
MusicBLAST — GAPPED SEQUENCE ALIGNMENT FOR MIR

Jürgen Kilian
Darmstadt University of Technology

FB Informatik / AFS
e-mail:kilian@noteserver.org

Holger H. Hoos
University of British Columbia

Department of Computer Science
e-mail:hoos@cs.ubc.ca

ABSTRACT

We propose an algorithm, MusicBLAST, for approximate
pattern search/matching on symbolic musical data. Mu-
sicBLAST is based on the BLAST algorithm, one of the
most commonly used algorithms for similarity search on
biological sequence data [1, 2]. MusicBLAST can be used
in combination with an arbitrary similarity measure (e.g.,
melodic, rhythmic or combined) and retrieves multiple oc-
currences of a given search pattern and its variations. Dif-
ferent from many other pattern matching techniques, it can
find incomplete and imperfect occurrences of a given pat-
tern, and produces a significance measure for the accuracy
and quality of its results. Like BLAST — and different
from many musical pattern matching approaches — Mu-
sicBLAST retrieves heuristically optimised bi-directional
alignments searching iteratively in forward and backward
direction by starting at a dedicatedseed noteposition of a
performance.
Keywords: Similarity, pattern matching, retrieval.

1. MOTIVATION

Searching for a given musical pattern or fragment (based
on melodic, rhythmic, or arbitrary types of similarity) in a
piece of music or a musical database is a common task in
the context of music information retrieval (MIR). Related
to pattern searching are the problems of pattern induction
in the context of musical analysis (i.e., inferring a global
structure, such as AABA) and the task of score-following.

Typical queries may be inexact, and consequently, a
search algorithm should be able to support approximate
pattern matching and gapped alignments between a search
pattern and given performance data or pieces in a data-
base. Especially in the MIR domain, matching algorithms
typically need be able to search large databases, and hence
must be optimised for performance. A similar situation
arises in the domain of bioinformatics, where the identi-
fication of approximate similarities between biological se-
quences, such as genomic DNA, is an extremely important
task; in this field, an algorithm calledBasic Local Align-
ment Search Tool(BLAST) has become one of the most
widely used methods for accomplishing this task.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

The similarity between the problem of finding approx-
imate matches for a given biological sequence (e.g.,a ge-
ne) in large biological sequence databases (such as Gen-
Bank) and typical retrieval tasks in the musical domain
suggests the adaptation of the basic features of BLAST
to musical data. In the following we give a short out-
line about the original BLAST algorithm and explain its
adaption to retrieval on symbolic musical data. This is
followed by a summary of preliminary results on the per-
formance of the new MusicBLAST algorithm, and an out-
look to future work.

2. BLAST

The gapped BLAST algorithm [2], based on an earlier
ungappedversion [1], is a commonly known and widely
used search tool in biological sequence analysis. Applied
to amino acid sequences, it works as follows:1

First awindow based similarity matrixof sizem × n
between two arbitrary amino acid strings of sizem andn,
respectively, is created. Each entry of the matrix repres-
ents the similarity between subsequences of the two amino
acid strings with a certain lengthl; l is also calledwin-
dow size. The similarity between twosingle charactersof
the strings is calculated by using aposition specific score
matrix which specifies a similarity measure between the
different amino acids. A commonly used score matrix for
amino acids is the20 × 20 PAM matrix.2

Next, alimited number of high-scoring hitswithin the
window-based similarity matrix (best matching windows)
are selected and used for determining the start positions
(seeds) for possible alignments. A high-scoring window
will only be used for determining a seed position if in the
same diagonal of the matrix another high-scoring entry
appears within a certain distance. As a start position (seed),
any entry of an high-scoring window (e.g., the one with
the highest score, or the centre of the window as used in
[2]) might be selected. Starting from the selected seeds, a
bi-directional gapped alignmentswill be retrieved using a
performance optimised version of string matching by dy-
namic programming (DP), which produces a cost optim-
ised local alignment.

