
  
 

UNDERSTANDING SEARCH PERFORMANCE IN  
QUERY-BY-HUMMING SYSTEMS

 Roger B. Dannenberg and Ning Hu  
 School of Computer Science 

Carnegie Mellon University 
Pittsburgh, PA 15213 USA 

 

ABSTRACT 
Previous work in Query-by-Humming systems has left 
open many questions. Although a variety of techniques 
have been explored, there has been relatively little work 
to compare them under controlled conditions, especially 
with “real” audio queries from human subjects. Previous 
work comparing note-interval matching, melodic con-
tour matching, and HMM-based matching is extended 
with comparisons to the Phillips CubyHum algorithm 
and various n-gram search algorithms. We also explore 
the sensitivity of note-interval dynamic programming 
searches to different parameters and consider two-stage 
searches combining a fast n-gram search with a more 
precise but slower dynamic programming algorithm. 

Keywords: Query-by-Humming, N-gram, Dynamic 
Programming, Evaluation 

1. INTRODUCTION 

The MUSART project has studied and compared tech-
niques for query-by-humming (QBH) music retrieval. 
[1] In this work, audio queries are used to search sym-
bolic (MIDI) targets in a database. Because we use 
“real” queries from non-musicians, the general quality of 
queries is low, making retrieval quite challenging. The 
difficulty of our task and configuration can be seen as a 
feature: we are far from any ceiling effects, so any sig-
nificant improvement will show up clearly in the results. 

Perhaps the most difficult problem for QBH systems 
is the determination of melodic similarity. Our previous 
work considered several algorithms for computing 
melodic similarity. One is based on the fairly well-
known dynamic programming algorithms for string 
matching, which had already been applied to the 
melodic similarity problem. [2, 3] We use transposition- 
and tempo-invariant representations based on pitch 
intervals and inter-note-onset intervals, so we refer to 
this as the note-interval search. From previous 
experience, we knew of numerous shortcomings of this 
approach, and thought we could find better approaches. 

One of these we call melodic contour matching [4], 
which represents melody as a continuous function of 
pitch versus time. The advantage of melodic contour 
matching is that it does not require note segmentation. 

Instead, only fundamental frequency estimates are used, 
eliminating segmentation as a source of errors. 

The other more sophisticated approach is a hidden 
Markov model (HMM) [5] in which different categories 
of errors are considered in a unified manner. In contrast 
to the dynamic programming approach, the hidden 
Markov model approach can consider explicitly differ-
ent error types. One type of error is an incorrect pitch. 
Another is a transposition, where every note from a 
certain point onward is transposed. Rhythm and tempo 
errors can also be considered, and different probabilities 
can be assigned to different error types. 

Early experiments with both the melodic contour and 
HMM approaches showed improvements over string-
matching approaches. However, Pardo’s work with note 
interval search [6] resulted in improvements over earlier 
versions. Ultimately, all three approaches showed 
roughly equal performance in our MUSART testbed. [7] 

The fact that the note interval search was initially 
unimpressive and later delivered quite good perform-
ance led us to investigate the algorithm further to study 
the sensitivity of different parameter settings. It appears 
that other researchers may have drawn incorrect 
conclusions from less-than-optimal implementations 

Along the same lines, there might be other variations 
in the dynamic programming algorithm that could lead 
to even better performance. The CubyHum system [8] 
uses a fairly elaborate set of rules to compute melodic 
similarity. These rules are designed to model various 
error types, somewhat like the way the MUSART HMM 
system models errors. We compare the performance of 
the CubyHum approach to our other algorithms. 

Another unanswered question is whether there is any 
way to avoid a search cost that is linear in the size of the 
database. All of the algorithms we studied compare the 
query to each target in the database. It would be much 
better to build some sort of index to avoid the cost of 
exhaustive search. A promising approach is to narrow 
the field of potential targets using an indexing scheme 
based on n-grams, and then search these candidate 
themes with a slower, but higher-precision algorithm. 

Thus, our intention is to wrap up some “loose ends” 
from our previous work and answer some nagging 
questions about QBH systems. After describing some 
related work, we present experiments with a simplified 
note-interval search algorithm to determine its sensitivity 
and optimal settings. In Section 4, we describe our 
reimplementation and evaluation of CubyHum within 
the MUSART testbed. In Section 5, we investigate how n-
gram-based search performs with difficult vocal queries. 
There will undoubtedly be more questions and research, 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on 
the first page. 

