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ABSTRACT

Most research into music information retrieval thus far has
only examined music from the western tradition. How-
ever, music of other origins often conforms to different
tuning systems. Therefore there are problems both in rep-
resenting this music as well as finding matches to queries
from these diverse tuning systems. We discuss the issues
associated with microtonal music retrieval and present
some preliminary results from an experiment in applying
scoring matrices to microtonal matching.

1. INTRODUCTION

In the field of music retrieval research there is a temptation
to work only with western music, as this is readily avail-
able in a variety of electronic formats. Music of other cul-
tures presents many difficulties. Much is not recorded, and
is orally transmitted. Recordings are not found in quan-
tity in the local record store. The unusual tunings of mu-
sic from some cultures means that it cannot be adequately
rendered in standard music formats such as MIDI. Despite
these difficulties, there are collections of music gathered
by ethnomusicologists that may be available with some
effort in transcription.

There has been some work on the representation of mu-
sic with non-western tuning. Most proposals involve map-
ping existing notes to slightly different tunings (discussed
in Section 3). Additionally there has been comparative
analysis of collections of folk music from different cul-
tures. For example, Schaffrath analysed a collection of
Chinese folk tunes represented using scale numbers. He
used a similar representation for music of German ori-
gin and compared the properties of each collection. This
cross-comparison ignored the disparate tunings of the two
types of music, but allowed for statistical comparison of
melodies, revealing telling differences between Chinese
and German melodic traditions [28].

At this stage it is not clear whether separate techniques
are required for matching microtonally, or whether there
is a need for such an application. This work assumes that
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matching with exact tuning is required, and therefore as-
sumes that the queries will be well-formed, possibly by
a musicologist, or that an example recorded piece of mu-
sic would be used as the source and pitches automatically
extracted from it.

In this paper we describe some example tuning systems
which are not perfectly represented by standard western
representations. We discuss various representations avail-
able, then show a simple representation of tuning systems
that was used in our work. The experiments show the
effect of applying various dynamic programming scor-
ing matrices to the problem of matching. The matching
techniques generally work well within the experimental
framework, but the test collection is very small due to a
lack of availability of microtonal music in electronic form.

2. TUNING SYSTEMS

Many traditional tuning systems exist. In particular, East-
ern music has many tuning systems. Some instances are
Sundanese (West Java, Indonesia)slendro (five-tone sys-
tem), Javanese (Central and East Java, Indonesia)pelog
(seven-tone system), and the Chinese five-tone system.
For illustration, we present Javanese pelog here. The
pitches sound close to the Phyrgian mode, which corre-
sponds to E-F-G-A-B-C-D and its transpositions, in the
Western twelve-tone system [18].

Not all tuning systems have corresponding pitches in
other tuning system(s). For example, in Sundanese slen-
dro padantara tuning, the interval between two pitches is
240 cents [32]. If we try to fit this into equal-tempered
twelve-tone system, we get a pitch in Sundanese slendro
padantara that lies almost in the middle of two pitches in
equal-tempered twelve-tone system (240 between200 and
300). Although 240 is closer to200 than to300, it is
not close enough to any. This is because the difference
is larger thanjust noticeable difference (see Section 4.1).
This phenomenon is described asmicrotonality.

3. COMPUTER REPRESENTATIONS FOR
MICROTONAL MUSIC

For a music representation to accommodate alternative
tunings and microtonalism, it needs to provide the facil-
ity for the pitches of the tuning system to be defined. We
assume here that there is consistency in the tuning across
a piece of music or at least a section of the music, so that
one tuning definition can be applied to the music.



Below we discuss several methods that can be applied
to microtonal representation, and we follow this with the
simple approach used for our experimental data.

MIDI MIDI (Musical Instrument Digital Interface), in
terms of music format, is a representation that supports
polyphonic music and multitrack recording and playback.
It encodes notes as integers.