As shown in Figure 1, the two DP tables for the right
and left directed alignments are filled alternatingly via the
inverse diagonals, starting at the seed position.

1 While in [2], BLAST is applied to protein sequences,i.e.,sequences
of amino acid symbols, in general, it is also frequently applied to DNA
and RNA sequences.

2 see http://www.cmbi.kun.nl/bioinf/tools/pam.
shtml

http://www.cmbi.kun.nl/bioinf/tools/pam.shtml
http://www.cmbi.kun.nl/bioinf/tools/pam.shtml


Figure 1. BLAST: iterative filling of the DP table along
the inverse diagonals of the right and left alignment.

Although in principle, the DP procedure guarantees an
optimal local alignment, because of the use of heurist-
ically selected seed positions and abort criteria, BLAST
may not always find an optimal alignment; however, in
practice, it has been found to give an excellent combina-
tion of accuracy and efficiency. To achieve this efficiency,
the number of evaluated cells of each DP table is limited
by a threshold on the score of cells relative to the cur-
rent best alignment score. Cells are marked as invalid if
their score falls below this threshold. For invalid cells loc-
ated at the border of the DP table, the remaining cells of
the corresponding row or column need not be evaluated.
Different from other efficiency improvements to DP (e.g.,
[1, 4]), this heuristic does not directly limit the length or
the course of the best path of the DP table.

The most time consuming task within BLAST is the
generation of gapped alignments; but by using the thresh-
old optimisations, the complexity for computing a single
alignment can typically be minimised far belowO(n ·m),
because then large parts of the DP table must not be filled.
Furthermore, the window-based similarity matrix is used
to limit the number of calls to the DP procedure to prom-
ising start positions.

3. BLAST ON MUSICAL DATA

By using the outline of the original gapped BLAST ap-
proach and adapting the similarity measures to musical
data, it is possible to exploit the performance advantages
of the BLAST algorithm for pattern retrieval and similar-
ity analysis in the musical domain. For creating the simil-
arity matrix on musical data (a series of notes and chords),
the scoring matrix for amino acids (or nucleotides) needs
to be replaced by a similarity function that assigns a score
to any combination of two notes or chords. Depending on
the precise application context, this similarity function can
be based on any feature of a single note or chord, in par-
ticular: pitch, pitch ratio (interval), duration, inter-onset

interval (IOI), IOI ratio, or intensity. Analogously to the
biological scoring matrix, the similarity function should
give positive results for highly similar notes and negat-
ive results for notes that are not similar. In general, any
similarity function can be used that satisfies the general
requirements of a DP cost function, especially similarity
functions used in context of other DP based musical string
matching (e.g.,[4]). Here eventually the function’s output
range must be normalised to the intended range. By eval-
uating the IOI ratio and/or the duration ratio instead of
absolute IOI and duration, it is possible to allow rhyth-
mical pattern matching between any combination of un-
quantised performance data and quantised score data. To
start the bi-directional alignment, aseed noteneeds to be
selected within each high-scoring window of the similar-
ity matrix; this can be the centre note or any other note
inside the window (e.g.,the longest note). For our evalu-
ation we used the note with the highest similarity score as
start position.

It should be noted that standard DP methods for string
matching have already been successfully applied to score
following (see [3]) and MIR (e.g., [10]); however, com-
pared to the approach proposed here, these suffer from
several limitations. For example, a bi-directional heur-
istic alignment (starting from the seed note in forward and
backward direction) promises advantages for all scenarios
where two patterns have a high (ungapped) similarity on
a small range of notes only. By starting the alignment
search in both directions from that high similarity region,
the number of calculations during the dynamic program-
ming can be decreased significantly. In these situations
standard approaches such as [10] would require the cal-
culation of alln · m positions of the DP table, where the
query lengthm is usually significantly smaller than the
performance length or database sizen. Assuming that
the calculation of an alignment will be aborted by the op-
timisation features of BLAST if the number of insertions
(gaps) exceedsk·m. the bi-directional approach would re-
quire the calculation of only2 · k · m2 entries. The rather
simple calculation of the similarity matrix still requires
time O(n · m), but the complexity of the alignment re-
trieval depends only on the query length.

