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ABSTRACT

This paper concerns both rhythm recognition and tempo
analysis of expressive music performance based on a
probabilistic approach. In rhythm recognition, the mod-
ern continuous speech recognition technique is applied
to find the most likely intended note sequence from the
given sequence of fluctuating note durations in the per-
formance. Combining stochastic models of note dura-
tions deviating from the nominal lengths and a probabilis-
tic grammar representing possible sequences of notes, the
problem is formulated as a maximuma posterioriestima-
tion that can be implemented using efficient search based
on the Viterbi algorithm. With this, significant improve-
ments compared with conventional “quantization” tech-
niques were found. Tempo analysis is performed by fit-
ting the observed tempo with parametric tempo curves
in order to extract tempo dynamics and characteristics of
performance to use. Tempo-change timings and param-
eter values in tempo curve models are estimated through
the segmentalk-means algorithm. Experimental results of
rhythm recognition and tempo analysis applied to classical
and popular music performances are also demonstrated.

keywords: rhythm recognition, hidden Markov models,
tempo analysis, segmentalk-means algorithm, continuous
speech recognition framework,n-gram grammar

1. INTRODUCTION

Techniques for restoring music score information from
musical performances are useful in content-based mu-
sic information retrieval (MIR). This paper concerns a
method for estimating the temporal factors of a score from
given musical performance data using rhythm recognition
and tempo analysis.

Music score information plays an important role in
MIR because of its flexibility and its compactness com-
pared to audio signals. A fast query search by melody
or rhythm pattern is possible using the score data stored
in a database. In addition, score data is flexible against
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musical conversion like transposition (key changes). Uti-
lizing these features, similarity, for instance, can be ef-
ficiently calculated between the search query and music
contents. Large music databases of audio contents, how-
ever, are typically not associated with score information
corresponding to the contents. Thus needs for technique
to obtain or restore score information from the audio sig-
nals. The technique can also be applied to feature extrac-
tion for tagging the meta data in MPEG4 contents.

Currently, most methods for restoring sheetmusic score
from music audio signals consists of two processing
stages. First, spectrum analysis of audio signals is done to
detect pitch frequency and onset timing of each note event
in the audio signals. The result can be shown in a piano-
roll display and can usually be recorded in the standard
MIDI (Musical Instrument Digital Interface) file (SMF).
In the next step, score information notated by symbols, is
restored from the SMF data obtained from the first pro-
cessing stage. Though the audio signal analysis process
is not a trivial problem, excellent performance is attained
by several recent efforts, such as “specmurt analysis” [1]
which converts spectrogram into a piano-roll-like display
nearly equivalent to MIDI data. Alternatively, music can
be played with MIDI instruments such as electronic pi-
ano that directly produces MIDI signals, the audio signal
processing step can be skipped.

Now, the paper will focus on the latter process, assum-
ing that the music performance data is given as a MIDI
signal. The methods described in this paper can be ap-
plied to any performance data which contain note onset
timing information.

Quantization, the conventional method for rhythm ex-
traction from MIDI performance, does not work well
for expressive music as shown in Fig. 2. Since human
performers changes tempo and note lengths both inten-
tionally and unintentionally to make their performances
more expressive, the note lengths deviates so much from
the nominal note lengths intended by the performer, that
simple quantization of note lengths can not restore the
intended note length and often results in an undesired
(funny) score.

On the other hand, when human listen to the music,
they can usually perceive its rhythmic structure and clap
their hands to the beat of the music. If they have acquired
musical knowledge through their musical training, they
can even give a reasonable interpretation of the rhythm as



Figure 1. A piano-roll-like result of “specmurt anasilys”
(top) applied to a real music signal of “J. S. Bach: Ricer-
careà 6 aus das Musikalische Opfer, BWV 1079” (score at
bottom) performed by a flute and strings, excerpted from
the RWC music database [11].
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Figure 2. The result of quantization of a MIDI signal
by commercial software (lower) compared to the original
score (upper) of “Tr̈aumerei” played on an electronic pi-
ano.

a note sequence since they know which rhythm patterns
are more likely to appear among all possible rhythms.
They do not quantize note lengths they hear, but instead,
recognize a sequence of the performed note lengths as a
rhythm pattern. In summary, the rhythm is something
not to quantize but to recognize. Therefore, to estimate
rhythm patterns from performed note lengths, we focus
on an algorithm to recognize the rhythm patterns from the
view point of speech recognition.

