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ABSTRACT

We describe a system designed for automatic extraction
and segmentation of didjeridu and clapsticks from cer-
tain styles of traditional Aboriginal Australian music. For
didjeridu, we locate the start of notes using a complex-
domain note onset detection algorithm, and use the de-
tected onsets as cues for determining the harmonic series
of sinusoids belonging to the didjeridu. The harmonic se-
ries is hypothesised, based on prior knowledge of the fun-
damental frequency of the didjeridu, and the most likely
hypothesis is assumed. For clapsticks, we use indepen-
dent subspace analysis to split the signal into harmonic
and percussive components, followed by classification of
the independent components.

Finally, we identify areas in which the system can be
enhanced to improve accuracy and also to extract a wider
range of musically-relevant features. These include algo-
rithms such as high frequency content techniques, and also
computing the morphology of the didjeridu.

1. INTRODUCTION

The traditional music of Indigenous Australians is firmly
entrenched in oral tradition. The songs are passed down
through generations within a group, without written nota-
tion, and typically describe the history and culture of the
group.

We have designed and implemented our transcription
system with two styles of Australian music in mind. The
first is Lirrga, a genre of music from northwest Australia.
The performances we study are composed and performed
by Pius Luckan (voice, clapsticks) and Clement Tchinbur-
rur (didjeridu) [11]. The recordings were made in Wadeye
(Port Keats, northern Australia). In the Marri Ngarr lan-
guage (one of seven languages spoken at Wadeye), clap-
sticks are called titir and didjeridu is karnbi.
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The second set of recordings is a collection of tradi-
tional songs from the Galpu clan of northeast Arnhem
Land. The songs are arranged and performed by Gurritjiri
Gurruwiwi (voice), with Djalu Gurruwiwi (didjeridu) [5].
The Yolngu people who reside here call the didjeridu yidaki
and the clapsticks bilma.

The rhythmic structures of these musics are complex
and highly expressive. Polyrhythms, changes of tempo
and changes of metre are common and integral to the mu-
sic.

Our initial motivation for creating this system was to
construct a useful tool to aid ethnomusicologists studying
Australian Aboriginal music. We had access to manually-
created transcriptions of the Lirrga songs, and these served
as a good model as to the level of detail our system should
aim towards. Although our system has been designed with
more than one style of music in mind, for this reason, and
also for the fact that the two styles of music are very dif-
ferent, we have executed most of our evaluations on the
Lirrga.

The system is designed to determine onsets of the clap-
sticks, and onsets and fundamental frequencies of the did-
jeridu parts. We assume that there is only one of each
instrument playing at any given time, and that the funda-
mental frequency of the didjeridu is below 100 Hz, which
works well for most of our samples. We do not attempt to
transcribe vocals in this system.

As far as we aware, no published research on automatic
transcription of Australian Aboriginal music exists. How-
ever, work has been done in studying the musical acoustics
of the didjeridu, and recent studies may be found in [3],
[4], [7].

Seminal studies into the history and cultural signifi-
cance of the didjeridu include [14]. Also, research into
didjeridu notation [13] provides guidelines as to the types
of features we may wish to extract.

1 The first author is currently with the Department of Electronic Engi-
neering, Queen Mary, University of London.
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Figure 1. High-level overview of the system.

2. THE SYSTEM

As the techniques used for transcription of didjeridu (de-
terministic) are very different to those used for transcrip-
tion of clapsticks (statistical), the system is essentially split
into two disjoint “halves”, as indicated in Figure 1. The
left half indicates the data transformations that occur for
didjeridu processing, and the right half describes the op-
erations used for extracting clapsticks.

2.1. Extraction of didjeridu

The overall scheme used for this phase was based on a sys-
tem for automatic transcription of bass lines [6], but with a
different onset detection scheme. The original signal was
passed through a bank of bandpass filters, emitting signals
in the ranges 0–100 Hz, 100–200 Hz and 200–300 Hz.
These ranges were chosen to capture the fundamental fre-
quency of the didjeridu (typically below 100 Hz), and its
first two upper harmonics into each frequency band. The
other instruments carried very little energy in these fre-
quency ranges, and so, within the context of this project,
we assume that all musical information carried in these
ranges belongs to the didjeridu.

2.1.1. Onset detection

Our informal experiments revealed that complex-domain
onset detection [1] works well for low-frequency signals.

For each frequency band, complex-domain onset de-
tection was applied. After the three frequency bands had
been analysed in this way, the onsets from each of the
bands were combined into one sequence. Each onset was
considered in turn: if it was closer than 50 ms to another
onset and its amplitude was less than the neighbouring on-
set, it was removed. Thus, the onsets for the didjeridu
were given by the resulting sequence.