The Standard MIDI File (SMF) format andGeneral
MIDI (GM) defines how MIDI data should be stored. It
has no support for non-twelve-tone systems. According to
Correia and Selfridge-Field, Scholz has proposed an ex-
tension to MIDI concerning tuning systems [4]. However,
it is not a strict standard. MIDI Manufacturer Associa-
tion has publishedMIDI TUNING Extensions [22]. This is
however still limited to twelve-tone systems. What users
can do is alter the tuning of each pitch. For example, we
can detune C by−20 cents, C♯ by 15 cents, D by50 cents,
and so on. With standard MIDI this can be achieved by
pitch bend events.

ESAC ESAC has support for non-twelve-tone systems.
For example, Schaffrath defined the tuning of heptatonic
scales to allow the encoding of music from many cul-
tures [28].

In ESAC, a pitch is represented as a number. This is
applicable to scales originating from most cultures. En-
coding is invariant with respect to scale or tuning systems.
The tonic (first note) is always represented by “1”. The
note encoding is similar to solfege [29]. Note durations
are stored as relative durations. Besides pitches and note
durations, the title, source, and social function of a tune
are also stored [29].

With regard to melody retrieval, matching on an
ESAC-encoded tune can involve pitch components only,
note duration component only, or a combination of both.
ESAC has been used to identify that the first five notes
of the clarinet part of Mozart’s second trio from Clar-
inet Quintet resembles two German folksongs, “Hoert Ihr
Herrn und lasst euch sagen” and “Trauer, Trauer, über
Trauer” [29].

Despite being effective for melody retrieval, this rep-
resentation has a basic limitation: it has no support for
polyphonic music.

Humdrum Huron has created a set of utilities called
Humdrum, which is useful for facilitating the posing and
answering of music research questions [19]. Humdrum by
itself is not useful for representing any music, because it
is a syntax [19]. Humdrum is not limited to any particular
tuning system. Users may define their own representa-
tions. For twelve-tone-system representation, a Humdrum
representation calledkern has been suggested.

One of the strengths of Humdrum is its support for
polyphonic music which is one of its design consider-
ations. It can represent “sequential and/or concurrent
time-dependent discrete symbolic data” [19]. Notes that
sound at the same time are calledconcurrent attributes,

while notes that sound sequentially are calledsequential
events [19].

XML XML is a rapidly developing technology. There
is an abundance of tools supporting the meta-language,
such as authoring tools, development libraries, viewers,
and converters. It can also be extended by users to fit
their own needs. Data definition is made possible by the
use of a Document Type Description (DTD) and an XML
Schema [7]. As XML documents can contain semistruc-
tured data [7] they can be used to store music. Using the
method suggested by Roland [27], notes are described as
shown in the example below.

<note pitch="C4" dur="1" />
<note pitch="D4" dur="0.5" />
<note pitch="E4" dur="0.5" />

Adding microtonal information would be a simple mat-
ter of defining further XML tags that contain tuning infor-
mation for the scale.

XML is effective, but inefficient in its raw state. How-
ever, despite its verbose nature, XML generally com-
presses very well. Its efficiency can be increased further
by indexing.

MTRI The Micro-Tonal Representation for Information
Retrieval (MTRI) was designed as a music representation
method for our microtonal experiments. It consists of
the essential elements required for melody, harmony and
rhythm representation, but ignores other musical aspects
such as loudness. However, the representation is sufficient
to capture the recognisable elements of a piece of music.
For the sake of brevity we mainly describe the tuning sys-
tem representation here, as that is the principle concern of
this piece of research.

To encode a tune in MTRI, two files are used: MTP
(MTRI pitch specification file) and MTS (MTRI score
file). An MTP stores information about pitch frequencies,
while an MTS stores information about note events.

In an MTP, the parameterN is used to describe the
number of notes in the tuning system. As an example,
for the equal-tempered twelve-tone system,N = 12 (see
Figure 1). A pitch is stored in one line. When storing pitch
names that have the same frequency, all the pitch names
must appear before the frequency.

An MTS begins with the directive:Use, which spec-
ifies the MTP to be associated with the tune. For modern
compositions with tuning systems that change mid-work,
it would be simple to extend the representation by allow-
ing the use of the directive wherever a new tuning system
is required. The note names are not limited to the letters
A to G, so microtonal melodies that divide the octave into
more than 12 notes are also able to be stored.

