
WEB SERVICES FOR MUSIC INFORMATION RETRIEVAL

Mark Zadel and Ichiro Fujinaga
Faculty of Music
McGill University

Montréal, QC H3A 1E3
{zadel,ich}@music.mcgill.ca

ABSTRACT

In the emerging world of networked and distributed
digital libraries, the Web services framework will be a key
to facilitating simple inter-application communication be-
tween them. Yet, despite the popularity of Web services
in the business sector and their seemingly obvious appli-
cability to the digital library domain, and to MIR in par-
ticular, the adoption of these new protocols has not been
widespread.

To demonstrate the tremendous potential of Web ser-
vices for MIR, this paper presents an application using
the Google and Amazon.com databases to generate clus-
ters of related musical artists based on cultural metadata.
The use of cultural metadata to determine artist related-
ness is valuable and interesting because it captures emer-
gent popular opinion about music. Starting from an initial
seed artist, AmazonListmania! lists are traversed to find
potentially related artists. Google is used to determine
which of these candidates are in fact related by assess-
ing the co-occurrence of the two artists’ names on Internet
web pages. A list of artists related to the seed is returned
once a given number of artists is found.

The positive results generated by the system illustrate
the use of Web services for exploiting the vast amount of
untapped data that are available today and highlight their
importance for the future, when even more musical data
will become available.

1. INTRODUCTION

Over the last few millennia, humans have amassed an enor-
mous amount of information and material that is scattered
around the world. It is becoming abundantly clear that
the optimal path for creating useful sources of informa-
tion is to distribute the task of digitizing the wealth of
historical and cultural heritage material that exists in ana-
logue formats. These may include books, manuscripts,
music scores, maps, photographs, videos, analogue tapes,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

and phonograph records. In order to achieve this goal,
libraries, museums, and archives throughout the world,
whether large or small, need well-researched policies,
proper guidance, and efficient tools to digitize their col-
lections and to make them available economically.

The topic of this paper is to suggest an answer to the
question of how to access and retrieve the data once they
are stored. This problem arises even for new digitally-
born materials.

Thousands of libraries worldwide cannot be expected
to agree on the same database or query systems to access
their data. This paper investigates the possibility of using
Web services, an emerging technology which is designed
to exchange information between different systems, to ad-
dress this issue.

The use of Web services is becoming increasingly pop-
ular in business environments. Web services allow easy
interoperability between disparate computer systems,
which has historically been difficult. This recent popu-
larity has prompted many businesses to add public Web
services interfaces to their databases, allowing direct pro-
grammatic access to them. The alternative for accessing
these data is to extract the information from browser pages
intended for human viewing, known as “web scraping.”
This approach is brittle and error-prone as small changes
in page formatting can break the extraction algorithm.

Cultural metadata is information describing public opin-
ion and cultural trends, distilled from large amounts of
unstructured text produced by the public. This text is
typically drawn from the web. Recent MIR research has
used cultural metadata to assess similarity between musi-
cal artists [3][14]. This approach has the advantage of us-
ing current cultural information to make judgments about
genre and similarity, and does not rely on centralised, and
potentially biased, systems of classification. Community-
based, collaborative systems for classification and filtering
have been explored previously [6][11][12]. These systems
make recommendations to a user based on the opinions of
others who have demonstrated similar tastes. They require
that users explicitly evaluate material and use this infor-
mation to try to predict the material’s relevance to other
like-minded users. Using cultural metadata to capture the
same information eliminates the explicit extra effort re-
quired by these systems.

While the web can be seen as a direct reflection of pub-

lic opinion, its size makes it difficult to harness and ex-
ploit. This issue has received significant attention, and
now web searching systems have been successfully scaled
and improved such that they are able to cope with the
large amounts of data available. An important example is
Google, a very powerful and popular search tool which ef-
fectively manages this mass of content. Previously, these
systems were only accessible via browser interfaces, but
now Web services allow them to be used directly. Sud-
denly, the unstructured cultural information contained in
these databases is easily and reliably accessible to external
computer programs and, specifically, to MIR programs.