© 2004 Universitat Pompeu Fabra. 



  
 
but we feel that we now have a fairly good picture of a 
wide range of options and the potential performance that 
can be obtained in QBH systems using realistic queries. 

2. RELATED WORK 

Our study of note-interval search uses a simplified 
version of the note-interval algorithm developed by 
Pardo [6], and our findings are consistent with his. 
While Pardo emphasizes his optimization process and 
overall results, we are more interested in sensitivity to 
varying parameter values. We found that search results 
are highly dependent upon the quality of queries. 
Lesaffre, et al. [9] collected and studied vocal queries. 

N-grams are studied extensively in the text-retrieval 
community and have also found application in music 
information retrieval. Downie [10, 11] evaluated n-gram 
techniques and explored the effects of different design 
parameters. Errors were simulated by changing one pitch 
interval randomly. Uitenbogerd and Zobel [12] consid-
ered 4-grams of different pitch interval representations, 
with queries extracted from MIDI data. Doraisamy and 
Ruger [13] studied n-grams with both pitch and rhythm 
information in the context of QBH, using simulated 
errors. Bainbridge, Dewsnip and Witten [14] also 
explored n-grams along with state-based matching and 
dynamic programming. A synthetic error model was 
used, and their paper also proposed using fast n-gram 
search as a filter to reduce the size of the search by 
slower methods. Our work uses audio queries from 
human subjects, and further explores the possibility of a 
2-stage search using n-grams and dynamic program-
ming. 

3. OBTAINING THE BEST PERFORMANCE 
WITH NOTE-INTERVAL SEARCH 

We want to explain the wide variation in observed 
performance of note-based dynamic programming 
searches. In order to understand what factors are critical, 
we tune a search system in different ways and compare 
the results. We begin by designing a note-based dynamic 
programming algorithm called “NOTE-SIMPLE”. 
NOTE-SIMPLE is quite similar to the note-interval 
algorithm, but simpler in some ways and can take into 
account different sets of parameters and representations 
for evaluations. 

Absolute Pitch:    67             69     71    67

Relative Pitch:             2           2      −4

IOI:     1             0.5    0.5 1

IOI Ratio:            0.5        1         2

Log IOI Ratio:            -1          0         1 
 

Figure 1. Pitch Interval and IOI Ratio calculation. 

The NOTE-SIMPLE algorithm can perform search 
on different representations of melodic sequence. Pitch 
and Rhythm are the two main components defining each 
note iN  in a melodic sequence n21 NNNS �= . As 
shown in Figure 1, the Pitch component can be ex-
pressed in two ways:  
1. The absolute pitch in MIDI key values: 

{ }127... ,2 ,1)N(P iabs ∈ , where ni1 ≤≤  
2. The relative pitch, or pitch interval: 

)(NP)(NP)(NP 1iabsiabsirel −−= , where ni1 ≤<  
0)N(P 1rel =  

Similarly, there are three different kinds of representa-
tion for the Rhythm component of Ni: 
1. The inter-onset-interval (IOI): 

)N(t)N(t)N(T ionset1ionsetiIOI −= + , where ni1 <≤  

)N(t)N(t)N(T nonsetnoffsetnIOI −=  

2. The IOI Ratio (IOIR), which is the ratio between the 
IOI values of two succeeding notes: 

)(NT
)(NT

)N(T
1i

i
i

IOI

IOI
IOIR

−
= , where ni1 ≤<

 

1)(NT 1IOIR =  

3. The Log IOI Ratio (LogIOIR) [15], the logarithm of 
the IOI Ratio: 

))N(Tlog()N(T ii IOIRLogIOIR = , where ni1 ≤≤  

IOIR and LogIOIR are usually quantized by rounding 
the values to their closest integers [15]. However, we did 
not quantize in our experiments, and this might be an 
option to explore in the future.  