We proposed a new rhythm recognition approach[3, 4]
in 1999 utilizing probabilistic modeling which is of-
ten employed in modern continuous speech recognition
(CSR) technology from our viewpoint of strong anal-
ogy between rhythm recognition and speech recognition.
Speech recognition[2] takes a feature vector sequence as
input and outputs the recognized word sequence, while
rhythm recognition takes the note length sequence as in-
put and outputs the rhythm patterns. In the proposed
model, both appearance of rhythm patterns and deviation
of note length are associated with probability to evalu-
ate how likely hypothesized rhythm patterns are really in-
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Figure 3. Temporal information of performance data con-
sists of score information (rhythm) and artistic expression
(tempo).

tended in the given performance. In this approach, we de-
fined a probabilistic vocabulary of rhythm words trained
with a music database. The rhythm recognition prob-
lem was formulated as a connected rhythm word recog-
nition and solved by a continuous speech recognition al-
gorithm. This framework simultaneously enabled bar line
allocation by adding “up-beat rhythm” words, beat recog-
nition by preparing two-beat vocabulary and three-beat
vocabulary connected in parallel, and tempo estimation
both for changing tempo and unknown tempo. In this
approach, the model parameter values can be optimized
through stochastic training, and rhythm recognition can
be performed with an efficient search algorithm.

There have also been several efforts for rhythm recog-
nition based on probabilistic modeling [5, 6] to estimate
note values or beats although the time signature has to
be given before recognition, anda priori probabilities of
rhythm pattern is not taken into account. We discuss our
approach to rhythm recognition in Section 2.

In addition to rhythm, tempo is another important fac-
tor for MIR. Though they are both related to temporal fac-
tors in music, rhythm is primarily related to microscopic
changes in consecutive note lengths and tempo is more
related to macroscopic and slow changes. As shown in
Fig. 3, these two factors are coupled to yield each of ob-
served note durations. Tempo sometimes changes rapidly
like Adagio to Allegro. The local tempo fluctuations
within phrase depend on music genre, style and perform-
ers. Tempo often expresses artistic characteristics of the
performance, while rhythm expresses the intended score.
If these factors are separately extracted from music per-
formance, they may be effective for content-based music
search like “music that has overture and allegro”, or “per-
formance playing that phrase very slowly”.

There are some researches that dealt with performed
tempo for analyzing the performance characteristics.
While previous works of tempo analysis includes visual-
ization of performance [7] and comparison of perform-
ers background (jazz and classical) by periodic statistics
of tempo [8], our objective is to extract information that
characterize the performances including tempo changes
and tempo handling in phrases. We propose a tempo anal-
ysis method by estimating partly smooth and continuous
“tempo curves.” It will be discussed in Section 3.



2. RHYTHM RECOGNITION

2.1. Rhythm Vocabulary

Extending the analogy between rhythm recognition and
speech recognition, we introduce a “rhythm vocabulary”
in order to construct a probabilistic model for rhythm
recognition. Comparing human knowledge about rhythm
patterns to a stochastic language model in modern CSR
technology, rhythm patterns can be modeled as a stochas-
tic note generating process. This model generates the note
sequence of a rhythm pattern associated with a probabil-
ity that varies on music genres, styles, and composers of
a “rhythm vocabulary”. The“rhythm vocabulary” consists
of units (this time, one measure) called “rhythm word”. A
rhythm vocabulary and a grammar of rhythm words can be
obtained through stochastic training using existing music
scores.

One advantage of using rhythm words for modeling
rhythm patterns is that meter information can be estimated
simultaneously along with notes. Thus, the locations of
bar lines in a score correspond with the position of bound-
aries in a rhythm word sequence. Time signature is also
determined by investigating sum of note values in esti-
mated rhythm words.