After retrieving a set of cost optimised gapped align-
ments — built by concatenating of pairs of left- and right-
alignments — these can be ranked by their significance
or matching quality. This significance can be determined
as the total cost already calculated by the DP procedure or
calculated by applying a general cost function, which need
not satisfy the constraints for DP. By allowing gaps in the
alignment of a search pattern and the performance data,
the query will be more robust against extraneous or miss-
ing notes in the pattern and/or the performance data. Us-
ing BLAST on musical data, as described above, it is also
possible to retrieve substring alignments and multiple oc-
currences of a pattern in a piece or performance. Mongeau
and Sankoff proposed an approach based on dynamic pro-
gramming that allows fragmentation (splitting of notes)
and consolidation (merging of notes) during retrieving a
cost optimal alignment [8]. In principle, it should be pos-
sible to integrate their improvements into BLAST, where
this would require a re-design of the advanced aborting
criteria of BLAST, which might decrease its efficiency.



4. PRELIMINARY RESULTS AND DISCUSSION

The MusicBLAST algorithm described in the previous sec-
tion has been prototypically implemented within a more
general system for inferring score level information from
low level musical data calledmidi2gmn, which supports as
input mechanically or live performed MIDI files or sym-
bolic representation in GUIDO Music Notation. The Mu-
sicBLAST module can be used in two ways: for retrieving
approximate (complete or partial) occurrences of a search
pattern given as a single voice GUIDO file, or for analysing
the overall structure of an arbitrary input file by perform-
ing a self-similarity analysis. For the example discussed
in the following, we used a similarity measure that eval-
uates the absolute (transposition invariant) pitch distance
between two notes; intervals smaller than three semitones
resulted in positive costs and intervals larger than three
semitones in negative costs. Gaps were assigned a penalty
equal to that of a five-semitone interval.

& 44 X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ
_X�ÚÚÚÚÚÚÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ

3

a X�ÚÚÚÚÚÚb X�ÚÚÚÚÚÚn ¥ ‹
& 44 X�ÚÚÚÚÚÚ . X�ÚÚÚÚÚÚJ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ‹

3

X�ÚÚÚÚÚÚJ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ
7

® X�ÛÛÛÛÛÛÛÛ# X�ÛÛÛÛÛÛÛ X�ÛÛÛÛÛÛ X�ÛÛÛÛÛÛÛÛ X�ÛÛÛÛÛÛ X�ÛÛÛÛÛÛÛÛ ‹
X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÛÛÛÛÛÛ ‹
‹‹‹‹

‹‹‹‹
&
&

a X�ÚÚÚÚÚÚJ a X�ÚÚÚÚÚÚJ a X�ÚÚÚÚÚÚJ a X�ÚÚÚÚÚÚJ ‹
X�ÚÚÚÚÚÚ . X�ÚÚÚÚÚÚJ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ‹

3

a X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ¥ ‹
X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ E�ÚÚÚÚÚÚ ‹

a X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚJ
3

a X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ a X�ÚÚÚÚÚÚJ ‹
X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚÚ

X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ‹
‹‹‹‹

‹‹‹‹
‹‹‹‹

&

&
5

@ X�ÚÚÚÚÚÚ# X�ÚÚÚÚÚÚ _
___X�ÚÚÚÚÚÚÚÚÚÚÚÚÚÚ _X�ÚÚÚÚÚÚ @ X�ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ X�ÚÚÚÚÚÚ

X�ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ
n X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ‹