2.1.2. Frequency estimation

The next stage was to estimate the fundamental frequency
at each onset. A frame as long as possible was consid-
ered, starting just after an onset and ending just before the
next onset. For each such frame, a sinusoid extraction al-
gorithm was applied. Rather than use the method detailed
in [12] as suggested by [6], we opted for the triangle win-
dow method [9]. Every note under 100 Hz was considered
to be a candidate fundamental frequency, and we make the
assumption on our data that only one note is playing at a
time.

For each fundamental frequency candidate F0, we pre-
dict its harmonic series as {nF0}1≤n≤N . The actual har-
monic series associated with each F0 is determined from
this by considering each nF0 for 2 ≤ n ≤ N in turn, and
searching for the extracted sinusoid whose frequency lies
within 3% of its predicted value, and whose amplitude is a
maximum. We found that a value of N = 9 gave good re-
sults, although this probably could have been made much
smaller without noticable loss of accuracy in our results.

At this stage, we have one or more harmonic series cor-
responding to each onset. To determine the most probable
harmonic series for each offset, we assign each series a
confidence measure as described in [6]. The series with
the highest confidence is deemed to be the correct one,
and hence, the fundamental frequency is determined.

Note that our algorithm is a simplified version of the
one it is based on. In particular, for each onset, the algo-
rithm described in [6] tracks the harmonic series over time
in order to determine the note offset for that series, and
to determine the correct series using a more sophisticated
measure. We chose this simpler technique because it was
not practical to achieve the necessary frequency resolu-
tion for accurate determination of sinusoids for such low
frequencies: the short frames required for accurate time
resolution prohibited this.

2.2. Extraction of clapsticks

To extract the clapsticks, we used the method of indepen-
dent subspace analysis (ISA) described in [15]. The fol-
lowing discussion is essentially a summary of that paper.

This technique is based on independent component anal-
ysis (ICA), and we use it to split the original signal into
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Figure 2. Independent subspace analysis [15]

harmonic and percussive components. The classic formu-
lation of blind source separation by ICA requires at least
as many observed signals as there exist sources. In our
case, we have one observation (the recording itself) and
three sources (didjeridu, clapsticks and vocals). Figure 2
briefly indicate the steps that ISA performs to overcome
this limitation. The original (single observation) time-
series signal is transformed to the frequency domain by
short-time Fourier transform (STFT). To get reliable sep-
aration, we used long frames (100 ms) with a half-frame
overlap. Singular value decomposition (SVD) is performed
on the resultant magnitude spectrogram, and a maximum-
variance subspace of the original spectrogram, reduced to
d dimensions, is then computed. Finally, amplitude en-
velopes and frequency weights of each of the d indepen-
dent components are computed using ICA. (These d am-
plitude envelopes and frequency weights may be used to
determine the independent spectrograms. We do not make
use of these, however, so this is not done in our system.)

Through experimentation, we found that setting 15 ≤
d ≤ 20 provides excellent separation with an acceptable
computational cost.

The remaining task in this stage was to classify each of
the d separated components into either harmonic or per-
cussive categories. [15] describes five measurable features
of the independent components, each of which gives an in-
dication of the percussion-likeness of each of the indepen-
dent components. Our system makes use of two of these
features.

The first, percussiveness, is determined by computing
a train of unit impulses, where each impulse is located at a
maximum of the amplitude envelope (determined during
the ICA), and convolving this impulse train with a model
percussion template. This percussive impulse is modelled
by an instantaneous onset and linear decay towards zero
within 200 ms. The measure of percussiveness is given
by the correlation coefficient between the output of the
convolution and the amplitude envelope.

The second feature, noise-likeness, uses the compo-
nent’s vector of frequency weights (determined during the
ICA). Similarly to the method described above, an im-
pulse train corresponding to the maxima of the frequency
vector is convolved with a Gaussian window. The noise-
likeness is given by the correlation coefficient of the orig-
inal frequency vector and the output of the convolution.

Figure 3. Kila kanggi: Our mother excerpt reference tran-
scription (lirrga 1). Track 1 from CD [11]. Song text c© composed
by Clement Tchinburrur, sung by Pius Luckan, recorded by Chester
Street, Pt Keats, 1985. Musical transcription c© Linda Barwick, Univer-
sity of Sydney, 2002. Marri Ngarr morphemic analysis and translation
c© Lysbeth Ford, BIITE, 2002. Reproduced with permission.

Figure 4. Yitha yitha kangki: Father, our Father ex-
cerpt reference transcription (lirrga 2). Track 2 from CD [11].
Song text c© composed by Clement Tchinburrur, sung by Pius Luckan,
recorded by Chester Street, Pt Keats, 1985. Musical transcription c©
Linda Barwick, University of Sydney, 2002. Marri Ngarr morphemic
analysis and translation c© Lysbeth Ford, BIITE, 2002. Reproduced with
permission.