Like the note-interval or other common dynamic pro-
gramming search algorithms, NOTE-SIMPLE computes 
the melodic edit distance D(A, B) between two melodic 
sequences maaaA �21=  and nbbbB �21=  by filling the 
matrix ( nmd ...0...0 , ). Each entry jid ,  denotes the minimal 

melodic edit distance between the two prefixes iaa �1  
and ).1( jwbb jw ≤≤�  

 We use a classical calculation pattern for the algo-
rithm as shown: 

for 1 � i � m and 1 � j � n, 

�
�
�
�

�

�
�
�
�

�

�

≤≤+

≤≤+
+

+
+

=

+−−−

+−−−
−−

−

−

)(
}2 ),,,({

)(
}2 ),,,,({

)(),(
)(),(

)(),(

min

1,1

11,

1,1

1,

,1

,

ionfragmentat
jkbbawd

ionconsolidat
ikbaawd

treplacemenbawd

insertionbwd

deletionawd

d

jkjikji

jikijki

jiji

jji

iji

ji

�

�

φ
φ

 

 
Initial conditions are: 

di,0 = di-1,0 + w(ai, φ), i � 1 (deletion) 
d0,j = d0,j-1 + w(φ, bj), j � 1 (insertion) 
and d0,0 = 0. 

In order to simplify the algorithm, we define  
w(ai, φ)= k1 Cdel and w(φ, bj)=k1 Cins,  

where Cdel and Cins are constant values representing 
deletion cost and insertion cost respectively. We also 
define the replacement weight  

)()()()(),( 1 jijiji bTaTkbPaPbaw −+−= ,  



  
 
where P() can be Pabs() or Prel(), and T() is either TIOI() 
or TLogIOIR(). If IOIR is used, then 

�
�

�

�

�
�

	



+−=

)(aT

)(bT
,

)(bT
)(aT

maxk)P(b)P(a)b,w(a
iIOIR

jIOIR

IOIR

iIOIR
1jiji

j

 

k1 is the parameter weighting the relative importance of 
pitch and time differences. It is quite possible to be 
tuned for better performance. But in this experiment, we 
arbitrarily picked k1=1 if the Rhythm form is IOI or 
IOIR and k1=6 if the form is LogIOIR. Those values 
achieved reasonable results in our initial experiments. 

The equations for computing fragmentation and con-
solidation [16, 17] are only used in the calculation pat-
tern when the Rhythm input is in IOI form, as our previ-
ous experiments based on IOI [16] proves that 
fragmentation and consolidation are beneficial to the 
performance. We do not use fragmentation or consoli-
dation for the Rhythm input in IOIR or LogIOIR form, 
since fragmentation and consolidation do not really 
make sense when dealing with ratios. 

If the algorithm is computed on absolute pitches, the 
melodic contour will be transposed 12 times from 0 to 
11 in case the query is a transposition of the target. [16] 
Also the contour will be scaled multiple times if IOI is 
used. Both transposition and time scaling increase the 
computing time significantly. 

Testing was performed using the MUSART testbed [7], 
which has two sets of queries and targets. Database 1 is 
a collection of Beatles songs, with 2844 themes, and 
Database 2 contains popular and traditional songs, with 
8926 themes. In this section, we report results using 
Database 2, which is larger. In most instances, we use 
the mean reciprocal rank (MRR) to evaluate search per-
formance. For example if there are only two queries for 
which the correct targets are ranked second and fourth, 
the MRR is (1/2 + 1/4)/2 = 0.375. Thus, MRR ranges 
from zero (bad) to one (perfect). 

Table 1 lists some results obtained from the NOTE-
SIMPLE algorithm for different representations of me-
lodic sequence. For each of these tests, the insertion and 
deletion costs were chosen to obtain the best perform-
ance. The combination of Relative Pitch and Log IOI 
Ratio results in the best performance.  

Table 1. Retrieval results using various representations 
of pitch and rhythm. 

Representations MRR 
Absolute Pitch & IOI 0.0194 
Absolute Pitch & IOIR 0.0452 
Absolute Pitch & LogIOIR 0.0516 
Relative Pith & IOI 0.1032 
Relative Pitch & IOIR 0.1355 
Relative Pitch & LogIOIR 0.2323 

 
The relationship between the insertion and deletion 

costs is another interesting issue to be investigated. Table 
2 shows the results from different combinations of 
insertion and deletion costs. Note that these values are 
scaled by k1 = 6. 

The main point of Table 1 and Table 2 is that design 
choices have a large impact on performance. NOTE-
SIMPLE does not perform quite as well as Pardo’s note-
interval search algorithm [7], perhaps because his note-
interval search normalizes the replacement cost function 
to behave as a probability distribution. Further tuning 
might result in more improvements. Overall, we con-
clude that dynamic programming is quite sensitive to 
parameters. Best results seem to be obtained with rela-
tive pitches, Log IOI Ratios, and carefully chosen inser-
tion and deletion costs. Previous work that did not use 
these settings may have drawn false conclusions by 
obtaining poor results. 

