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ABSTRACT

We present a system for adaptive spectral basis decompo-
sition that learns to identify independent spectral features
given a sequence of short-term Fourier spectra. When ap-
plied to recordings of polyphonic piano music, the indi-
vidual notes are identified as salient features, and hence
each short-term spectrum is decomposed into a sum of
note spectra; the resulting encoding can be used as a ba-
sis for polyphonic transcription. The system is based on
a probabilistic model equivalent to a form of noisy inde-
pendent component analysis (ICA) or sparse coding with
non-negativity constraints. We introduce a novel mod-
ification to this model that recognises that a short-term
Fourier spectrum can be thought of as a noisy realisation
of the power spectral density of an underlying Gaussian
process, where the noise is essentiallymultiplicative and
non-Gaussian. Results are presented for an analysis of a
live recording of polyphonic piano music.

1. INTRODUCTION

In this paper we describe a method of spectral basis de-
composition that can be applied to polyphonic music tran-
scription. The approach belongs to and combines ele-
ments of a family of related methods that includes in-
dependent component analysis (ICA) [8], sparse coding
[6], non-negative matrix factorisation (NMF) [10], and
non-negative variants of both ICA [14] and sparse coding
[7]. In the context of polyphonic transcription, the over-
all methodology is to identify the extracted components
with the spectral profiles of the different notes, and thus to
achieve the decomposition of a given mixed spectrum into
a sum of those belonging to the currently sounding notes.
The fact that the basis is adaptive means that the spectral
profile of each note is learned by training the system on
examples of polyphonic music, not on isolated notes (as
in, e.g., [15]).

Similar approaches have been described in [1, 2, 16].
The technical novelty in this paper is that the underly-
ing probabilistic model specifically addresses issues to do
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with spectral estimation (and more generally, the estima-
tion of variance) in a Bayesian context. Thus, quite apart
from applications in polyphonic transcription and feature
extraction, the model forms a theoretical basis for spectral
estimation and denoising using an ICA model to provide a
strong but adaptive prior, which essentially plays the role
of a schema or statistical summary of past experience, en-
abling the system to produce low-variance spectral esti-
mates from limited data.

We tested the system on a recordings of Bach’s G-
minor fugue (No.16) from Book I of the Well Tempered
Clavier; some results from one of these experiments are
presented in§ 5. Before that, the following sections de-
scribe some of the theoretical aspects of adaptive basis
decomposition, Bayesian estimation of variance, and the
combined system for non-negative sparse coding of power
spectra.

We adopt the following typographical conventions:
vectors and matrices are written in boldfacex,A; ran-
dom variables and vectors are denoted by uppercase letters
X,Y, while their realisations are denoted by lowercase
lettersx,y. Where these conventions clash, the intended
meaning should be clear from the context. Angle brackets
〈·〉 will denote the expectation or averaging operator.

2. ADAPTIVE BASIS DECOMPOSITION

Systems for adaptive basis decomposition generally as-
sume a linear generative model of the formx = As, or,
writing out the sum explicitly,

xi =
m
∑

j=1

ajsj , (1)

wherex = (x1, . . . , xn) denotes ann-component multi-
variate observation, theaj (for 1≤ j ≤m) denote adic-
tionary of m ‘atomic’ features (which form the columns
of then×m) dictionary matrixA, ands = (s1, . . . , sm)
contains the weighting coefficients. The purpose of the
system is to learn, from examples ofx, a dictionary ma-
trix A which contains a suitable collection of atomic fea-
tures, and thence to encode optimally any givenx as ans
such thatx ≈ As. The learning process can be driven by
a number of desiderata for the dictionary matrix and the
components ofs, some of which we outline below.