The decision as to whether a component was percus-
sive or harmonic was made by comparing the percussive-
ness and noise-likeness measures to predetermined thresh-
olds.

To determine the onsets of the clapsticks, a note onset
detection algorithm, as described in Section 2.1.1 was ap-
plied to the sum of the amplitude envelopes determined
during the ICA process and corresponding to the percus-
sively classified component.

3. RESULTS

The accuracy of the system, and also its sensitivity to in-
flections, will improve with the incorporation of more so-
phisticated techniques and algorithms. We discuss this in
section 4.

We evaluated the performance of our system by run-
ning it on short (approximately 10 seconds) excerpts and
comparing the results against the transcriptions Figures 3–
6, which were prepared manually by ethnomusicologists.

3.1. Didjeridu transcription

To measure the transcription accuracy, we employ a met-
ric described in [8]; this paper gives more than one metric,
and we choose the more stringent alternative. It is defined



Figure 5. Yitha kanggi warringgirrmagulil: Our Father
enter into us excerpt reference transcription (lirrga 3).
Track 4 from CD [11]. Song text c© composed by Clement Tchinbur-
rur, sung by Pius Luckan, recorded by Chester Street, Pt Keats, 1985.
Musical transcription c© Linda Barwick, University of Sydney, 2002.
Marri Ngarr morphemic analysis and translation c© Lysbeth Ford, BI-
ITE, 2002. Reproduced with permission.

Figure 6. Father Deakin excerpt reference transcription
(lirrga 4). Track 5 from CD [11]. Song text c© composed by Clement
Tchinburrur, sung by Pius Luckan, recorded by Chester Street, Pt Keats,
1985. Musical transcription c© Linda Barwick, University of Sydney,
2002. Marri Ngarr morphemic analysis and translation c© Lysbeth Ford,
BIITE, 2002. Reproduced with permission.

by the following relation:

R =
no. of notes found correctly

no. of notes found in total + no. of notes missed

which, when applied to our results, gives these results (Ta-
ble 1):

Excerpt notes found
correct

found
total

missed R

lirrga 1 36 33 39 3 0.79
lirrga 2 30 23 37 7 0.53
lirrga 3 48 44 46 4 0.88
lirrga 4 21 14 17 7 0.58

Table 1. Results for didjeridu.

The overall accuracy (average R) was 70%. Almost
all of the errors were a result of the note onset detec-
tion, rather than the frequency estimation. One reason for
this is that some many note onsets are difficult to detect
with an amplitude envelope type method, because a note
onset does not necessarily correspond to a large increase
in amplitude. Another reason is due to human subjectiv-
ity in formulating the reference transcriptions, and also in
matching generated transcriptions to their references.

3.2. Clapsticks transcription

With respect to the separation of clapsticks from the har-
monic components, errors did indeed occur in the classi-
fication stage. We used the metric outlined in [15] and
found that overall, 71% of percussive components were
found correctly. Spurious percussive classifications were
at 31%.

The accuracy of note onset detection for clapsticks ex-
traction was measured similarly to that of the clapsticks,
by the preceeding formula. For all correctly classified
clapstick tracks we obtain the following results (Table 2):

Excerpt notes found
correct

found
total

missed R

lirrga 1 20 20 22 0 0.91
lirrga 2 8 8 8 0 1.0
lirrga 3 24 24 30 0 0.80
lirrga 4 7 7 7 0 1.0

Table 2. Results for clapsticks

This gives an overall accuracy of 93% for correctly
classified clapstick tracks.

4. CONCLUSIONS AND FUTURE WORK

There are many ways in which we intend to increase the
accuracy and scope of our system. We identify several
measures for this.

First on our list is tracking inflection changes during
a single note played by the didjeridu. Whilst the current
didjeridu extraction method compares favourably with the
model exemplified by our Westernised transcriptions, we
wish to track the harmonic series associated with each
onset. This poses a new problem: how does one map
changes in harmonic series to changes in inflection? As
described in Section 3.1, it is also the case that changes in
inflection, rather than large changes in amplitude, corre-
spond to new note onsets. This would therefore increase
the accuracy ratings of our transcriptions. The complex-
domain onset detection algorithm we have used [1] picks
changes in inflection well, and so the problem remains:
how to classify onsets determined this way, and how to use
extra information to determine when inflection changes
correspond to definite onsets.

Futhermore, clapsticks have considerable energy in the
high frequency subbands, and so we would investigate
tracking of transient energy in high frequency ranges [2]
in order to augment note onset detection for clapsticks.

The morphology of the didjeridu often varies depend-
ing on the geographical location in Australia from which
the music originates. This has an effect on the resonant
frequencies of the instrument [3]. Therefore, by identify-
ing notes played at higher resonant frequencies, we could
compute the morphology of the didjeridu.
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