2.2. Probabilistic Grammar for Rhythm Vocabulary

Similar to language model of CSR,n-gram model of
rhythm words is used for a grammar of rhythm vocabu-
lary. That is, the probability of a rhythm word sequence
W = {wm}M

m=1 is approximated by cutting out the his-
tory of rhythm word appearance,

P (W ) = P (w1, · · · , wn−1)

·
M∏

m=n

P (wt|wm−1, · · · , wm−n+1) (1)

Conditional probabilities can be obtained through statisti-
cal training using previously composed music scores.

Then-gram model reflects the local features of the mu-
sic passage, but does not the global structure including
repetition of rhythm patterns. As is often the case with
CSR, unknown rhythm patterns in the vocabulary is sub-
stituted with similar existing patterns. To obtain more re-
liable values for model parameters, linear interpolation or
other techniques commonly used for language model can
be applied.

2.3. Nominal Relation of Temporal Information

The observed duration (IOI, Inter-Onset Interval)x [sec]
of note in the performance is related both to the note
value1 (time values)q [beats] in score and the tempoτ
[BPM] (beats per minute) as follows:

x[sec]=
60[sec/min]
τ [beats/min]

× q[beats] (2)

1 “Note values” are nominal length of notes. For example, if a note
value of quarter note is defined as1[beat], that of half note is2[beats]
and that of eighth note is1/2[beat].

Table 1. Rhythm word examples and their probabilities
obtained thorough stochastic training.

rhythm wordsw P (w)
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Figure 4. Observed IOIs and rhythm words are associated
in the framework of Hidden Markov Models (HMMs).

2.4. Modeling Rhythm Words using HMMs

A rhythm word and a sequence of deviating IOIs are
probabilistically related using a Hidden Markov Model
(HMM) [9].

Suppose that consecutiven IOIs, xk, · · · , xk+l, and a
rhythm word,wi = {q1, · · · , qSi}, are given, whereSi

denotes the number of notes contained in the rhythm word
wi. When several notes are intended to be played simul-
taneously in polyphonic music, short time IOIs (ideally 0)
are observed, such asx1 in Fig. 6. These IOIs correspond
to the same note valueq in a rhythm wordwi. We model
this situation by using the HMM and associate note val-
ues and observed IOIs. As shown in Fig. 6, HMM states
correspond to note values in a rhythm word, and IOIs are
output value from state transitions.

In the HMMs, probabilities are given to each state tran-
sition and transition output. Probability of observingx
is modeled with a zero-mean normal distribution at auto-
transition of states. as(k)s(k+1) denotes a probability to
change from states(k) to states(k + 1). Self-transition
probability as,s corresponds to the times of stay in state
s, that is, the number of notes simultaneously played in
the state, whose expectation is given by11−as,s

. Values of
as,s are automatically determined with statistics of score,
as shown in Fig. 5. Variation of IOIs that corresponds
to note valuesq is assumed to distribute normally with
means60

τ̄ · qs [sec] and varianceσ2, whereτ̄ is the aver-
age tempo of the previous rhythm word described in 2.5.
This corresponds to the output probability of state transi-
tion bs,s+1(x).

Therefore, the probability that a rhythm wordwi is per-
formed as a sequence of IOIs{xk′}k+l

k′=k is given by
P (xk, · · · , xk+l|wi)

=
l∏

k′=k

as(k′)s(k′+1)bs(k′)s(k′+1)(xk′) (3)
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Figure 5. An example of stochastic training of state transition
probabilities: States of strong beats have higher probability of
self-transition than states of weak beats.
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Figure 6. Tempo tracking in each rhythm word using
probability of tempo variations.

2.5. Probability of Tempo Variations

The fluctuation of the performed tempo is also treated with
probabilities. Since we do not have it a priori knowl-
edge about the tempo variation specific to the given per-
formance, we simply assume that a tempo of a measure is
close to that of the previous measure. The average tempo
τ̄ in a measure with rhythm wordwi is calculated using
Eq. (2) by

τ̄ =
l∑

k′=k

xk

/
Si∑

s=1

qs

We give conditional probability for consecutive aver-
age tempoP (τ̄m|τ̄m−1) by assuming that the difference
log τ̄m − log τ̄m−1 in log scale distributes normally with
mean 0.