An assumption of statistical independence between the
sj , motivated by considerations of redundancy reduction



0 1 2 3 4
0

0.5

1

1.5

x

p(
x|

v=
1)

Gamma(d/2,2/d)

d=2
d=6
d=18

0 1 2 3 4
0

0.2

0.4

0.6

0.8

x

p(
x|

v=
2)

Gamma(d/2,4/d)

d=2
d=6
d=18

Figure 1. Some examples of Gamma distribution probability
density functions. Note how shifting the mean of the distribution
from 1 to 2 also doubles the standard deviation: this is because
x is the product ofv with a Gamma-distributed random variable,
which therefore plays the role of a multiplicative noise.

and efficient representation [4], leads to ICA. Reducing
the dependence between the components representing dif-
ferent notes should in principle reduce the need to ex-
amine several components in order to make one note on-
set/offset decision.

In sparse coding, we assume that most observations can
be encoded with only ‘a few’ non-zero elements ofs, that
is, only a few atomic features are required to account for
typically observed patterns. This fits well with the notion
that, in music, a relatively small fraction of the available
notes will (usually) be sounding at any one time. Sparse
coding can be facilitated in two distinct (but not mutually
exclusive) ways: (a) by using a very large dictionary con-
taining a wide variety of specialised features, or (b) by
assuming a noisy generative model such that, after ‘a few’
dictionary elements have been activated, any remaining
discrepancies can be treated as noise.

In some applications, the quantities involved are intrin-
sically non-negative; this is certainly the case for power
spectra and variance estimates in general. Placing non-
negativity constraints on the atomic features (the elements
of A), their weighting coefficients (the components ofs),
or indeed both, can be enough to achieve meaningful fea-
ture detection in some applications without any additional
assumptions, as demonstrated in [10].

Relationships between these different requirements
have been investigated in, for example, [14, 7]. A recent
and thorough treatment of sparse decomposition and dic-
tionary learning can be found in [9].

3. BAYESIAN ESTIMATION OF VARIANCE

3.1. Univariate case

Consider a system in which we haved independent identi-
cally distributed (i.i.d.) Gaussian random variables (r.vs.)
Zk of zero mean and unknown variancev, that is,Zk ∼
N (0, v) for all 1 ≤ k ≤ d. To estimate the variancev,
one would compute the mean-square of a sample of the
variables. It is a standard result (e.g., [5]) that, taken as
a random variable itself, this estimate has a Gamma (or
scaled Chi-squared) distribution:

X = 1
d

d
∑

k=1

Z2
k ∼ Γ(d

2 , 2
dv) ∼ 1

dvχ2
d. (2)

Since〈X〉 = v, this estimator is unbiased, but noting that
v appears only in the scale parameter of the Gamma dis-
tribution, we can see that, as a noisy estimate ofv, it in-
volves what is effectively a multiplicative, rather than an
additive, noise model, the standard deviation of the error
being proportional tov, the true variance. The probability
density of the estimate given a particular variance is

p(x|v) =
(dx
2v )d/2 exp− dx

2v

xΓ(d/2)
, (3)

whereΓ denotes the Gamma function. Some examples of
Gamma densities are illustrated in fig. 1. When inferring
v from observed values ofx, we interpret the conditional
densityp(x|v) as the likelihood ofv givenx; this can be
combined with any prior expectations aboutv in the form
of a prior densityp(v) to yield the posterior density

p(v|x) =
p(x|v)p(v)

p(x)
. (4)

The maximum a posteriori (MAP) estimate of the variance
is therefore

v̂ = argmax
v
{log p(x|v) + log p(v)} . (5)

Using the Gamma density (3), the log-likelihood term ex-
pands to

log p(x|v) = d
2 log dx

2v −
dx
2v − log x− log Γ(d

2 ). (6)

Considered as a function ofv (illustrated in fig. 2), this
expression plays the role of a statistically motivated error
measure, or divergence, fromv to x:

log p(x|v) = −E(v; x) + {Terms inx andd}, (7)

with E(v; x) = d
2

(

x
v − 1 + log v

x

)

. (8)

The divergenceE(v; x) reaches a minimum of zero when
v = x, but unlike the quadratic error mesure(v−x)2, it is
strongly asymmetric, with a much higher ‘cost’ incurred
whenv < x than whenv > x. This expresses mathemat-
ically the intuition that samples from a Gaussian rv are
quite likely to be much smaller than the standard devia-
tion, but very unlikely to be much larger.
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Figure 2. Gamma distribution (negative) log-likelihood func-
tion. The asymptotic behaviour is as1/v asv → 0 and aslog v
asv → ∞.