4. RETRIEVAL

An information retrieval system is only useful when it can
answer queries effectively. Information retrieval systems



N = 12

C B+ 261.63
C+ D- 277.18
D 293.66
D+ E- 311.13
E F- 329.63
F E+ 349.23
F+ G- 369.99
G 392.00
G+ A- 415.30
A 440.00
A+ B- 466.16
B C- 493.88

Figure 1. MTP for equal-tempered twelve-tone system.

that support ranked queries measure how similar a query
is to items in the database according to some meaning of
relevance [41]. Most music retrieval systems including the
one we report here support ranked queries. In our case, the
queries are tunes.

Various matching techniques have been developed
to anticipate query vagueness. Dynamic programming
was examined by Uitdenbogerd and Zobel [35], a tech-
nique suggested by Mongeau and Sankoff [23]. The
first published use ofn-grams for melody matching was
by Downie [10]. The concept was further examined
by Uitdenbogerd [35], Pickens [25] and Doraisamy and
Rüger [9]. The comparison of both approaches has been
shown by Uitdenbogerd and Zobel [36], which indicated
thatn-grams can be used as a fast alternative to dynamic
programming approaches to melody matching without
significant loss of effectiveness. An alternative approach
is the indexing of notes and applying a look-up of each
note in multiple musical keys, with the Chinese remain-
der theorem for transposition-invariant retrieval [3]. Re-
cent work by Birmingham, Meek, O’Malley, Pardo, and
Shifrin [1] uses stochastic models.

Dannenberg, Birmingham, Tzanetakis, Meek, Hu, and
Pardo [6] also used HMM (Hidden Markov Models) along
with dynamic programming in conjunction with directed
modulo-12 standardisation [36] andInter Onset Interval
ratio values. They also tested melodic contour match-
ing. Effectiveness was reported as MRR (Mean Recip-
rocal Rank), the percentage of answers ranked as the first
answer, in the top two, and in the top three. Closely related
to this work are those by Meek and Birmingham [21] and
Shifrin and Birmingham [31], both of which use HMM
for searching and MRR to report its effectiveness.

Kageyama, Mochizuki, and Takashima [20] used dy-
namic programming for their query-by-humming retrieval
system. Their system also made use of note duration in-
formation for melody matching. The query melody and
the melodies in the database were transposed for match-
ing. Note duration was used as the weight for matching
score. The effectiveness is reported using the number of
melodic samples (out of100) retrieved as the first answer
and in the top ten.

To support comparison of different renditions of the

same piece of music, melody standardisation is used [35].
Here, a pitch is not represented exactly as it sounds. This
is to support approximate matching. This is analogous
to a technique in text retrieval systems called case folding
(converting all characters to the same case [41]). There are
many possble melody standardisations, but we will only
cover the one relevant to this experimentexact microtonal
interval. We also consider incorporating note duration in-
formation for matching.

We use approximate string matching [24]. The algo-
rithm to be used isedit distance, also known asLeven-
shtein distance. We do not use the simplest form of this
algorithm, as described by Crochemore and Rytter [5].
However, we use its variation calledalphabet-weight edit
distance [12]. Matching is done in conjunction with con-
tour, directed modulo, and exact microtonal interval stan-
dardisations. This is discussed further in Section 4.4.

4.1. Pitch Standardisation

Uitdenbogerd’s doctoral thesis [34] discusses various re-
trieval standardisations some of which are the basis for our
microtone-enabled techniques. Besides contour and ex-
act interval standardisations, the thesis also focuses ondi-
rected modulo-12 for the underlying experiments. The di-
rected modulo-12 standardisation represents each note as
a numeric value which is the interval in semitones (scaled
to a maximum of one octave) relative to the previous note.
The value is expressed as:

ρ12 ≡

{

0 ; d = 0
d(1 + ((I − 1) mod 12)) ; d 6= 0

(1)

whereI is the interval between a note and its previous note
(absolute value) andd is 1 if the previous note is lower
than the current note,−1 if higher, and0 if otherwise [33,
34]. This is however limited to twelve-tone systems. For
non-twelve-tone systems, the formula can be generalised
so that a note is expressed as:

ρt ≡

{

0 ; d = 0
d(1 + ((I − 1) mod t)) ; d 6= 0

(2)

wheret is the number of tones in the tuning system [33].
This is may only work well for equal-tempered tuning sys-
tems and a special scoring technique may need to be de-
veloped for matching two tunes having different number
of tones in their tuning systems.