Then, the probability that an IOI sequenceX is ob-
served for a given word rhythm sequenceW , P (X|W ) is
obtained from the product of Eq. (3) and the probability
of tempo variations

P (X|W ) =
M∏

m=1

P (xl(m), · · · , xl(m+1)−1|wm)P (τ̄m+1|τ̄m)

(4)
wherexl(m) denotes the first IOI in them-th rhythm word.

2.6. MAP Estimation for Rhythm Recognition

By integrating these probabilistic models, rhythm recog-
nition can be formulated as a MAP estimation problem.
Using a rhythm vocabulary, rhythm recognition can be de-
fined to find the “most likely rhythm patterns”̂W for a
given IOI sequenceX. According to the Bayes theorem,

Ŵ = argmax
{wm}M

m=1

P (W |X) = argmax
{wm}M

m=1

P (X|W )P (W )

(5)
where the number of rhythm words,M , is also variable in
the search. In our model, Eqs. (1) and (4) are substituted
with Eq. eq:argmax W.
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Figure 7. Network search to find the optimal rhythm-
word sequence and the optimal state sequence using the
Viterbi search algorithm.

2.7. Search Algorithm

Finding the most likely rhythm word sequence in Eq. (5)
is a search process in a network of HMMs that, in turn,
each consist of state transition networks. Several search
algorithm developed for CSR can be applied for this pur-
pose, since models of both recognitions share the common
hierarchal network structure.

This time, we implemented the search using the Level
Building algorithm [10]. In the following algorithm,
δ(t,m) stands for the highest cumulative likelihood for
thetth IOIs withm rhythm words. The Viterbi algorithm
is used for calculatingδ(t,m|w).

——————————————————
for m=1 to maximumnumberof bar lines

for everyw′ in rhythm vocabulary
for t=1 to numof notes

δ(t,m|w1, · · · , wm−1, w
′)

= max
t′

δ(t′,m) + d(t′, t|w′)
for everyt=1 to T

δ(t,m) = max
w

δ(t,m|w)

Ŵ = argmax
m

δ(T,m)
——————————————————

2.8. Experimental Evaluation

The proposed method was evaluated with performance
data played by human with electronic piano2 and recorded
in SMF as listed in Table 2. Data M1 consists of rela-
tively simple rhythm patterns and was played with nearly

2 YAMAHA Clavinova.



Table 2. Test data for rhythm recognition experiments.
data ID music piece

M1 J. S. Bach: Fuga in c-moll, BWV847.
from Das wohltemperierte Klavier, Teil 1.

M2 R. Schumann: “Tr̈aumerei”
from “Kinderszenen,” Op. 15, No. 7.

M3 L. v. Beethoven: 1st Movement of
Piano Sonata, Op. 49-2.

M4 W. R. Wagner: “Brautchor”
from “Lohengrin”

M5 The Beatles: “Yesterday”
M6 The Beatles: “Michelle”

Table 3. 3 conditions of constructing rhythm vocabulary.
condition training data #rhythm words

closed 1 each of testing data (M1∼M6) 14,10,12,16,9,8
closed 2 22 pieces including testing data 162

open 16 pieces excluding testing data 139

constant tempo. On the other hand, the tempo of M2
(Träumerei) changed much in the performance accord-
ing to the tempo indication ofrit and the performers’
individual expression. M3 tends to be played with con-
stant tempo, but rhythm patterns include eighth and triplet
eighth notes.

To construct of rhythm vocabulary, a bigram model
(n = 2 in Eq. (1)) was trained under 3 conditions listed
in Table 3. The first condition “closed 1” is the most spe-
cific condition of the three, where the rhythm vocabulary
has been extracted from the testing music material. The
second condition “closed2” shares the same rhythm vo-
cabulary extracted from all testing materials. Under 3rd
condition “open”, the model has been acquired from 16
music pieces different from testing materials. In this case,
some rhythm patterns in the testing music may be missing
in the trained vocabulary.