3.2. Multivariate case

Assume now thatY is a multivariate Gaussian (i.e. a ran-
dom vector) with componentsYk, 1≤ k≤N . Diagonali-
sation of the covariance matrix

〈

YYT
〉

= UΛUT yields
the orthogonal transformationU (whose columns are the
eigenvectorsui), and the eigenvalue spectrum encoded in
the diagonal matrixΛkl = δklλk. If there are degenerate
eigenvalues (i.e. of the same value), then the correspond-
ing eigenvectors, though indeterminate, will span some
determinate subspace ofR

N such that the distribution of
Y projected into that subspace is isotropic (i.e. spherical
or hyperspherical).

Now let us assume that the eigenvectorsuk and the de-
generacy structure of the eigenvalue spectrum are known
(i.e., the ‘eigen-subspaces’ are known), but the actual val-
ues of theλk are unknown, and are to be estimated from
observations. We are now in a situation where we have
several independent copies of the problem described in
the preceding section. Specifically, if there aren distinct
eigenvalues, then the subspaces can be defined byn sets
of indicesIi such that theith subspace is spanned by the
basis{uk|k ∈ Ii}. A maximum-likelihood estimate of
the variance in that subspace,vi = λk ∀ k ∈ Ii, can be
computed as in (2):

v̂i = xi =
1

|Ii|

∑

k∈Ii

(uT
k y)2, (9)

where|Ii|, the dimensionality of theith subspace, plays
the role ofd, the Chi-squared ‘degrees-of-freedom’ pa-
rameter in (2). Assuming the subspaces are statistically
independent given the variancesvi, the rest of the deriva-
tion of § 3.1 can be extended to yield the multivariate di-
vergence

E(v;x) =

n
∑

i=1

|Ii|

2

(

xi

vi
− 1 + log

vi

xi

)

, (10)

wherex andv denote the arrays formed by the compo-
nentsxi andvi respectively.

3.3. Application to power spectra

One of the effects of a Fourier transform is to diagonalise
the covariance of a stationary Gaussian process, the eigen-
value spectrum being in this case equivalent to the power
spectral density (PSD) of the Gaussian process. The dis-
crete short-term Fourier transform is an approximation to
this (the windowing process makes it inexact) for time-
varying Gaussian processes; this is how the periodogram
method of spectral estimation works.

PSD estimation is a specific instance of a more general
class of covariance estimation problem where the ‘eigen-
subspaces’ happen to be known in advance: the diagonal-
ising transformation is the Fourier transform, and the sinu-
soidal eigenvectors (except those encoding the DC com-
ponent and possibly the Nyquist frequency) come in pairs
of equal frequency but quadrature phase. These pairs of
eigenvectors will have the same eigenvalue and will there-
fore span a number of 2-D subspaces, one for each discrete
frequency. The problem of spectral estimation is equiv-
alent to that of estimating the variance in each of these
known subspaces. If no further assumptions are made
about these variances (that is, if the priorp(v) is flat and
uninformative) then any estimated PSD will have a large
standard-deviation proportional to the true PSD as illus-
trated by thed = 2 curves in fig. 1. Our system aims to
improve these estimates by using a structured prior, but
unlike those implicit in parametric methods such as au-
toregressive models (which essentially amount to smooth-
ness constraints), we use an adaptive prior in the form of
an explicit ICA model.