Exact Microtonal Interval standardisation is an exten-
sion of exact interval standardisation as described in Uit-
denbogerd and Zobel [36]. In the exact interval stan-
dardisation, a note is represented using the number of
semitones between itself and its previous note [36]. In
contrast, for microtone-enabled matching purposes, we
express intervals incents. As an example, “Melbourne
Still Shines” (Figure 2) is represented as “700 400 100
-500 -500 200 300 -200 -100 -200” (see Ta-
ble 1). Two notes that differ are perceived as “fairly simi-
lar” when the frequency difference is less than just notice-
able difference (JNDF) [8, 26]. JNDF is not a linear mea-
sure. At 100 Hz, JNDF is 3 Hz, while at 2 000 Hz, JNDF



Table 1. Exact microtonal interval standardisation exam-
ple.

Transition ιc

C4-G4 700

G4-B4 400

B4-C5 100

C5-G4 −500

G4-D4 −500

D4-E4 200

E4-G4 300

G4-F4 −200

F4-E4 −100

E4-D4 −200

Figure 2. Melbourne Still Shines by ade ishs.

is 10 Hz [26]. However, Zwicker and Fastl [42] suggest
using a linear approximation of JNDF function of:

∆(ν) = 0.007ν (3)

whereν is frequency in Hz and∆ is the linear JNDF
function. Their suggestion is based on musical tones com-
monly consisting of higher frequency harmonics. In cents,
JNDF is approximately 12 cents (1200 log2 |

ν+0.007ν
ν | ≈

1200 log2 |
ν−0.007ν

ν | = 1200(0.01)).

4.2. Duration Standardisation

Kageyama, Mochizuki, and Takasima [20] suggested the
use of dynamic programming for note duration similarity
evaluation. They used a weighted sum representing the
duration and pitch similarity of melodies. Similarly we
use note duration contour standardisation to represent note
durations. In this standardisation, a note is represented by
its duration relative to its previous note [34]. The follow-
ing symbols are used: “R” for same, “L” for longer, and
“S” for shorter. For example, “Melbourne Still Shines”
(see Figure 2) is represented as “LSRLSRLRRR”.

To incorporate note duration similarity into overall
similarity, we model pitch and duration similarities as two
orthogonal vectors. Therefore, the overall similarity is:

Σ ≡ ςππ̂ + ςδ δ̂ (4)

whereΣ is the resultant similarity vector,ςπ is the pitch
similarity, ςδ is the duration similarity, and̂π and δ̂ are
respectively pitch and duration unit vectors. Ranking
is based on the magnitude of resultant similarity vec-
tor, |Σ| =

√

ς2
π + ς2

δ . If two tunes have the same|Σ|, the
one with higherςπ is ranked higher.

4.3. Polyphonic Music

Most music is polyphonic in the sense that more than one
note sounds simultaneously. This adds extra complexity to
the matching process. In our work we treat each track or
part of a polyphonic piece as a separate sequence of notes
for matching. For example, if a piece consisted of violin,
cello and piano parts, the query would be matched against
each of these separately. This results in a similarity score
for each part. The best one is chosen as the representative
score for the piece. Matching against all tracks in this
manner was shown to be an effective approach in earlier
work [36]. Where there is polyphony within a part no
notes are discarded, and the sequence as defined in the
original file is retained. While this may be an issue for
matching real queries it does not affect the experiments
reported here as they involve known-item searches and the
query and potential answers are processed identically.

4.4. Approximate Matching

In this work we use a variation of edit distance called
alphabet-weight edit distance. In the “ordinary” edit dis-
tance, a penalty score is given for every character differ-
ence oredit operation. There are three edit operations:
mismatch, insertion, anddeletion [5, 12, 24]. Each oper-
ation has a penalty score of1. The number of operations
must be as minimal as possible. For example, we have
two strings: “SHRIMP” and “TRUMPET”. The minimal
non-match operations are 2 mismatches, 2 insertions, and
1 deletion. Therefore, the distance between “SHRIMP”
and “TRUMPET” is2 + 2 + 1 = 5.