Accuracy of note valuesq for each IOIx was evaluated
by N−S

N , whereN is the number of IOIs andS denotes
the number of misrecognized IOIs. Also, accuracy both
of rhythm-words in each measure and of locations of bar
lines were evaluated by:

Acc =
N −D − I − S

N

whereI, S, D denote insertion, substitution and deletion
errors, respectively, andN is the number of measures in
the original score.

Tables 4, 5 and 6 show results of rhythm recognition
significantly superior to the note value accuracy obtained
by the quantization method: 14.4–18.8%. A typical mis-
recognition is due to failure to track tempo in several parts
where the tempo changes much within a measure as a re-
sult of the indication ofrit. or performer expression. Since
we modeled tempo as constant within a rhythm word, the
HMM could not adapt to such a rapid tempo change. An-
other typical misrecognition was that eighth notes were

Table 4. Accuracy of note valueq of IOI x in the perfor-
mance [%].

model M1 M2 M3 M4 M5 M6 ave.

closed 1 99.8 99.7 100 100 100 100 99.9
closed 2 98.5 95.7 100 100 93.7 94.2 96.4

open 89.8 62.3 80.7 48.3 90.0 90.6 76.9

Table 5. Accuracy of rhythm wordw in rhythm score [%].

model M1 M2 M3 M4 M5 M6 ave.

closed 1 100 95.8 100 100 100 100 99.3
closed 2 93.3 88.0 100 100 70.8 96.5 91.4

open 60.0 46.0 68.4 18.8 45.8 86.2 54.1

Table 6. Accuracy of bar line allocations [%].

model M1 M2 M3 M4 M5 M6 ave.

closed 1 100 99.7 100 100 100 100 99.9
closed 2 100 83.3 100 100 87.5 100 93.7

open 46.6 50.0 78.9 60.4 54.1 100 65.0

Figure 8. Tempo [BPM] for IOIs in piano performance of
“Michelle” by The Beatles.

sometimes misrecognized as triplets. Recognition perfor-
mance degraded for “open-data” training cases most pos-
sibly due to insufficient training data.

3. TEMPO ANALYSIS

3.1. Multilayer Tempo Characteristics

After rhythm recognition of the performed music data, in-

stantaneous local tempoτk =
xk

qk
can be calculated from

the observed IOIx and estimated note valueq according
to Eq. (2). As the estimated instantaneous local tempo,
however, fluctuats almost randomly as shown in Fig. 8,
tempo analysis is necessary to extract the “true” tempo
underlying behind the observed tempo.

We assume that musical performances contain hier-
archical (multilayer) tempo-related factors with different



time scales. For example, each measure contains rhyth-
mic characteristics based on traditional music styles, such
as Wiener Waltz, Polonaise, etc. The melody phrase may
be characterized by the performers’ articulations or tempo
control styles according to their artistic expression. Music
works are often composed of several parts, each with its
own different tempo indication, and include drastic tempo
changes in the music pieces.

Our strategy for obtaining tempo characteristics of
each hierarchical structure is to fit the performed tempo
within time segments to a tempo pattern by optimizing
the model parameters, and also to cluster several con-
secutive measures in order to form tempo curves. In
the proposed model, slow changes in tempo are modeled
as a tempo curve in each segment, while drastic tempo
changes are dealt as boundaries between different seg-
ments. The rhythm recognition discussed in Section 2
provides a method to estimate the note sequence given
a sequence of IOIs in Eq. (2). In this section, we pro-
vide a method for tempo analysis by detecting timings of
tempo changes and by fitting a tempo curve to partial mu-
sic phrases.

3.2. Formulating the Tempo Curve

Since the sequence of local tempos{τk}N
k=1 includes fluc-

tuations and deviations in the performance, we model
the performed tempo with multiple concatenated smooth
tempo curves where a tempo curveτ(t|θ) is a continuous
function of timet [sec] with parametersθ and modeled by
polynomial function in the logarithmic scale, i.e.,

log τ(t|θ) = a0 + a1t + a2t
2 + · · ·+ aP tP (6)

with parametersθ = {a0, · · · , aP }.
Now, we assume that the difference between the ob-

served tempoτk and the modeled tempoτ(tn|θ) at then-
th onset time on the tempo curve, i.e.,εk = log(τ(tk|θ))−
log(τk), can be regarded as a probabilistic deviation from
a normal distribution with mean 0 and varianceσ2. There-
fore, the simultaneous probability of deviations of all
notes is given by:

p(ε1, · · · , εN )