This paper will demonstrate the potential of Web ser-
vices through an application that exploits their recent de-
velopment and highlights the relevance of Web services
and Internet resources to MIR. The application addresses
the problem of assessing artist relatedness using only cul-
tural metadata. This approach should yield more relevant
classifications of artists than previously possible since it is
based on large amounts of current public opinion. Here,
two artists are considered “related” if their names co-occur
on the same web page.

The application makes use of the Amazon.com and
Google databases in tandem, and assesses artist related-
ness by measuring the co-occurrence of artist names on
web pages. Co-occurrence analysis for music classifica-
tion has been explored in [1][7]. These papers use web
crawling to retrieve relevant web pages, which are parsed
and analysed. The application presented here differs in
that it examines all web pages, not just a predefined sub-
set of them, and it does so directly through Web services
interfaces. The rest of the paper is organized as follows.
In Section 2 we introduce Web services and their compo-
nents, including the services implemented by Google and
Amazon.com. In Section 3 we describe a sample applica-
tion that uses these two databases, and the results of some
experiments using the application are shown in Section 4.
In Section 5 we discuss and analyze the experiment, and
we conclude in Section 6.

2. WEB SERVICES

Web services allow inter-application communication over
a network. They adhere to a well-documented standard
[4] and are strongly supported by industry and the pri-
mary web standards organization, W3C. The standard is
designed to be lightweight and platform agnostic, allow-
ing communication between broad classes of devices (e.g.,
cell phones and Sun workstations). Web services are based
on common, accepted standards; this ultimately facilitates
their implementation and adoption. They are implemented
in all major languages commonly used for network pro-
gramming (an example in Python is given in Figure 1).
The technologies on which the Web services architecture
is based include: Simple Object Access Protocol (SOAP);
Web services Description Language (WSDL); and Uni-
versal Description, Discovery, and Integration (UDDI).

The core technology in Web services is XML, a com-

mon standard for data representation. It is simple and
human-readable, and is ubiquitous in contemporary com-
puting. A large software infrastructure exists for working
with XML data. SOAP, based on XML, is used as the stan-
dard message-encoding format. Messages between com-
puter applications are encoded as SOAP messages and
sent via HTTP (see Figure 2). Responses are similarly
encoded and are returned to the requestor.

Also based on the XML format, UDDI is used to reg-
ister each institution’s services (functioning as a virtual
yellow pages directory). WSDL is used to describe the
type of service, its access protocol, and its location. Thus,
one uses UDDI to look for services or data, and WSDL to
find out how and where to use the service, all via SOAP
messages.

As Web services are generally applicable to system in-
teroperability and access, they have obvious relevance to
MIR research. The general unstructured information on
the web can be harnessed (as is demonstrated in this pa-
per), and MIR databases can be made to communicate and
integrate each other’s resources, as well as a host of other
applications.

The attractiveness of this technology for application in
distributed digital libraries is that it assumes that each sys-
tem (library) will be different. Web services provide users
with the “what, where, and how” required to access in-
formation from heterogeneous systems. These types of
universal methods for finding out how to access various
archives and collections, each with different database lan-
guages and different kinds of services, are not only useful
but will become more and more essential as archives and
libraries around the world begin to convert their collec-
tions into digitally accessible formats.

Despite their tremendous potential and significant in-
dustry activity, Web services have not been used widely
in the digital library domain. The open-source digital li-
brary management system Fedora is one of the few ex-
ceptions. It promotes the distributed digital library archi-
tecture through interoperable access to digital objects and
communication across the Internet based on Web services
[8].

As mentioned, industry interest has resulted in a great
deal of development of Web services and related stan-
dards. Although in its infancy, some early adopters are
successfully using the technology, demonstrating its po-
tential. Two such examples are Google and Amazon.com.