In alphabet-weight edit distance, a scoring matrix is
used containing values that should be assigned as costs
to various operations [12]. This is commonly applied to
genomics, for example, in Henikoff and Henikoff [14].
We tested matching using various scoring matrices.Local
alignment is a technique to find a substring possessing the
highest similarity. This is more useful thanglobal align-
ment (including edit distance), where the overall similar-
ity between two strings is calculated, because it allows a
short query to be matched with a long piece of music [35].
Therefore, we use local alignment (also known as Smith–
Waterman alignment [12]) for our experiments. In local
alignment, there is no negative similarity, and the maxi-
mum score is returned as the local alignment score.

For our experiments, we designed several scoring
schemes. The scoring schemes are based on the as-
sumption that similar intervals should be penalised less
than those that differ greatly. Exact matches should be
rewarded highly, and severe mismatches should be pe-
nalised highly. For missing notes (insertion/deletion op-
erations), we applied a range of penalties, including zero.
We included zero penalty because tunes contain notes
that are not significant (such as grace notes), or repeti-
tive notes, of which some can easily be missed or added
(for example, “One Note Samba” by Jobim). At the same
time, we also consider larger penalties to allow a tighter
matching process, which is expected to reduce the num-



Table 2. Scoring schemes for exact microtonal interval.
Name χ Insertion/deletion penalty
0 5 0.5 0

0 5-2 0.5 −50

1 1 0

1-2 1 −50

1 5 1.5 0

1 5-2 1.5 −50

2 2 0

2-2 2 −50

100 100 -180
0.00 0.00 0.00 0.00

100 0.00 25.00 25.00 1.81
130 0.00 22.51 47.51 22.51
200 0.00 16.72 39.24 41.05

-50 0.00 12.58 14.24 53.47

Figure 3. Similarity between “100 130 200 -50”
and “100 100 -180” calculated using exact micro-
tonal interval scoring scheme1-1.

Table 3. Scoring schemes for note duration contour stan-
dardisation.

Name Insertion/deletion penalty
1 0
2 −1
3 −2

ber of false matches.
For exact microtonal interval standardisation, we make

use of the JNDF value in cents as discussed in Section 4.1.
We use this formula to calculate reward/penalty scores:

ω =

{

−T ; |ιc|
∆c

≥ 2
(

T 1/χ
)

T − ⌊
(

|ιc|
∆c

)χ

⌋ ; |ιc|
∆c

< 2
(

T 1/χ
) (5)

whereω is the reward/penalty score,ιc is the interval in
cents,χ > 0 is the reward/penalty order, and∆c =
1200 log2 1.007. We useT = 25 for our experiments. The
scoring schemes we use for our experiments are shown
in Table 2. As an example, suppose we have two mi-
crotonal melodic sequences “100 130 200 -50” and
“100 100 -180” and we are to match them withχ = 1
and insertion/deletion score of−25. Figure 3 shows the
local alignment matrix for the matching process.

The scoring matrix we used for matching with note du-
ration contour standardisation is given in Figure 4. We
used three insertion/deletion penalties (see Table 3).

L R S
L 1 0 −1
R 0 2 0
S −1 0 1

Figure 4. Scoring matrix for note duration contour stan-
dardisation. “L”, “ R”, and “S” respectively indicate a
“longer”, a “same”, and a “shorter”.

5. RETRIEVAL PERFORMANCE EVALUATION

We need a measure to evaluate the effectiveness of an in-
formation retrieval system. We test the effectiveness of
our system using known-item searches. This means, for
each query, we already know which specific item we want
returned as the answer. A known-item search is similar to
the home page finding task in Hawking and Craswell [13],
we chose to apply the measures used there, which are
mean reciprocal of rank (MRR) and the probability that
an answer is ranked top 10 (P10).