4. GENERATIVE MODEL

The priorp(v) on the subspace variances is derived from
the linear generative model used in adaptive basis de-
composition (1): we assume thatv = As, where the
components ofs are assumed to be non-negative, inde-
pendent, and sparsely distributed. IfA is square and
non-singular, then we havep(v) = detA−1

∏m
j=1 p(sj),

wheres = A−1s andp(sj) is the prior on thej th compo-
nent. These priors are assumed to be single-sided (sj ≥ 0)
and sharply peaked at zero, to express the notion that we
expect components to be ‘inactive’ (close to zero) most
of the time. In the case thatA is not invertible, the situ-
ation is a little more complicated; we circumvent this by
doing inference in thes-domain rather than thev-domain,
that is we estimates directly by considering the posterior
p(s|x,A), rather thanp(v|x). The elements ofA, rep-
resenting as they do a set of atomic power spectra, are
also required to be non-negative. The complete probabil-
ity model is

p(x, s|A) = p(x|As)p(s)

=

n
∏

i=1

p(xi|vi)

m
∏

j=1

p(sj),
(11)

wherev = As and p(xi|vi) is defined as in(3). An
important point is that this linear model, combined with



the multiplicative noise model that determinesp(x|v), is
physically accurate for the composition of power spectra
arising from the superposition of phase-incoherent Gaus-
sian processes, barring discretisation and windowing ef-
fects. It is not accurate formagnitude spectra or log-
spectra. On the other hand, additive Gaussian noise mod-
els are not accurate in any of these cases.

4.1. Sparse decomposition

It is straightforward to extend the analysis of§ 3.2 to ob-
tain a MAP estimate of the components ofs rather than
those ofv:

ŝ = arg min
s
E(As;x)− log p(s), (12)

where p(s) is the factorial priorp(s) =
∏m

j=1 p(sj).
When thep(sj) have the appropriate form (see [9]), the
− log p(s) terms plays the role of a ‘diversity’ cost which
penalises non-sparse activity patterns. If we assume the
p(sj) to be continuous and differentiable forsj ≥ 0, then
local minima can be found by searching for zeros of the
gradient of the objective function in (12). Using (10) this
expands to a set ofm conditions

∀ j,

n
∑

i=1

Aij
|Ii|

2

(

vi − xi

v2
i

)

+ ϕ(sj) = 0, (13)

whereϕ(sj)
def
= −d log p(sj)/dsj. The optimisation can

be achieved by standard 2nd order gradient based meth-
ods with non-negativity constraints, but these tend to con-
verge poorly, and for large systems such as we intend to
deal with, each individual step is rather expensive com-
putationally. Steepest descent is worse still, tending to
become unstable as any component ofv approaches zero.

We found that a modified form of Lee and Seung’s
non-negative optimisation algorithm [11] gives much bet-
ter overall performance. Their algorithm minimises a dif-
ferent measure of divergence betweenAs and x, with
no additional diversity cost. Our modification accommo-
dates both the diversity cost (as in [7]) and the Gamma-
likelihood based divergence (10). The iterative algorithm
is as follows. (To simplify the notation, we will assume
that ∀ i, |Ii| = d, i.e., that all the independent subspaces
of the original Gaussian rv are of the same dimensiond.)
Thesj are initialised to some positive values, after which
the following assignment is made at each iteration:

∀ j, sj ← sj

∑n
i=1 Aijxi/v2

i

(2/d)ϕ(sj) +
∑n

i=1 Aij/vi
(14)

This is guaranteed to preserve the non-negativity of the
sj as long as theAij are non-negative andϕ(sj) ≥ 0
for sj ≥ 0, though some care must be taken to trap
any division-by-zero conditions which sometimes occur.
States that satisfy (13) can easily be shown to be fixed
points of (14), and although the convergence proofs given
in [11, 7] do not apply, we have found that in practice, the
algorithm converges very reliably. Note that the subspace

dimensionality parameterd (i.e. the degrees-of-freedom
in the Gamma-distributed noise model) reduces to con-
trolling the relative weighting between the requirements
of good spectral fit on one hand and sparsity on the other.