2.1. Google Web Services

Google is by far the most popular search engine currently
on the web. It maintains a massive database with a poten-
tial wealth of information. Google provides access to its
database via its Web services API (application program-
ming interface) [5]. The interface allows programmatic
access to standard Google searches, cached page retrieval,
and spelling suggestion searches. All of the information
returned in a typical Google query done by hand is en-
coded in the response: search results, page snippets, result

import SOAP

server = SOAP.SOAPProxy("http://services.xmethods.net/soap/servlet/rpcrouter")
print server._ns("urn:xmethods-Temperature").getTemp(zipcode="90210")

Figure 1. A complete Python program for getting the current temperature in a U.S. zip code region using SOAP

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getTemp xmlns:ns1="urn:xmethods-Temperature" SOAP-ENC:root="1">

<zipcode xsi:type="xsd:string">90210</zipcode>
</ns1:getTemp>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 2. The raw XML SOAP request produced by the example in Figure 1

counts, etc. This allows Google data to be programmati-
cally queried and the results aggregated to identify pat-
terns and trends. (See Figure 3 for an example and see
Section 3 for its explanation.)

A free license key must be obtained to use the ser-
vice, which must be included in each request. Up to 1000
queries may be made per day with a given key.

2.2. Amazon Web Services

Amazon provides programmatic access to its database via
Web services as well [2]. A wide variety of queries are
accepted: product number (ASIN), musical artist, author,
film director, manufacturer, etc. Queries return detailed
lists of products offered for sale, which include product
name, author, availability, manufacturer, price, releasedate,
ISBN, etc. The database is large and well organized.

Amazon provides various ways for customers to rate
and review sales items. One method isListmania!, allow-
ing Amazon users create lists of their favourite or related
items. A product page will include links to lists that refer-
ence it to help consumers find other products they might
be interested in. These lists can be queried via Amazon
Web services as well.

Like the Google Web API, Amazon Web services re-
quire a free license key which must be included with each
request. Amazon asks that clients generate only one query
per second, and that search results are cached locally.

3. A SAMPLE APPLICATION

As an example of the potential application of Web ser-
vices to music information retrieval, a program was writ-
ten that uses the Google and Amazon Web APIs to ac-
cess information that would otherwise be difficult to ob-
tain. The following problem was posed: given an initial
seed artist, generate a list of related musical artists based
on cultural metadata. The main advantage in using this

approach to determine relatedness is that it relies on cur-
rent trends in public opinion, and not on a centralized,
top-down approach. These lists of related artists could
be used for recommendations, or to track genre evolution
over time.

The Google and Amazon databases contain large
amounts of information contributed by the general pub-
lic. Google indexes the World Wide Web and Amazon’s
Listmania! lists are contributed and edited by Amazon
users. The example application accesses this information
via Web services and uses it to address the above problem.
The following assumptions are made: artists who appear
on the sameListmania! list are likely to be related, and re-
lated artists’ names are more likely to appear on the same
web page than if they were not related. Only information
generated by the general public was used in this experi-
ment.

The program works as follows. Starting from a seed
artist, a list of potentially related artists is generated from
Amazon data. The pool of potentially related artists is
grown recursively from this initial list, finding artists re-
lated tothoseartists, etc. This tree is pruned using a re-
latedness metric based on Google data. Once some given
number of related artists has been reached, the program
terminates.

AmazonListmania! lists are used to generate pools of
potentially related artists from an initial one. First, the
initial artist’s releases are each queried in the Amazon
database. For each of these releases, a set ofListmania!
lists are returned which include the release. These lists
are each queried, and the artists included in each list are
returned. Thus, given an initial artist, we can generate a
pool of potentially related ones.

Google results counts are used to assess the actual re-
latedness of two artists. Three queries are done, and the
results count is retained from each:“artist1” , “artist2” ,
and“artist1” “artist2” (whereartist1 andartist2 are re-
placed with the names of the artists being compared). Each

return a scalar that measures the relatedness between
a pair of artists (artist1,artist2)

def google_relatedness(artist1,artist2):

enclose artist names in quotes
artist1 = ’"’ + artist1 + ’"’
artist2 = ’"’ + artist2 + ’"’

find the ratio of the intersection to the smaller of the two sets
artist1count = get_google_results_count(artist1)
artist2count = get_google_results_count(artist2)
combinedcount = get_google_results_count(artist1 + ’ ’ + artist2)

relatednessmeasure = float(combinedcount)/min(artist1count,artist2count)

return relatednessmeasure

Figure 3. Sample Python code to query Google for two artists

name is enclosed in double quotes to ensure that it is con-
sidered atomically. A single scalar value is computed for
relatedness according to:

results(combined)

min(results(artist1), results(artist2))
. (1)