MRR is also commonly used in question-answering
systems (where a correct answer for a question is known),
for examples, in Wang, Xu, Yang, Liu, Cheng, Bu, and
Bai [40], Voorhees [37], and Voorhees and Tice [39]. Do-
raisamy and Rüger [9] also used this measure for their
music information retrieval experiments. Downie [10]
used the term “modified precision” to describe “recipro-
cal of rank”, thus MRR was also used there. MRR has be-
come one of the de facto standard measures for evaluating
the performance of music information retrieval systems.
This is shown by recent papers by Shifrin and Birming-
ham [31], Dannenberg, Birmingham, Tzanetakis, Meek,
Hu, and Pardo [6], and Meek and Birmingham [21].

MRR can be defined mathematically as
〈

1

r

〉

. For
example, if three queries produce answers ranked first,
fifteenth, and second, the mean reciprocal of rank is
1

3

(

1

1
+ 1

15
+ 1

2

)

= 0.52. Using the same example,P10 =
1

3
(1 + 0 + 1) = 67%. Higher values of

〈

1

r

〉

andP10 in-
dicate more effective retrieval.

MRR andP10 might be sufficient to measure the ability
of retrieval systems in returning correct answers. How-
ever, it is better if a system is able to judge the level of
correctness of answers. To test this ability, we usehighest
false match (HFM). HFM is the similarity of the highest-
ranked incorrect answer with respect to that of the correct
answer [15, 16]. It is typically expressed as percentage.
For example, if the similarity score of the correct answer
is 40, and the highest ranked incorrect answer is 32, the
HFM is 32

40
= 80%. HFM is useful to determine how well

correct answers are separated from incorrect ones. A re-
trieval system is better than the others when it produces
the lowest mean HFM (MHFM) among all. Hoad and Zo-
bel also suggested the use ofseparation andseparation-
to-HMF ratio in their papers [15, 16]. However, we think
that it is not necessary for our experiment, since in our ex-
periments, only one answer is considered correct. Those



measures would be useful for systems returning more than
one relevant answer.

6. EXPERIMENTS

A highly effective technique should have an MRR of1.00.
This means that such a technique always returns a correct
answer in the first place. When two techniques each pro-
duce an MRR of1.00 and aP10 of 100.00%, we need
MHFM to distinguish the two. A technique that produces
lower MHFM has a better average ability to separate a cor-
rect answer from incorrect ones. Similarly, when a tech-
nique does not perform reasonably well, that is, MRR less
than1.00 andP10 less than100.00%, MHFM is also ex-
pected to be as low as possible. This means that the first
answer returned (which is incorrect) does not mismatch
too far.

6.1. Collection and Query Set

Our experiment used as its source a subset of the MIDI
file collection used for earlier melody retrieval experi-
ments [36]. As these all use standard western tuning, a
set of 3 polyphonic microtonally-tuned pieces were tran-
scribed from recordings, giving a total collection size of
2 390.

From this collection we randomly selected 22 pieces, in
addition to the 3 microtonal ones. From each tune, we ex-
tracted two random excerpts. These were selected by ran-
domly selecting a track, then randomly choosing a starting
point within the track. Polyphonic tracks were handled as
described in Section 4.3. Queries were randomly given
a length between 12 and 21 notes. Therefore, out of 50
queries, there were 6 microtonal queries.

The query set and the collection contained melodic se-
quences in equal-tempered twelve-tone, Sundanese de-
gung, and Sundanese madenda tuning systems. Search-
able pitch and note duration sequences were derived from
MTRI encoding.

6.2. Method

All queries were matched against all of the tunes in
our collection. This is regardless of their tuning sys-
tems, meaning that microtonal queries were also matched
against non-microtonal tunes and vice versa.

In our experiment, we used the scoring schemes de-
scribed in Section 4.4 for exact microtonal interval pitch
standardisations and duration contour standardisation.

Within our experimental framework exact microtonal
interval standardisations result into MRR of1.00 andP10

of 100.00%. Therefore, it is worth looking into the values
of MHFM. Using exact microtonal interval standardisa-
tion always discriminates correct answers from false ones.

Different scoring schemes usually produce different
HFM’s. We observe that the most contributing factor
in lowering the value of HFM is the insertion/deletion
penalty score. This can be observed by contrasting:

Table 4. Results of query evaluation for exact microtonal
interval standardisation with duration similarity ignored
(ςδ = 0). MHFM andP10 are shown as percentage values.