X�ÚÚÚÚÚÚ _X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ ‹

@ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ 3a X�ÛÛÛÛÛÛ X�ÛÛÛÛÛÛ a X�ÛÛÛÛÛÛj ‹
X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÚÚÚÚÚÚ X�ÛÛÛÛÛÛ X�ÛÛÛÛÛÛ X�ÛÛÛÛÛÛ ‹

a X�ÚÚÚÚÚÚ . \
w

\

‹‹‹‹‹

‹‹‹‹‹

\\\\\

Figure 2. Example showing a performance and the ori-
ginal score ofAlouette(the same example is discussed
in [9]). The solid lines connect pairs of notes that have
been aligned by our implementation of the MuscBLAST
algorithm. Dashed vertical lines (with arrows on top) in-
dicate the start positions of the alignments included in the
path of the four overlapping alignments around the main
diagonal of the similarity matrix (the two other alignments
are not shown here, see Figure 4). Dashed connections
between notes indicate that here the different alignments
paths produced different alignments. Note that the align-
ment at the beginning of the first measure is a result of the
fact that the similarity measure used in this experiment ig-
nores any rhythmic information.

For the input data shown in Figure 2, our MusicBLAST
implementation selected six high scoring entries of the
similarity matrix, each of which triggered the bi-directio-
nal DP procedure for retrieving an optimum alignment
starting at the best match of the high scoring window (see
Figure 4b). The evaluation of our tests showed that the use
of the BLAST optimisations for DP decreased the number
of cells (of the DP tables) that needed to be evaluated for
the retrieval of all six alignments from12 054 (= 41·49·6)
to 2 143 (17.8%). As shown in the trace of the alignment
paths in Figure 4c, the start positions of the alignments 3

nr length (l/r/l+r) #cells/length (l/r/l+r)
1 7 / 12 / 19 8.8 / 7.9 / 8.3
2 5 / 42 / 47 7.5 / 10.17 / 9.85
3 25 / 21 / 46 9.32 / 12.23 / 10.67
4 13 / 31 / 44 7.31 / 11.9 / 10.52
5 36 / 9 / 45 10.86 / 9.78 / 10.64
6 2 / 9 / 11 4.5 / 9.0 / 8.18

average 1-6: 11.08
average 1,2,6: 8.24

Figure 3. Evaluation of the retrieved alignments for the
Alouetteexample. Each column shows the values for the
right-, left-alignments, and the combination of both. The
column length shows the lengths of the retrieved align-
ments including inserted gaps, the right column gives the
relation between the number of evaluated cells of the DP
tables and the retrieved alignment length.

to 5 are subsets of the path of alignment 2. Assuming that
it is possible (without increasing the overall time complex-
ity) to mark start positions as invalid, that are part of an
already retrieved alignment, then the number of evaluated
cells would have been decreased to only 11.8% compared
to a non-optimised DP implementation. The roughtly con-
stant ratio between the number of evaluated cells and the
length of the retrieved pattern seen in Figure 3 gives an in-
dication that the assumption that with using the optimised
method for filling the DP table in BLAST (marking high
penalty cells as invalid), on average, a single bi-directional
alignment can be computed in timeO(m), wherem is the
length of the query.

One of the algorithms for pattern matching proposed
in [5] (named Algorithm 3) appears to be similar to Mu-
sicBLAST (and gapped BAST, respectively), but there are
some differences between both algorithms: Algorithm 3
searches in two directions for start and end points of a dis-
covered pattern, but not in the iterative bi-directional way
used within the BLAST approach. In our model, the abort
criterion depends on the distance between local alignment
costs and the best local alignment costs achieved so far;
this seems to be less restrictive than the global threshold
proposed by Dannenberg and Hu. The dynamic abort cri-
terion of BLAST avoids the insertions of gaps at the end of
the alignment (where they have to be trimmed later). The
window based MusicBLAST selection strategy for start
positions of alignments seems to be more selective (higher
discrimination rate) than the single-note-similarity-based
strategy of Algorithm 3. As shown in Figure 4, the win-
dow based similarity matrix (b) achieves a significantly
higher discrimination rate than a matrix based on note-to-
note similarity (a). With the MusicBLAST approach it is
possible — if desired — to retrieve overlapping matches,
which seems to be not the case for the approach described
in [5]. Finally, different from Dannenberg’s and Hu’s im-
plementation, where a complete secondn × m matrix
is used for marking invalid cells, MusicBLAST requires
only two arrays (with sizen andm) for storing the index
of the last evaluated cell (first invalid cell, respectively) in
each row and each column.