Table 2. Retrieval results using different insertion and 
deletion costs. 

Cins : Cdel MRR 
0.5 : 0.5 0.1290 
1.0 : 1.0 0.1484 
2.0 : 2.0 0.1613 
1.0 : 0.5 0.1161 
1.5 : 1.0 0.1355 
2.0 : 1.0 0.1290 
0.5 : 1.0 0.1742 

 

Cins : Cdel MRR 
1.0 : 1.5 0.2000 
0.2 : 2.0 0.2194 
0.4 : 2.0 0.2323 
0.6 : 2.0 0.2323 
0.8 : 2.0 0.2258 
1.0 : 2.0 0.2129 
  

  
4. REIMPLEMENTATION AND TESTING OF 

THE CUBYHUM SEARCH ALGORITHM 

CubyHum is a QBH system developed at Philips 
Research Eindhoven. It uses a dynamic programming 
algorithm for melodic search. We are particularly 
interested in comparing the performance of its search 
algorithm with our algorithms. Thus we re-implemented 
the CubyHum search algorithm (a.k.a. CUBYHUM) in 
our system, following the published description [8]. 

CUBYHUM uses relative pitches in semitones; how-
ever, it further quantizes the relative pitches into 9 
integers: −4, −3, … 3, 4. The calculation pattern of the 
search algorithm is much more complex than the one 
used in NOTE-SIMPLE. However, it does not achieve 
very satisfying results even compared to our simple 
dynamic programming algorithm NOTE-SIMPLE. (See 
Table 3.) This seems to be in conflict with the common 
notion that complex calculation patterns yield better 
performance, but it is consistent with the notion that 
performance can vary tremendously with different 
design choices. 

Table 3. Performance of CubyHum compared to 
NOTE-SIMPLE, as measured by MRR. 

Algorithm Database 1 Database 2 
CUBYHUM 0.0229 0.0194 
NOTE-SIMPLE 0.1221 0.2323 

5. N-GRAMS FOR QUERY-BY-HUMMING 

An important problem with all of the approaches we 
have described so far is their performance in a large 
database. Even with substantial optimization, our fastest 



  
 
algorithm, the NOTE-SIMPLE algorithm, would run for 
many minutes or even hours on a database with a million 
songs (and perhaps 10 million themes). One possible 
solution is to use n-grams, which allow an index to be 
constructed to speed up searching. 

5.1. Two-stage search. 

It is unnecessary for the n-gram approach to work as 
well as note-interval matching or other techniques. The 
important thing is for n-grams to have very high recall 
with enough precision to rule out most of the database 
targets from further consideration. A more precise 
search such as the note-interval matcher can then be 
used to select a handful of final results. This two-stage 
search concept is diagrammed in Figure 2. 

 

Complete
Database

N-gram
Search

Note-Interval
Search

Results
 

Figure 2. A two-stage search using n-gram search for 
speed and note-interval search for precision. 

5.2. N-gram search algorithms 

Our n-gram search operates as follows: The audio query 
is transcribed into a sequence of notes as in the note-
interval search, and note intervals are computed. Pitch 
intervals are quantized to the following seven ranges, 
expressed as the number of half steps: 
     < −7, −7 to −3, −2 to −1, unison, 1 to 2, 3 to 7, >7 
IOI Ratios are quantized to five ranges separated by the 
following four thresholds: 4/2 , 2/2 , 2 , 22 . 
Thus, the nominal IOI Ratios are ¼, ½, 1, 2, and 4. 
These fairly coarse quantization levels, especially for 
pitch, illustrate an important difference between n-grams 
and other approaches. Whereas other searches consider 
of small differences between query and target intervals, 
n-grams either match exactly or not at all. Hence, coarse 
quantization is used so that small singing or transcription 
errors are not so likely to cause a mismatch. 

N-grams are formed from sequences of intervals. 
Figure 1 illustrates how a trigram is formed from a 
sequence of four notes. Note that the IOI for the last 
note is not defined, so we use the last note’s duration 
instead. In Figure 1, the trigram formed from pitch 
intervals and IOI Ratios is <2, 0.5, 2, 1, −4, 2>. 

