectrumBasisD
and the corresponding AudioSpectrumProjectionD coeffi-
cients were derived using the SVD:

[Y,S,V] = SVD (10 log10 (XT)) , (3)

and the resulting basis functions, V, and coefficients,
Y, were truncated to 20 dimensions yielding optimally
compact cepstral features.

2.1.2. Hidden Markov Models

Our approach models neither the instrument nor the per-
fomer explicitly. Instead, a hidden Markov model (HMM)
of each performance was inferred from the AudioSpec-
trumProjectionD data using Bayesian inference. Models
were initialised using a fully connected 40-state model
and model parameters were inferred using maximum a-
posteriori (MAP) estimation, model trimming and param-
eter extinction to force low-probability parameters toward
zero, [29].

Given an HMM, the Viterbi algorithm estimates the
optimal state sequence {αi}

Nα

i=1 ∈ {1, 2, · · · , S}, for an
HMM with S states. The HMM effectively quantizes the
AudioSpectrumProjectionD feature vectors to a 1d time
series of integers. This technique is consistent with other
discrete-quantization approaches to audio-based music in-
formation retrieval, [27][25], and forms a part of the MPEG-
7 international standard under the descriptors SoundMod-
elDS and SoundModelStatePathD.

Figures 2 and 4 illustrate piano rolls of the state se-
quences obtained by the Viterbi algorithm used with each
performance’s HMM. The ornament ground truth judge-
ments, provided by expert listeners, are also indicated by
boxed regions. Comparison with the scores illustrates that
steady-state sections of audio are expressed as repeated
states and dynamic spectral behaviours, such as note on-
sets and ornaments, are characterised by the state transi-
tions.

2.1.3. HMM State Transition Count (STC)

It is our hypothesis that HMM state transitions occur at
higher rates during ornaments than during non-ornamented
segments of an audio signal. To test this hypothsis we



constructed an audio-based ornament classifier using the
HMM state transition count (STC) calculated over a mov-
ing fixed-length window.

To detect transitions we located the non-zero first dif-
ferences of the HMM state sequence. State transition lo-
cations were defined as the sample points where changes
in state occurred. The state transition indicator function of
the HMM state sequence, I (αi), marked state transition
positions with a 1 and steady-state positions with a 0:

I (αi) =

{

1 if |αi − αi−1| > 0
0 otherwise.

We divided the state transition indicator array into over-
lapping fixed-length windowed subsequences. The win-
dow duration was varied from 100ms to 1000ms with a
hop of 10ms. The sum of the elements in the windowed
segments provided a moving state transition count {Φt}

Nα

t=1.
The state-transition count was smoothed with a hamming
window which was also varied between 100ms and 1000ms.

The local maxima of windowed transition counts were
located at the positive-to-negative zero crossings in the
first-order difference function Φt − Φt−1. Figure 2 and
Figure 4 illustrates the transition counts in relation to orna-
ment ground truths for a performance of both the Tombeau
and the Passacaille.

Figure 1. (upper) tablature notation (lower) score tran-
scription of Tombeau.

Tombeau: Kirchhof Performance
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Figure 2. (upper) state piano roll (lower) ornament
ground truth and state transition counts for a performance
of Tombeau.

Figure 3. (upper) tablature notation (lower) score tran-
scription of Passacaille.
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Figure 4. (upper) state piano roll (lower) ornament
ground truth and state transition counts for a performance
of the Passacaille.

2.1.4. Ranking and Evaluation

To test the transition count hypothesis we evaluated its ef-
fectiveness in a number of binary ornament classification
experiments. The time locations of transition count max-
ima, µ ∈ {M} ⊂ {1 . . .Nα}, were ranked and sorted by
descreasing transition count such that Φµi

≥ Φµi+1
.

To evaluate the performance of the binary ornament
classifier we measured the precision and recall of orna-
ments with respect to a ground truth set, {Ωj}

NΩ

j=1, pro-
vided by an expert listener for each performance. Max-
ima locations and ornament locations were considered in-
tersecting if the location of the maxima occurred between
the start and end point (inclusive) of an ornament ground-
truth judgement.

Precision was defined as the number of intersections
between each candidate list of maxima locations and the
ground truth ornament locations normalised by the length
of the candidate list:

PL =
{Φi}

µL

i=µ1

⋂

{Ωj}
NΩ

j=1

L
, L = {1...|{M}|}. (4)

Recall was defined in a similar manner, but the nor-
malisation term was the total number of ground-truth or-
nament locations:



RL =
{Φi}

µL

i=µ1

⋂

{Ωj}
NΩ

j=1

|NΩ|
, L = {1..NM}. (5)

Classifiers were constructed over the parameter space
of transition count and smoothing window lengths, each
taking values in the range 100ms to 1000ms. To deter-
mine the performance of a classifier with parameters Wc

and Ws, the length of the counting window and smooth-
ing window respectively, the precision and recall were
calculated for multiple performances against each perfor-
mance’s ground-truth judgements. Following standard IR
practice, the recall values were interpolated to standard-
ised recall levels of 10%, 20%, ..., and the precision at
each standardised recall level was averaged across the test
group of performances. The mean of precision and recall
at the break-even point was used as a ranking of the clas-
sifier’s performance. The highest performing parameters
over each group of test performances are reported below.