=
N∏

k=1

1√
2πσ2

exp
(
− (log τk − log τ(tk|θ))2

2σ2

)
(7)

3.3. Probability of Tempo Changes

In this paper, we assume that tempo is nearly constant
within segments and sometimes changes drastically be-
tween them. We model the probability of changing tempo
between consecutive segments by:

P (τ̄k, τ̄k+1) = 1− exp
(
− (τ̄k − τ̄k+1)2

2σ2

)
(8)

whereτ̄k is the average tempo within a segment in thek-th
tempo model,

τ̄k =
Sr+1−1∑

k=Sr

τkxk

/
Sr+1−1∑

k=Sr

xk

andSk indicates the index of the first note of thek-th seg-
ment. Eq. (8) yields a probability of0 when tempo stays
the same valuēτk = τ̄k+1.

3.4. MAP Estimation of Tempo Analysis

We use the maximuma posteriori probability as a cri-
terion for optimizing the model in order to find the best
fitting tempo patterns and to detect the timings of tempo
changes. In other words, given the sequence of onset tim-
ings of a performance and the corresponding note val-
ues, the most likely tempo curves are estimated. With the
Bayes theorem, the tempo analysis can be written as:

T̂ = argmax
T

P (T |X, Q) = argmax
T

P (X,Q|T )P (T )

(9)
whereT denotes the tempo curve,X the performance,
and Q the score information. This time,P (X,Q|T )
is given in Eq. (7), andP (T ) in Eq. (8), and by
taking logarithm of them, Eq. (9) is found equivalent
and can be used in finding concatenated tempo curves
τ(t|θ̂1, · · · , θ̂1, Ŝ1, · · · , ŜR−1) with the parameters esti-
mated by:

{θ̂1, · · · , θ̂R, Ŝ1, · · · , ŜR−1}

= argmax
{θ}K

k=1,{Sr}R−1
r=1

R∑
r=1

(−d(mr,mr+1|θr) + a(τ̄r, τ̄r+1))

(10)

where

d(Sr, Sr+1|θr)

=
1
2

Sr+1−1∑

k=Sr

[
log(2πσ2) +

(log τk − log τ(sk|θr))2

σ2

]

a(τ̄r, τ̄r+1) = log
(

1− exp(− (τ̄r − τ̄r+1)2

2σ2
)
)

andR is the number of sudden tempo alternations and is
also the variable used in estimation. Ther-th tempo curve
τ(t|θr) is defined only in the range oftSr ≤ t < tSr+1 .

3.5. Optimization Algorithm of Tempo Model

Optimization of the model expressed by Eq. (10) can be
achieved using the segmentalk-means algorithm [2]. Af-
ter the initial boundary is given, this algorithm is per-
formed by iterating 2 steps: optimization and segmenta-
tion (see Fig. 9).

Optimization Step

Parameters of each rhythm pattern can be optimized by
minimizing d(mr,mr+1−1). Since this function is con-
vex for the functionτ(t), minimization can be formulated
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Figure 9. Iteration of segmentation and curve fitting in
the segmentalk-means algorithm. (conceptual diagram)

based on variable principle and carried out by setting the
functional derivativeδd(mr,mr+1−1) to be0.

Sr+1−1∑

k=Sr

(log τk − log τ(tk|θr)) · δ log τ(tk) = 0

From this, the optimal parameters of the model polyno-
mial (Eq. (8)) are found by solving the followingP + 1
equations:

Sr+1−1∑

k=Sr

log τk · tp
′

k −
Sr+1−1∑

k=Sr

P∑
p=0

t
(p+p′)
k · ap = 0

wherep′ = 0, 1, · · · , P .
Varianceσ2 in Eq. (7) is also optimized for all samples

in the observed local tempo data with

σ̂2 =
1
N

R∑
r=1

Sr+1−1∑

k=Sr

(
log τk − log τ(tk|θ̂r)

)2

In this optimization step, the parameters are updated for
each of tempo curves{θr}R

r=1 and the variance of the
tempo deviationσ2.