A set of n-grams is computed for the query and for 
each target by looking at the n pitch intervals and IOI 
Ratios beginning at each successive note. For example, 

trigrams would be formed from query notes 1, 2, and 3, 
notes 2, 3, and 4, notes 3, 4, and 5, etc. 

To compute similarity, we basically count the number 
of n-grams in the query that match n-grams in the target. 
Several variations, based on concepts from text retrieval 
[18, 19] were tested. The following are independent 
design decisions and can be used in any combination: 
1. Count the number of n-grams in the query that have a 

match in the target (e.g. if an n-gram occurs 3 times 
in the query and twice in the target, the score is in-
cremented by 2). Alternatively, weight each n-gram 
in the query by the number of occurrences in the tar-
get divided by the number in the query (e.g. if an n-
gram occurs 3 times in the query and twice in the tar-
get, the score is incremented by 2/3). This is a varia-
tion of term frequency (TF) weighting. 

2. Optionally weight each match by the inverse fre-
quency of the n-gram in the whole database This is 
known as Inverse Document Frequency (IDF) 
weighting, and we use the formula log(N/d), where N 
is the total number of targets, and d is the number of 
targets in which the n-gram occurs. 

3. Optionally use a locality constraint: consider only 
target n-grams that fall within a temporal window the 
size of the query. 

4. Choose n-gram features: (a) Incorporate Relative 
Pitch and IOI Ratios in the n-grams, (b) use only 
Relative Pitch, or (c) use only IOI Ratios. 

5. Of course, n is a parameter. We tried 1, 2, 3, and 4. 

5.3. N-gram performance on vocal queries 

Although we were unable to explore all 96 permutations 
of these design choices, each choice was tested inde-
pendently in at least several configurations. The best 
performance was obtained with n = 3, using combined 
IOI Ratios and Relative Pitch (3 of each) in n-grams, not 
using the locality constraint, using inverse document 
frequency (IDF) weighting, and not using term fre-
quency (TF) weighting. This result held for both 
MUSART databases. 

Figure 3 show results for different n-gram features and 
different choices of n. As can be seen, note interval 
trigrams (combining pitch and rhythm information) work 
the best with these queries and targets. 

5.4. N-grams in a two-stage search 

The n-gram search (MRRs of 0.09 and 0.11 for the two 
databases) is not nearly as good as the note-interval 
search algorithm (MRRs of 0.13 and 0.28), but our real 
interest is the potential effectiveness of a two-stage 
system. 

To study the possibilities, consider only the queries 
where a full search with the note-interval search algo-
rithm will return the correct target ranked in the top 10. 
(If the second stage is going to fail, there is little reason 
to worry about the first stage performance.) Among 
these “successful” queries, the average rank in the n-
gram search tells us the average number of results an n-
gram search will need to return to contain the correct 



  
 
target. Since the slower second-stage search must look at 
each of these results, the possible speed-up in search 
time is given by: 

rNs /= , 
where s is the speedup (s ≥ 1), N is the database size, 
and r is the mean (expected value of) rank. Table 4 
shows results from our two databases. Thus, in Database 
2, we could conceivably achieve a speedup of 3.45 using 
n-grams to eliminate most of the database from consid-
eration. 

MRR for Database 1

0

0.025

0.05

0.075

0.1

1 2 3 4

Length  (n) of n-gram

M
R

R

IOIR

Pitch

Both

 
MRR for Database 2

0

0.04

0.08

0.12

1 2 3 4

Length (n) of n-gram

M
R

R

IOIR

Pitch

Both

 

Figure 3. N-gram search results on Databases 1 and 2. 

Table 4. Fraction of database and potential speedup. 

Database r /N s 
1 (Beatles) 0.49 2.06 
2 (General) 0.29 3.45 

Of course, we have no way to know in advance where 
the n-gram search will rank the correct target, and n-
gram searching takes time too, so this theoretical 
speedup is an upper bound. Another way to look at the 
data is to consider how results are affected by returning 
a fixed fraction of the database from the n-gram search. 
Again, considering only queries where the second stage 
search ranks the correct target in the top 10, we can plot 
the number of correct targets returned by the first-stage 
n-gram search as a function of the fraction of the data-
base returned. 

As seen in Figure 4, n-gram search is significantly 
better than random, but somewhat disappointing as a 
mechanism to obtain large improvements in search 
speed. If the n-gram search returns 10% of the database, 
which would reduce the second-stage search time ten-
fold, about 50% to 65% of the correct results will be 
lost. Even if the n-gram search returns 50% of the entire 
database, the number of correct results is still cut by 
25% to 40%. These numbers might improve if the n-

gram search returns a variable number of results based 
on confidence. 