There are faster algorithms for exact pattern matching



(a) (b) (c)

Figure 4. Alouetteexample, scorevs performance, absolute pitch similarity measure: (a) one-by-one similarity matrix;
(b) similarity matrix (window size 4) the window similarity has been calculated as the product of the single note-to-note
similarity values of all notes within in a window); (c) trace of retrieved alignments. In (a) and (b), the bright regions have
a high similarity. In (c), the start positions of the traces are indicated by a pair of black squares (one for the left and one for
the right direction). Positions included only in a single alignment are coloured in light grey. A dark grey coloured position
indicates that it is included in more than one alignment. The slight deviations between the four overlaid traces around
the main diagonal (nr 2–5 in Figure 3) are caused by ambiguities of the cost function (e.g.,for a series of three perfect
matches and a single gap, the cost function is independent of the gap position) and the different directions (left/right) in
which they have been passed by the alignment.

(such as suffix-tree-based methods with time complexity
O(m) [7]), but it is somewhat unclear whether the under-
lying indexing techniques can be applied to approximate
matching approaches for handling queries with missing or
additional notes and arbitrary similarity measures. The
MusicBLAST approach is robust against these errors, can
be adapted to different similarity measures, and can be
used for quantised and live performed input data.

Because of the voice separation (stream segregation)
functionality available in midi2gmn [6], MusicBLAST can
be applied to non-separated polyphonic data as well as to
the single voices (containing notes and chords) obtained
from voice separation. First results from analysing the
melodic and rhythmic similarity in live performed and me-
chanical MIDI files showed that MusicBLAST can retrieve
significant occurrences of a search pattern and analyse
self-similarities within a performance with an adequate
response time. A detailed evaluation of MusicBLAST
will be conducated in the near future. With the current
direction in developing data formats for representing hy-
brid combinations audio and symbolic information (e.g.,
MPEG7), the number of databases with symbolic musical
data and the need for performance optimised retrieval al-
gorithms should increase even more in future. Given the
popularity and success of BLAST in biological sequence
analysis and retrieval, we believe that MusicBLAST has
substantial potential MIR research and applications.

5. REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool.Journal
of Molecular Biology, 215(3):403–410, October 1990.

[2] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST

and PSI–BLAST: a new generation of protein database
search programs.Nucleic Acids Research, 25:3389–3402,
1997.

[3] T. Crawford, C. S. Iliopoulos, and R. Raman. String-
Matching Techniques for Musical Similarity and Melodic
Recognition.Computing in Musicology, 11:73–100, MIT
Press, 1998.

[4] R. B. Dannenberg, An On-Line Algorithm for Real-Time
Accompaniment.Proceedings of ICMC 1984, pages 193–
198, 1984.

[5] R. B. Dannenberg and N. Hu. Pattern Discovery Tech-
niques for Music Audio. Proceedings of ISMIR 2002,
pages 63–70, 2002.

[6] J. Kilian and Holger H. Hoos. Voice separation — a local
optimisation approach.Proceedings of ISMIR 2002, pages
39–46. IRCAM – Centre Pomdidou, Paris, France, 2002.

[7] K. Lemstr̈om, A. Haapaniemi, and E. Ukkonen. Retrieving
music — to index or not to index.ACM Multimedia ’98,
1998.

[8] M. Mongeau and D. Sankoff. Comparison of musical se-
quences, Computers and the Humanities, 24:161–175,
1990.

[9] B. Pardo, W. P. Birmingham. Improved Score Following
for Acoustic Performances,Proceedings of ICMC 2002

[10] L. A. Smith, R. J. McNab, and I. H. Witten. Sequence-
based melodic comparison: a dynamic programming ap-
proach. Computing in Musicology, 11:101–117. MIT
Press, 1998.


	 Motivation
	 BLAST
	 BLAST on Musical Data
	 Preliminary Results and Discussion
	 References