4.2. Learning the dictionary matrix

We adopt a maximum-likelihood approach to learning the
dictionary matrixA. Due to well known difficulties [9]
with maximising the average log-likelihood〈log p(x|A)〉,
(that is, treating the components ofs as ‘nuisance vari-
ables’ to be integrated out) we instead aim to maximise
that averagejoint log-likelihood 〈log p(x, s|A)〉. Let
x1:T ≡ (x1, . . . ,xT ) denote a sequence ofT training ex-
amples, withs1:T the corresponding sequence of currently
estimated components obtained by one or more iterations
of (14), andvt = Ast, whereA is the current estimated
dictionary matrix. Then, the combined processes of infer-
ence and learning can be written as the joint optimisation

(Â, ŝ1:T ) = arg max
(A,s1:T )

T
∑

t=1

log p(xt, st|A), (15)

wherep(x, s|A) is defined in (11). Both multiplicative
and additive update algorithms were investigated. Addi-
tive updates were found to be adequate for small prob-
lems (e.g.n = 3), but unstable when applied to real power
spectra (n = 257, n = 513). The following multiplica-
tive update (modelled on those in [10]) was found to be
effective (the sequence indext has been appended to the
component indicesi andj):

∀ i, j, Aij ← Aij

(

∑T
t=1 sjtxit/v2

it
∑T

t=1 sjt/vit

)η

, (16)

A← normalisep A, (17)

whereη ≤ 1 is a step size parameter to enable an approxi-
mate form of online learning, and the operatornormalisep

rescales to unitp−norm each column ofA independently.
For example, ifp = 1, the column sums are normalised.
The values ofs (and hencev = As) inside the sums
may be computed either by interleaving these dictionary
updates with a few incremental iterations of (14), or by
re-initialising thest and applying many (typically, around
100) iterations of (14) for each iteration of (17). Clearly,
the latter alternative is much slower, but is the only option
if online learning is required.

5. APPLICATION TO PIANO MUSIC

The system was tested on a recording of J. S. Bach’s
Fugue in G-minor No. 16. The input was a sequence of
1024 Fourier spectra computed from frames of 512 sam-
ples each, with a hop size of 256 samples, covering the
first 9 1

2 bars of the piece. The only preprocessing was a
spectral normalisation or flattening (that is, a rescaling of
each row of the spectrogram) computed by fitting a gen-
eralised exponential distribution to the activities in each
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Figure 3. Dictionary matrix before (a) and after (b) training on
an extract of piano music. The remnants of the original struc-
tured dictionary are still visible, but each pitched spectrum has
become adapted to the actual spectrum of the piano notes in the
piece. The colour scale is logarithmic and in dB.

spectral bin, as outlined in [2]. In the sparse coding system
described therein, spectral flattening was used to improve
the fit between the assumed additive white noise model
and the data. The multiplicative noise system described
in this paper does not require such a rescaling of the data,
but the preprocessing was retained both as an aid to vi-
sualisation (so that, for exampe, the detail in the upper
frequencies of fig. 4(a,c) is visible) and to enable future
comparisons between the additive and multiplicative sys-
tems.

Experiments were performed both with random and
structured initial dictionaries. The structured initial dictio-
nary, illustrated in fig. 3(a), consisted of an ordered collec-
tion of roughly pitched spectra on a quarter-tone spacing.
Each column of the dictionary matrix was a constructed
as a sequence of broad harmonics increasing in width with
frequency, to allow for inharmonicity or variations in into-
nation in the tones to be analysed. After training, both dic-
tionaries converged to qualitatively similar solutions, but
initialisation with the structured dictionary tends to result
in a correctly ordered final dictionary. This ordering, how-
ever, is not essential to the system, and can be recovered
after training.

Training was accomplished by alternate applications of
the multiplicative update rules (14) and (17), withp = 1 in

the column normalisation step; that is, each atomic spec-
trum was normalised to have unit total energy. In addition,
a small constant offset was periodically added to all ele-
ments ofA ands1:T in order to nudge the system out of
local minima caused by zero elements, which, of course,
the multiplicative updates are unable to affect. The result-
ing dictionary is illustrated in fig. 3(b).