Search Success vs. Fraction of Database

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction of Database Returned from Search

Fr
ac

tio
n 

of
 R

es
ul

ts
 C

on
ta

in
in

g 
C

or
re

ct
 

Ta
rg

et

Database 1

Database 2

Random

 

Figure 4. Performance of the best n-gram search show-
ing the proportion of correct targets returned as a func-
tion of the total number of results returned. 

The n-gram search fails on a substantial number of 
queries that can be handled quite well by slower 
searches. Bainbridge, et al. say “It is known that music-
based n-gram systems are computationally very efficient 
and have high recall…” [14], but with our data, we see 
that about 40% of the correct Database 1 targets are 
ranked last, and about 20% of the correct Database 2 
targets are ranked last. A last-place ranking usually 
means that the target tied with many other targets with a 
score of zero (no n-grams matched). In the event of a tie, 
we report the highest (worst) rank. Overall, our results 
with “real” audio queries suggest that singing and tran-
scription errors place significant limits on n-gram system 
recall. 

6. SUMMARY AND CONCLUSIONS 

Query-by-Humming systems remain quite sensitive to 
errors in queries, and in our experience, real audio 
queries from human subjects are likely to be full of 
errors and difficult to transcribe. This presents a very 
challenging problem for melodic similarity algorithms. 

By studying many configurations of note-based dy-
namic programming algorithms, we have determined 
that (1) these algorithms are quite competitive with the 
best techniques including melodic contour search and 
HMM-based searching, but (2) parameters and configu-
ration are quite important. Previous work has both 
overestimated the performance of note-based DP 
searching by using simple tasks and underestimated the 
performance by failing to use the best configuration.  

We re-implemented the CubyHum search algorithm 
and found that it performs poorly compared to a simpler 
but well-tuned note-based DP algorithm.  

We also studied the use of n-grams for query-by-
humming. Overall, n-grams perform significantly worse 
than other melodic-similarity-based search schemes. The 
main difference is that n-grams (in our implementation) 
require an exact match, so the search is not enhanced by 



  
 
the presence of approximate matches. Also, intervals 
must be quantized to obtain discrete n-grams, further 
degrading the information. 

We considered the use of n-grams as a “front end” in 
a two-stage search in which a fast indexing algorithm 
based on n-grams narrows the search, and a high preci-
sion algorithm based on dynamic programming or 
HMMs performs the final selection. We conclude that 
there is a significant trade-off between speed and preci-
sion. We believe our results form a good indication of 
what is possible with n-gram searches applied to “real 
world” queries of popular music from non-musicians. 

7. FUTURE WORK 

Indexing for melodic contours remains an interesting 
and open question. N-grams suffer because at least small 
errors are very common in sung queries. A better under-
standing of melody recognition by humans might sug-
gest new strategies. In particular, a better sense of what 
we recognize and remember might allow vast reductions 
in database size, perhaps even eliminating the need for 
indexing. Query-by-Humming with “real” audio queries 
is difficult even for the best of known algorithms. While 
the average user may be unable to produce effective 
queries for unconstrained music searches on the web, 
there is probably room for creative applications of QBH 
in personal media management systems, music assis-
tants, education, and entertainment systems yet to be 
envisioned. 

8. ACKNOWLEDGEMENTS 

The authors would like to acknowledge the MUSART 
team for building the testbed used in this study. Special 
thanks are due to Bill Birmingham, George Tzanetakis, 
Bryan Pardo, and Collin Meek. Stephen Downie pro-
vided helpful comments and references that guided our 
work with n-grams. This paper is based on work sup-
ported by the National Science Foundation under grant 
IIS-0085945. 

9. REFERENCES 

[1] R. B. Dannenberg, W. P. Birmingham, G. Tzanetakis, C. 
Meek, N. Hu, and B. Pardo, "The MUSART Testbed for 
Query-by-Humming Evaluation," Computer Music 
Journal, vol. 28, pp. 34-48, 2004. 

[2] W. Hewlett and E. Selfridge-Field, "Melodic Similarity: 
Concepts, Procedures, and Applications," in Computing in 
Musicology, vol. 11. Cambridge: MIT Press, 1998. 