Thus, the relatedness is considered to be the percentage of
pages for a given artist that include the other artist’s name
(see Figure 3). The minimum is used to correct for the dif-
ference in popularity of the artists. This metric, although
simple, provided reasonable results.

Thus, we generate a list of potentially related artists
and eliminate the ones that are deemed unrelated accord-
ing to the above Google relatedness metric. The remain-
ing (related) artists are queried recursively. Relatedness
is always measured with respect to the original seed artist
specified in the first iteration.

3.1. Implementation Details

The application was implemented in Python. Python was
well suited to this experiment since it features a wealth of
high-level modules and lends itself to rapid development.
In particular, modules specifically designed for interfacing
with the Google Web API and Amazon Web services are
available [9][10]. Their existence speaks to the ubiquity of
the technologies Web services are built on; Python mod-
ules handling XML are included in the standard distribu-
tion, and modules handling SOAP messaging are readily
available [13].

The application works by tracking the set of artists left
to examine. Initially, the set only contains the seed artist.
One artist is taken from the set, and a set of artists poten-
tially related to that artist are generated by querying Ama-
zon data as described above. Artists are removed from this
set that are deemed unrelated to the seed artist according
to the Google relatedness metric. A relatedness threshold
of 0.05 was set empirically, above which artists were con-
sidered related. The remaining artists are retained as being
related to the seed artist for final output, and are added to
the set of artists left to examine. This process is repeated
until the set of related artists reaches a given size.

The Google results counts are cached locally in a
Pythondict variable which is saved between application
invocations. This reduces the number of calls into the
Google database, reducing network traffic and saving
queries associated with the license key. This is especially
important since various queries are re-executed often (e.g.,
searches for the seed artist, multiple executions of the pro-
gram). A wrapper function (get_google_results_
count) is used which first checks the local cache before
calling into the Google database. Similarly, sets of artists
andListmania! lists already checked are maintained, and
no artist or list is checked in the Amazon database twice.
These caches can be safely assumed to be valid over one
or two days.

Using Python proved to be a sensible decision for this
project for the reasons mentioned above. The implemen-
tation is clean and lightweight. Elegance of implementa-
tion was prioritised over computational efficiency as the
script runtime was dominated by the time spent waiting
for query responses

4. RESULTS

The program was tested starting from a variety of seed
artists, with varying styles and popularity. The seeds used
were Four Tet (electronic), Slayer (heavy metal), Christina
Aguilera (dance pop), Kenny G (adult contemporary), and
John Coltrane (jazz). In each case, the program success-
fully returned a list of artists that seem reasonably related
to the seed artist. For each artist the entire process takes an
average of about two minutes. The artists were typically
ordered by genre, but some crossover occurred. This is to
be expected, as cultural metadata encapsulates more than
simple genre. Example results for Christina Aguilera are
shown in Tables 1 and 2, which show 40 of a total of 168
artists returned. The results for John Coltrane are shown
in Tables 3 and 4. Overall, the results are positive: solo fe-
male pop artists and mainstream jazz artists and groups are
ranked highly, and there are no glaring aberrations. The
last twenty entries are smaller artists or are from different

Artist Google Relatedness
Christina Aguilera/Lil Kim/Mya/Pink 1
Aguilera 0.905683192
Britney Spears 0.721886336
Sisqo 0.691678035
Spears 0.684401451
Toni Braxton 0.658564815
Willa Ford 0.632508834
Emma Bunton 0.498381877
Susan Tedeschi 0.480686695
Patricia Manterola 0.461621622
Melanie C 0.425213675
BBMak 0.419417476
Jennifer Lopez 0.396614268
Lil’ Bow Wow 0.395973154
Billy Gilman 0.391975309
Faith Hill 0.374774775
Michelle Branch 0.353571429
Justin Timberlake 0.350148368
O-Town 0.347962382
Madonna 0.330108827