The next step in the process was the categorisation
of the atomic spectra in the learned dictionary as either
pitched or non-pitched, followed by an assignment of
pitch to each of the pitched spectra. The ‘pitchedness’ cat-
egorisation was done by a visual inspection of the spectra
in combination with a subjective auditory assessment of
the sounds reconstructed from the atomic spectra by fil-
tering white Gaussian noise, as described in [2]. We are
currently investigating quantitative measures of ‘pitched-
ness’ so that this process can be automated.

Once pitches had been assigned to eached of the
pitched spectra in the dictionary, we found that many
pitches were represented by more than one dictionary el-
ement, which elements can therefore be arranged into
groups by pitch. The different elements in a particular
group represent different spectral realisations of the same
pitch, which may occur during different instances of the
same note or at different stages in the temporal evolution
of a single note. For example, the fourth note (an F]3) in
the extract in fig. 4(b) can be seen to involve activity in
two dictionary elements.

In order to obtain the pitch traces in fig. 4(d), the ac-
tivities (i.e. the component valuessj) in each pitch group
were summed. Specifically, ifPk is the set of components
in thekth pitch class, then the activity of that pitch class
is

σk =
∑

j∈Pk

sj . (18)

Since the dictionary matrix is column normalised using a
1-norm, each atomic spectrum has the same total energy,
so the sum of the activities in each group has a direct in-
terpretation as the total energy attributable to that note.
These energies have a very wide dynamic range, so, for
display purposes, we plotlog(σ2

k + 1) for each pitch class
in fig. 4(d).

The pitched dictionary elements corresponded to notes
in a three octave range from E2 to G5. We have yet to im-
plement the final stages of event detection and time quan-
tisation, so an evaluation was done by visual comparison
of fig. 4 with the original score. All the notes in the first
9 1

2 bars were correctly detected, except for a repeated G4
in bar 5, which is coalesced into the preceding G4 (cir-
cled in fig. 4(d), at time 10.5s). Given a sufficiently robust
peak-picking algorithm, most of the errors would be false
detections of repeated notes, (two of which are circled in
fig. 4) though we cannot provide any quantitative results
at this stage. The manual evaluation can be summarised
as follows:

Notes in original extract 163
Correctly detected notes 162
False detections 2
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Figure 4. Analysis of the first9 1

2
bars of Bach’s Fugue in G-minor, BWV861: (a) input spectrogram; (b) sparse coding using the

dictionary in fig. 3; (c) reconstruction, which can be thought of as a ‘schematised’ version of the input—note the denoising effect and
the absence of beating partials. Finally (d) graphs the pitch-group activities aslog(σ2

k + 1), wherek ranges over the pitches andσk is
defined in (18). Errors in transcription are circled (see text). In all figure, thex-axis indicates time in seconds.
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Figure 5. The first 10 bars of the Fugue in G-minor, BWV861.

6. RELATIONS WITH OTHER METHODS

The algorithm presented here is largely derived from Lee
and Seung’s multiplicative non-negative matrix factorisa-
tion (NMF) algorithms [10, 11], which are founded on two
divergence measures, one of which is quadratic and can be
interpreted in terms of an additive Gaussian noise model;
the other, in the present notation, can be written as

ELS(v;x) =

n
∑

i=1

xi log
xi

vi
− xi + vi (19)

This divergence measure is related to the Kullback-Leibler
divergence, and can be derived by interpretingv as a dis-
crete probability distribution (over whatever domain is in-
dexed byi) andx as a data distribution. The divergence
measures the likelihood that that the data distribution was
drawn from the underlying probability distribution spec-
ified by v. Smaragdis [16] applies this form of NMF to
polyphonic transcription and achieves results very similar
to those presented in this paper. However, we would argue
that power spectra arenot probability distributions over
frequency, and that the resulting system does not have a
formal interpretation in terms of spectral estimation.