3. RESULTS

3.1. Tombeau

In the following experiments, the window lengths Wc and
Ws were varied in the range 100ms-1000ms for each test
group. In the first experiment, the classifiers were tested
on three lute performances of the opening of the Tombeau.
This sequence contained 10 chord spreads and two slurs
with minor differences in the number of ornaments be-
tween performances. The results for the best performing
classifier, scored according to the break-even criterion, are
show in Figure 5 and Table 2. The optimal parameters for
this test group were a transition count window length of
400ms and a smoothing window of 900ms performing at
a precision of 77% at a standardised recall rate of 80%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Classifier Performance: Tombeau

Recall (standardised intervals)

P
re

ci
si

on

perf. 1
perf. 2
perf. 3
bep
mean

Parameters:
window =0.4s
smoothing = 0.9s 

Figure 5. Precision-recall curves for three performances
of Tombeau on lutes only. The break-even point is at 77%
mean precision at a recall rate of 80%.

Recall 0.100 0.200 0.300 0.400 0.500
Precision 1.000 1.000 1.000 0.900 0.833

1.000 0.913 0.713 0.705 0.750
1.000 0.950 0.830 0.827 0.857

Mean 1.000 0.954 0.848 0.810 0.813
Recall 0.600 0.700 0.800 0.900 1.000
Precision 0.804 0.778 0.764 0.721 0.669

0.737 0.725 0.678 0.000 0.000
0.878 0.893 0.862 0.000 0.000

Mean 0.806 0.799 0.768 0.240 0.223

Table 2. Summary of precision-recall results for experi-
ment 1 for three performances of the Tombeau.

3.2. Passacaille

The second experiment tested classifier performance on
three performances of the opening phrases of the Passacaille,
two on lutes and one on lute-harpsichord. A larger num-
ber of ornaments with more varied expression occured
in these performances than for the Tombeau experiment.
Ornaments included vibrato, slurs, trills, mordents, chord
spreads, and appoggiaturas. The number of ground truth
ornaments were 13, 19 and 20 respectively for each of the
performances thus giving a total relevant set of 52 targets.

The best performing classifier in this experiment con-
sisted of window parameters Wc = 350ms and Ws =
500ms. The precision was 68% at a recall rate of 70%,
see Figure 6 and Table 3.
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Figure 6. Precision-recall curves for three performances
of the Passacaille. The break-even point is 68% mean
precision at 70% recall.

The third experiment consisted of a more varied set
of performances than the second; three lutes, lute harp-
sichord and modern acoustic guitar. 84 ground truth or-
naments were identified as targets in this experiment. The
parameters for the best performing classifier were Wc =
300ms and Ws = 500ms. The mean precision at the



Recall 0.100 0.200 0.300 0.400 0.500
Precision 0.950 0.783 0.795 0.838 0.866

1.000 0.815 0.850 0.750 0.760
0.600 0.747 0.626 0.561 0.593

Mean 0.850 0.782 0.757 0.716 0.740
Recall 0.600 0.700 0.800 0.900 1.000
Precision 0.851 0.750 0.722 0.667 0.000

0.791 0.758 0.725 0.000 0.000
0.576 0.535 0.529 0.000 0.000

Mean 0.739 0.681 0.659 0.222 0.000

Table 3. Summary of results of ornament classification
for three lute and lute-harpsichord performances of the
Passacaille.

break-even point was 60% at a recall rate of 60%, see Fig-
ure 7 and Table 4.
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Figure 7. Precision-recall curves for five performances
of the Passacaille tested on a range of instruments; three
lutes, guitar and lute-harpsichord. The break-even point
was 60% mean precision at 60% recall.

3.3. Discussion

Our results indicate that the best performing classifiers
perform at a reasonable precision-recall rate and therefore
somehwat support our hypothesis that windowed HMM
state transition counts are an estimator of ornamented re-
gions in audio recordings of solo polyphonic instrument
performances. The performance does, however, appear to
diminish with the addition of more varied ornamentation
and instrumentation. This will impact the scalability of
the classifiers to significantly larger corpora.

For a more scalable classifier, the fixed window param-
eterisation applied over all performances is too restrictive
so further work will be carried out to evaluate window pa-
rameters that adapt to each performance. For example, the
state transition count feature is insensitive to the surround-

Recall 0.100 0.200 0.300 0.400 0.500
Precision 0.950 0.783 0.795 0.838 0.866

0.833 0.578 0.419 0.438 0.471
0.833 0.604 0.551 0.470 0.412
1.000 0.815 0.850 0.789 0.760
0.600 0.727 0.549 0.552 0.571

Mean 0.843 0.701 0.633 0.617 0.616
Recall 0.600 0.700 0.800 0.900 1.000
Precision 0.819 0.720 0.722 0.629 0.000

0.476 0.000 0.000 0.000 0.000
0.410 0.000 0.000 0.000 0.000
0.791 0.679 0.000 0.000 0.000
0.506 0.455 0.446 0.000 0.000

Mean 0.600 0.371 0.234 0.126 0.000

Table 4. Summary of results of ornament classification
for five performances of the Passacaille on lutes, guitar
and lute-harpsichord.

ing context; in a performance with many short-duration
notes in the notated score, ornaments might not be easily
discriminated from the highly active background. In the
future we will explore the relationship between the heights
and the widths of the STC peaks thus seeking to adapt to
the mean density of non-ornamental onsets in each perfor-
mance.

4. CONCLUSIONS

We developed an HMM-based ornament classifier that au-
tomatically locates ornaments in audio recordings and eval-
uated performance against human-judged ground truths
for a set of recordings. We hypothesised that windowed
HMM state transition counts could be used for labelling
regions of audio corresponding to ornaments and provided
some experimental evidence to support this claim.

The utility of the methods presented herein will be ex-
plored in further work, including classification of individ-
ual ornament species and ornament ’filtering’ for audio-
based information retrieval using score-based queries.
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