Table 1. Top twenty results for Christina Aguilera

Artist Google Relatedness
Rosemary Clooney 0.033737864
Phoebe Snow 0.032386364
Amel Larrieux 0.03168
The Go-Go’s 0.030064935
Rowland 0.029382304
Muse 0.027569528
Tim Pierce 0.022851920
Lynda 0.021138211
Heitor Pereira 0.018274112
Martin Tillman 0.017647059
Various Artists 0.017533253
Johnny Mori 0.016697588
Anahi 0.015185950
Julia Migenes 0.010829493
Elastica 0.008759036
Interpol 0.007124464
Various Artists 0.006873239
Bruce Fowler 0.004733728
Craig Eastman 0.002016129
Michael Fisher 0.001507937

Table 2. Last twenty results (out of 168) for Christina
Aguilera

genres. Even with such a simple relatedness calculation,
the system performs very well.

A number of problems are apparent, however, and this
example illustrates some of these issues. Some of the
“artist names” do not correspond to actual artists (e.g.,
“Various Artists” and “Christina Aguilera/Pink/Lil Kim/
Mya”). Names in Amazon’s database are case sensitive,
and are sometimes duplicated with different capitaliza-
tion. Also, artists appear multiple times with different
names (e.g., “Britney Spears” and “Spears”). These are
all issues with inconsistency in the Amazon database.

5. DISCUSSION

Artist relatedness is doubly enforced in this experiment,
through proximity in both the Amazon and Google
databases. It is not clear whether either method on its own

Artist Google Relatedness
Miles Davis 0.413888889
McCoy Tyner 0.393333333
Miles Davis Quintet 0.391872279
Sonny Rollins 0.373853211
Thelonious Monk 0.371115174
Dexter Gordon 0.365187713
Cannonball Adderley 0.361276596
Horace Silver 0.358108108
Hank Mobley 0.352231604
Charles Mingus 0.350877193
Ornette Coleman 0.333221477
Art Blakey 0.311858974
Dizzy Gillespie Quintet 0.286738351
Rahsaan Roland Kirk 0.283450704
Wayne Shorter 0.280924855
Kenny Burrell 0.277922078
Sonny Clark 0.276315789
Peter Brotzmann Octet 0.276119403
Johnny Griffin 0.266968326
Brown 0.251851852

Table 3. Top twenty results for John Coltrane

Artist Google Relatedness
Ryan Adams 0.014444444
Compay Segundo 0.014344262
Prince & the Revolution 0.014089347
Philip Glass 0.013927227
Queens of the Stone Age 0.012962963
Fugazi 0.012472648
Helmet 0.012222222
Fiona Apple 0.011153342
Joseph Arthur 0.010578947
Doves 0.010555556
Gregorian Chant 0.009694444
Morello 0.009017857
John Adams 0.007777778
Howie Day 0.006848249
Herring 0.006805556
Damien Rice 0.006228669
Interpol 0.006120370
Ibrahim Ferrar 0.005325444
Franky Perez 0.002735562
Spottiswoode 0.001424051

Table 4. Last twenty results (out of 139) for John Coltrane

would produce good results. AmazonListmania! lists by
definition group related items, but not necessarily in ways
that one would expect (e.g., “Really terrible music from
the eighties,” “Artists born on a Tuesday”). Similarly, the
Google relatedness metric performs well when used on a
pool of potentially related artists as given by the Amazon
search. It is not clear how it would perform if used on a
randomly selected pool of artists.

The Google metric is simple and should be subjected
to more experimentation. One observation was that the
threshold used (0.05) seemed too low for a large artist like
Christina Aguilera. It stands to reason that very popular
artists will be talked about more, and perhaps the size of
the results sets for both artists should be incorporated into
the relatedness calculation. Also, more queries or better
query strings could be used with the Google database to
help focus the results. For example, searches could be re-

stricted to a particular range of dates, or to a particular
country. The results counts returned by Google are of-
ten only estimates; an investigation should be done to see
whether this has an adverse effect on the relatedness mea-
surement.