Hoyer [7] modified the quadratic-divergenceversion of
Lee and Seung’s method to include the effect of a sparse
prior on the componentss, and applied the resulting sys-
tem to image analysis. He used an additive update step
(with post-hoc rectification to enforce non-negativity) for
the adapting the dictionary matrixA, rather than a multi-
plicative step. In the present work, additive updates were
found to be rather unstable due to singularities in the di-
vergence measure (10) as any componentvi approaches
zero.

Abdallah and Plumbley [1, 2] applied sparse coding
with additive Gaussian noise and no non-negativity con-
straints to the analysis of magnitude spectra. The algo-
rithm was based on the overcomplete, noisy ICA meth-
ods of [13]. The system was found to be effective for
transcribing polyphonic music rendered using a synthetic
harpsichord sound, but less able to deal with the wide dy-
namic range and spectral variability of a real piano sound.

It is interesting to note some parallels between the
present work and the polyphonic transcription system of
Lepain [12]. His system was built around an additive de-
composition of log-power spectra into a manually cho-
sen basis of harmonic combs. This basis included several
versions of each pitch with different spectral envelopes.
The error measure used to drive the decomposition was
an asymmetric one. If, using the current notation, we let
wi = log vi, andzi = log xi, Lepain’s error measure
would be

EL(w; z) =

n
∑

i=1

(wi − zi), wi ≥ zi ∀ i. (20)

For comparison, the log-likelihoodlog p(z;w) can be
derived from the Gamma-distributed multiplicative noise
model (3), yielding

− log p(z|w) =

n
∑

i=1

di

2 {exp(zi − wi) + (wi − zi)}

+ {Terms indi}, (21)

wheredi denotes the degrees-of-freedom for theith com-
ponent. The exponential term means the error measure
rises steeply whenwi < zi, but approximately linearly
whenwi > zi, and thus Lepain’s error measure can be
seen as a rough approximation to this, using a hard con-
straint instead of the exponential ‘barrier’ found in the
probabilistically motivated measure.

7. SUMMARY AND CONCLUSIONS

A system for non-negative, sparse, linear decomposition
of power spectra using a multiplicative noise model was
presented and applied to the problem of polyphonic tran-
scription from a live acoustic recording. The noise model
was derived from a consideration of the estimation of the
variance of a Gaussian random vector, of which spectral
estimation is a special case, while the generative model
for power spectra belongs to a class of ICA-based models,
in which the power spectra are assumed to the result of



a linear superposition of independently weighted ‘atomic’
spectra chosen from a dictionary. This dictionary is in turn
learned from, and adapted to, a given set of training data.
These theoretical underpinnings mean that the system has
a formal interpretation as a form of spectral estimation
for time-varying Gaussian processes using a sparse fac-
torial linear generative model as an adaptive prior over the
power spectra.

The learned dictionary can be thought of as an en-
vironmentally determined ‘schema’, a statistical sum-
mary of past experiences with power spectra, which en-
ables the system to make better inferences about newly-
encountered spectra. When exposed to polyphonic mu-
sic, this schema quickly adapts to the consistent presence
of harmonically structured notes. The internal coding of
spectra (i.e. the components ofs) therefore reflects the
presence or absence of notes quite accurately, while the
reconstructed spectra (the vectorsv = As) are essentially
a ‘schematised’ (cleaned up, denoised, and ‘straightened
out’) version of the input (x).

The encoding produced by the system, though not a fin-
ished transcription, should provide a good basis for one,
once the final stages of (a) automatic grouping of dictio-
nary elements into subspaces by pitch and (b) event de-
tection on the per-pitch total energy traces, have been im-
plemented. The manual evaluation (§ 5) suggests that a
transcription accuracy of 99% could be achievable given
a sufficiently robust and adaptable ‘peak-picking’ algo-
rithm; we refer the interested reader to [3] for an overview
of our initial efforts in that direction.
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