Segmentation Step

Boundaries of the segmented region of the tempo curve
can be found efficiently using DP (Dynamic Program-
ming) algorithm to maximize the objective function. We
denote the cumulative log likelihood ofm-th measure in
the r-th tempo curve byδr(m), the number of measures
byM , and the order of each measure bym. The algorithm
is:
——————————————————————
r=1
for m=1 to M

δ0(m) = d(0, m)
for r=2 to R
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Figure 10. Dynamic Programming (DP) to detect bar
lines at tempo changes.

for m=k + 1 to M
δr(m) =

max
m′∈(k,··· ,m−1)

[δr−1(m′) +d(m′,m) + a( ¯τr−1, τ̄r)]
——————————————————————
Here, the last nodeδp(M) gives the logarithm of the MAP
probability, and the optimal path is obtained by trace-
back. The most likely boundary is given by the path in
the node trellis as shown in Fig. 10.

The number of tempo changesR is estimated with the
MAP estimator of Eq. (10) by comparing the MAP prob-
abilities forR = 1, 2, ....

3.6. Experimental Example

A musical performance with an electronic piano recorded
in SMF was modeled by tempo curves using the pro-
posed model. To demonstrate the algorithm, we used
“Fürchtenmachen”3 as an example with suddenly alter-
ing tempo between “Schneller(faster)” and original slow
tempo several times within the piece.

Two kinds of tempo curves were tested on the per-
formance of “F̈uchtenmachen.” First, using a quadratic
tempo curve model:log τ(t) = a0 + a1t + a2t

2, the
timings of tempo change were correctly estimated as
shown in Fig. 11. Next, by fitting linear tempo curves:
log τ = a0 + a1t, detailed tempo behavior was ex-
tracted. In the MIDI recording of piano performance of
“Fürchtenmachen,” the number of tempo changing time
points and the locations of changing bar lines are esti-
mated correctly.

The proposed method was also evaluated in estimation
of the number of tempo changes and the bar-line locations
at tempo-changing timings. The results were verified with
MIDI data associated with the RWC music database of
classical music [11] which had been manually prepared
to approximately label the audio recording. Other exper-
imental evaluation were also successful in RWC-MDB-
C-2001, No. 1, Haydn’s “Symphony No. 94 in G major,
Hob. I-94 ‘The Surprise’, 1st mvmt.”, and RWC-MDB-C-
2001 No. 13, Mozart’s ”String Quartet” No.19 in C major,
K.465, 1st mvmt.

3 A piano piece from “Kinderszenen”, Op. 15, No.11, composed by
Robert Schumann.
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Figure 11. Example of quadratic tempo model (log τ =
a0 + a1t + a2t

2) fit to real performance: tempo-changing
timings are detected correctly.

Figure 12. Example of linear tempo model (log τ = a0 +
a1t) fit to real performance: intra-phrase tempo changes
are observed.

4. CONCLUSION

We have discussed rhythm recognition and tempo analy-
sis of expressive musical performances, based on a proba-
bilistic approach. Given a sequence of note durations de-
viated from nominal note lengths in the score, the most
likely note values intended by the performer are found
with the same framework as continuous speech recogni-
tion. This framework consists of stochastically deviat-
ing note durations modeled by HMMs and a stochastic
grammar of “rhythm vocabulary” expressed withN -gram
grammar. The maximuma posteriori note sequence is
obtained by an efficient search using the Viterbi and level
building algorithms. Significant improvements have been
demonstrated compared with conventional “quantization”
techniques. Tempo analysis is performed by fitting a para-
metric tempo curves to the observed local tempos for the
purpose of extracting tempo dynamics and characteristics
of the performance. Timings of tempo changes and opti-
mal tempo curve parameters are simultaneously estimated
using segmentalk-means algorithm.

Future work includes integrating direct modeling poly-
rhythm patterns, which includes synchronized multi-
rhythm patterns, to give a direct relation between prob-

abilistic models and score data. Validity of the model
should also be examined using audio recordings of pro-
fessional instrumental players.
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