Some artists use names that are common parts of speech
or are associated with other things (e.g., “Muse,”
“Brown”). This will cause these artists to be ranked lower
than they would have been otherwise since the extra re-
sults will count toward the total. This effect is less likely
to distort the co-occurrence count since if the two names
appear on the same page, they are both likely to refer to
musical artists. Due to the size of the web and the Google
database, the effects of these exceptions will be attenuated
in the large overall number of pages.

The automated access to this vast amount of data is the
key to the use of Web services. Here we only used two
sources, but theoretically one could automate access to
hundreds of distributed databases over the Internet. Even
with this simple and modest example using two databases,
rich source of relationships between artists and their works
can be retrieved. The important point in this experiment is
that Web services allow us to conveniently access these re-
sources, and that they contain large amounts of extremely
valuable information.

6. CONCLUSION

Web services carry tremendous potential for MIR research.
Coupled with business initiatives on the Internet, they al-
low easy access to the mass of both unstructured and struc-
tured information on the Web. The sample application
presented here takes advantage of these publicly accessi-
ble resources to generate groups of related artists based on
a reflection of general public opinion. It quantifies relat-
edness as a function of the frequency of co-occurrence of
the artists’ names on web pages, which would be difficult
without Web services access to the Google database. This
approach is valuable since it encapsulates current public
opinion. The results were generally promising, correctly
clustering related artists. They prompt further exploration,
and some potential refinements have been suggested here.
The application serves as an example of the promise of
Web services for MIR, and suggests further research into
applications of these newly accessible resources.

7. REFERENCES

[1] Aucouturier, J.-J., and F. Pachet. 2003. Representing
musical genre: A state of the art.Journal of New
Music Research32 (1): 83–93.

[2] Bauche, P. 2003.Amazon hacks. O’Reilly and Asso-
ciates.

[3] Baumann, S., and O. Hummel. 2003. Using cultural
metadata for artist recommendations.Proceedings of
the International Conference on WEB Delivering of
Music, 138–41.

[4] Booth, D., H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris, and D. Orchard. 2004.Web ser-
vices architecture, W3C Working Group Note, avail-
able online:http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211

[5] Calishain, T. and R. Dornfest. 2003.Google hacks.
O’Reilly and Associates.

[6] Hill, W., L. Stead, M. Rosenstein, and G. Fur-
nas. 1995. Recommending and evaluating choices
in a virtual community of use.Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems, 194–201.

[7] Pachet, F., G. Westermann, and D. Laigre. 2001.
Musical data mining for electronic music distribu-
tion.Proceedings of the International Conference on
WEB Delivering of Music, 101–6.

[8] Payette, S., and T. Staples. 2002. “The Mellon Fe-
dora project: Digital library architecture meets XML
and Web Services.” Sixth European Conference on
Research and Advanced Technology for Digital Li-
braries.Lecture Notes in Computer Science, Vol.
2459. Berlin: Springer-Verlag, 406–21.

[9] Pilgrim, M. 2004. PyAmazon. Available on-
line: http://josephson.org/projects/
pyamazon

[10] Pilgrim, M. 2004. PyGoogle. Available online:
http://pygoogle.sourceforge.net

[11] Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom,
and J. Riedl. 1994. GroupLens: an open architecture
for collaborative filtering of netnews.Proceedings of
the ACM Conference on Computer Supported Coop-
erative Work, 175–86.

[12] Shardanand, U., and P. Maes. 1995. Social informa-
tion filtering: algorithms for automating “word of
mouth”. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 210–7.

[13] Ullman, C., and B. Matthews. SOAPpy, 2004.
Available online: http://pywebsvcs.
sourceforge.net

[14] Whitman, B., and S. Lawrence. 2002. Inferring de-
scriptions and similarity for music from community
metadata.Proceedings of the International Com-
puter Music Conference, 591–8.