Scoring scheme MRR MHFM P10

0 5 1.00 99.77 100.00

0 5-2 1.00 91.93 100.00

1 1.00 99.51 100.00

1-2 1.00 65.75 100.00

2 1.00 98.89 100.00

2-2 1.00 55.21 100.00

0.5 1.0 1.5 2.0

Reward/penalty order

0.0

20.0

40.0

60.0

80.0

100.0

M
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)

insertion/deletion penalty = 0
insertion/deletion penalty = -50

Figure 5. MHFM versus reward/penalty order (χ) with
duration similarity ignored (ςδ = 0).

• exact microtonal interval standardisation scoring
schemes0 5, and0 5-2.

• exact microtonal interval standardisation scoring
schemes1, and1-2.

• exact microtonal interval standardisation scoring
schemes2, and2-2.

There is one exception in our results, however. Us-
ing exact microtonal interval standardisation, scoring
schemes0 5-1 and0 5-2 produce the same result.

For exact microtonal interval standardisation, the value
of χ has contribution in discriminating answers. The
difference does not seem to be significant in scoring
schemes involving zero insertion/deletion penalty. How-
ever, combined with large insertion/deletion penalty, the
contribution of χ becomes obvious. By comparing
scoring schemes0 5-2, 1-2, and 2-2 (all employ-
ing insertion/deletion penalty of−50) with the respective
MHFM’s 91.93%, 65.75%, and55.21%, we see the effect
of increasingχ to reduce MHFM (see Figure 5). We make
a further hypothesis that such effect is asymptotic, and it
may be investigated in the future.

High measures are shown in the results. This may be
caused by the size of our collection, which is small. We
may investigate the methods with a bigger collection in
the future. The high measures can also be due to known-
item search queries in a collection that contains tunes of
which melodic patterns are diverse.

Experiments on exact microtonal interval standardisa-
tion also confirm the usefulness of duration information



Table 5. Results of query evaluation for exact microtonal
interval standardisation with duration similarity incorpo-
rated. MHFM is shown as percentage values.P10 was
always 100% and MRR was always 1.

Scoring scheme Duration scoring scheme MHFM
0 5 1 99.66

0 5 2 99.66

0 5 3 99.66

0 5-2 1 91.83

0 5-2 2 91.83

0 5-2 3 91.83

1 1 99.41

1 2 99.41

1 3 99.41

1-2 1 66.71

1-2 2 66.68

1-2 3 66.68

2 1 98.78

2 2 98.78

2 3 98.78

2-2 1 55.26

2-2 2 55.20

2-2 3 55.19
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Figure 6. MHFM’s for exact microtonal interval stan-
dardisation. The bar showing the incorporation of note
duration is the best result (lowest MHFM) from three du-
ration contour scoring schemes.

with greater magnitude of insertion/deletion penalty to
slightly improve retrieval effectiveness. However, the im-
provement is insignificant compared to the extra process-
ing required.

7. CONCLUSIONS

Our results demonstrate the applicability of microtone-
aware matching techniques to music of various tuning
systems. Microtone-aware matching techniques applied
in our experiments were non-microtone-aware matching
techniques extended for finer frequency spectrum of mu-
sic.

The results of our experiments show that:

1. Exact microtonal interval standardisation in con-
junction with a microtone-aware scoring is effective
for microtonal music information retrieval.

2. The most contributing value in lowering mean high-
est false match of pitch similarity is the inser-
tion/deletion penalty score.

3. In matching with exact microtonal interval stan-
dardisation, larger reward/penalty order can cause
lower mean highest false match, particularly in con-
junction with large insertion/deletion penalty.

4. Note duration information may improve retrieval
effectiveness by extending the discrimination be-
tween correct/relevant and incorrect/irrelevant an-
swers slightly.

However, we recognise the limitations of the collec-
tion and query set used in this experiment. The next step
in work on microtonal matching needs to be the procure-
ment of a sufficiently large collection to allow reliable
experimentation. Once this is achieved, experiments that
demonstrate whether fine-grained techniques are required
will be more convincing.
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