[3] R. B. Dannenberg, "An On-Line Algorithm for Real-Time 
Accompaniment," in Proceedings of the 1984 
International Computer Music Conference, Paris, San 
Francisco:International Computer Music Association, 
1985, pp. 193-198. 

[4] D. Mazzoni and R. B. Dannenberg, "Melody Matching 
Directly From Audio," in 2nd Annual International 
Symposium on Music Information Retrieval, 
Bloomington, Indiana, Bloomington:Indiana University 
2001, pp. 17-18. 

[5] C. Meek and W. P. Birmingham, "Johnny Can't Sing: A 
Comprehensive Error Model for Sung Music Queries," in 
ISMIR 2002 Conference Proceedings, Paris, France, 
Paris:IRCAM 2002, pp. 124-132. 

[6] B. Pardo, W. P. Birmingham, and J. Shifrin, "Name that 
Tune: A Pilot Studying in Finding a Melody from a Sung 
Query," Journal of the American Society for Information 
Science and Technology, vol. 55, 2004. 

[7] R. B. Dannenberg, W. P. Birmingham, G. Tzanetakis, C. 
Meek, N. Hu, and B. Pardo, "The MUSART Testbed for 
Query-by-Humming Evaluation," in ISMIR 2003 
Proceedings of the Fourth International Conference on 
Music Information Retrieval, Baltimore, MD, 
Baltimore:Johns Hopkins University 2003, pp. 41-50. 

[8] S. Pauws., "CubyHum: A Fully Operational Query-by-
Humming System," in ISMIR 2002 Conference 
Proceedings, Paris, France, Paris:IRCAM 2002, pp. 187-
196. 

[9] M. Lesaffre, K. Tanghe, G. Martens, D. Moelants, M. 
Leman, B. D. Baets, H. D. Meyer, and J.-P. Martens, "The 
MAMI Query-By-Voice Experiment: Collecting and 
Annotating Vocal Queries for Music Information 
Retrieval," in ISMIR 2003 Proceedings of the Fourth 
International Conference on Music Information 
Retrieval, Baltimore, MD, Baltimore:Johns Hopkins 
University 2003, pp. 65-71. 

[10] J. S. Downie and M. Nelson, "Evaluation of a simple and 
effective music information retrieval method," in 
Proceedings of ACM SIGIR 2000, pp. 73-80. 

[11] J. S. Downie, Evaluating a Simple Approach to  Music 
Information Retrieval, Ph.D. Thesis.: Faculty of 
Information and Media Studies, University of Western 
Ontario, 1999. 

[12] A. Uitdenbogerd and J. Zobel, "Melodic Matching 
Techniques for Large Music Databases," in Proceedings 
of the 7th ACM International Multimedia 
Conference:ACM 1999, pp. 57-66. 

[13] S. Doraisamy and S. Ruger, "A Comparative and Fault-
tolerance Study of the Use of N-grams with Polyphonic 
Music," in ISMIR 2002, Paris, France 2002, pp. 101-106. 

[14] D. Bainbridge, M. Dewsnip, and I. H. Witten, "Searching 
Digital Music Libraries," in Digital Libraries: People, 
Knowledge, and Technology: 5th International 
Conference on Asian Digital Libraries, Singapore, New 
York:Springer-Verlag 2002, pp. 129-140. 

[15] B. Pardo and W. P. Birmingham, "Encoding Timing 
Information for Musical Query Matching," in ISMIR 2002 
Conference Proceedings, Paris, France, Paris:IRCAM, 
October 13-17 2002, pp. 267-268. 

[16] N. Hu and R. B. Dannenberg, "A Comparison of Melodic 
Database Retrieval Techniques Using Sung Queries," in 
Proceedings of the second ACM/IEEE-CS joint 
conference on Digital libraries, New York:ACM Press 
2002, pp. 301-307. 

[17] M. Mongeau and D. Sankoff, "Comparison of Musical 
Sequences," in Melodic Similarity Concepts, Procedures, 
and Applications, vol. 11, Computing in Musicology, W. 
Hewlett and E. Selfridge-Field, Eds. Cambridge: MIT 
Press, 1990. 

[18] G. Salton, Automatic Text Processing: The 
Transformation, Analysis, and Retrieval of Information 
by Computer: Addison-Wesley, 1988. 

[19] G. Salton and M. J. McGill, Introduction to Modern 
Information Retrieval: McGraw-Hill, 1983. 


