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ABSTRACT

Rhythm, beat and meter are key concepts of music in gen-
eral. Many efforts had been made in the last years to au-
tomatically extract beat and meter from a piece of music
given either in audio or symbolical representation (see e.g.
[11] for an overview). In this paper we propose a new
method for extracting beat, meter and phase information
from a list of unquantized onset times. The procedure re-
lies on a novel method called ’Gaussification’ and adopts
correlation techniques combined with findings from mu-
sic psychology for parameter settings.

1. INTRODUCTION

The search for methods and algorithms for extracting beat
and meter information from music has several motivations.
First of all, one might want to explain rhythm percep-
tion or production in a cognitive model. Most of classical
western, modern popular and folk music can be described
as organized around a regularly sequence of beats, this is
of utmost importance for understanding the cognitive and
productive dimensions of music in general. Second, me-
ter and tempo information are important meta data, which
could be useful in many applications of music informa-
tion retrieval. Third, for some tasks related to production
or reproduction such information could also be helpful,
e.g., for a DJ who wants to mix different tracks in a tem-
poral coherent way or for a hip-hop producer, who wants
to adjust music samples to a song or vice versa.

In this paper we describe a new method, which takes
a list of onset times as input, which might come from
MIDI-data or from some kind of onset detection system
for audio data. The list of onsets is turned into a integrable
function, the so-called Gaussification, and the autocorre-
lation of this Gaussification is calculated. From the peaks
of the autocorrelation function time base (smallest unit),
beat (tactus) and meter are inferred with the help of find-
ings from music psychology. Then the best fitting meter
and phase are estimated using cross-correlation of proto-
typical meters, which resembles a kind of matching algo-
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rithm. We evaluated the system with MIDI-based data,
either quantized with added temporal noise or played by
an amateur keyboard player, showing promising results,
especially in the processing of temporal instabilities.

2. MATHEMATICAL FRAMEWORK

The concept of Gaussification was developed in the con-
text of extending autocorrelation methods from quantized
rhythms to unquantized ones ([1], [4]). The idea behind is
that any produced or perceived onset can be viewed as an
imperfect rendition (or perception) of a point on a perfect
temporal grid. A similar idea was used by Toiviainen &
Snyder [11], who assumed a normal distribution of mea-
sured tappings time for analysis purposes. However, the
method presented here was developed independently, and
the aims are quite different. Though a normal distribution
is a natural choice it is not the only possible one, and the
Gaussification fit into the more general concept of func-
tionalisation.

Definition 1 (Functionalisation) Let �������	��
��������� be
a set of time points (a rhythm) and ������
���������� a set of
(real) coefficients Moreover, let � be a ��� -integrable func-
tion: � �
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Then
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is called a functionalisation of � .

We denote by 56"���798;:9<=$ the gaussian kernel, i.e.,
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is called a Gaussification of � .



A Gaussification is basically a linear combination of
gaussians centered at the points of � . The advantage of
a functionalisation is that the transformation of a discrete
set into a integrable (or even continous and differentiable)
function, so that correlation and similar techniques are ap-
plicable. An additional advantage of Gaussification is that
the various correlation functions can be easily integrated
out. One has

Proposition 1 Let ����� P "��	$�� P "����
	 $ be the time
translation operator. Then the time-shifted scalarproduct
of two gaussfications

P � : P � is the cross-correlation func-
tion ������ L :
� �  � L "�	 $��M� � P �:���� P � � (5)

� >@ < ? A
���� � L.
��� �9/1� �;�����K56"�	67�� �

� ���� : ? @ <=$

with � � � ���� � �! ��"� 24�! � "� .
The autocorrelation function #$� "�	 $ of a Gaussification

P
is given by:
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The next thing we need is the notion of a temporal grid.

Definition 2 (Temporal grid) Let �'�
(*) be a real pos-
itive constant, the timebase. Then the set

P,+�- � �/.0�'� :�.214365 
 (7)

is called a temporal grid. For 7 '98:1:3 5 the ";7�:;8�$ -
subgrid of

P
is the set

P,+�- "�7�:�8�$�� � ";7,�<.=8�$��>� :�.�143(
 (8)

with phase 7 and period 8 . The value

? � >@ �>� (9)

is called the tempo of the (sub)grid. Any subset �BA P +�-
of a temporal grid is called a regular rhythm.

It is now convenient to define the notion of a metrical hi-
erarchy.

Definition 3 (Metrical hierarchy) Let
P +�-

be a tempo-
ral grid, C � � @ � : > ' @ � ' @ � '�DEDFD ' @ � 
 a set of
ordered natural numbers and 7 ' @ � a fixed phase. The
subgrid

P,+�- ";7�:;8HG $JI�K ";76:�. $ with 8LG �:M G�0/1� @ � :�.ONP
is called a subgrid of level . and phase 7 .
A (regular) metrical hierarchy is then the collection of

all subgrids of level .QN P :

R ";7�7 @ ��:FSFSESK: @ � $�� �TK ";76:�. $�: > NU.VN
P 
 (10)

We are now able to state some classic problems of rhythm
research.

Problem 1 (Quantization) Let ��� � �	��
���������� be a given
rhythm (w.l.o.g. � � �
) ) and W$(X) . The task of quantiza-
tion is to find a time constant �'� and a set of quantization
numbers �E. � 14365 
 such, that

Y ���=2V.=�Z�>� Y '[W :]\L^ (11)

The mapping _ "��	�T$ �`.=���>� is called a quantization of� .

It is evident that a solution does not necessarily exist
and is not unique. For any �>� and any natural number
7 , �>��a � +�-

a gives a another solution. Therefore the
requirement of minimal quantization, i.e. bc. � � @ ^Z.
should be added. Many algorithms can be found in the lit-
erature for solving the quantization problem (see [11] for
an overview) and the related problems of beat and meter
extraction, which can be stated as follows.

Problem 2 (Beat and meter extraction) Let � be the mea-
sured onsets of a rhythm rendition. Furthermore, assume
that a subject was asked to tap regularly to the rhythm,
and the tapping times were measured, giving a rhythm
�-" � $ . The task of beat extraction is to deduce a quan-
tization of � " � $ from � . If the subject was furthermore
asked to mark a ’one’, i.e. a grouping of beats, measured
into another rhythm

R " � $ the task of meter extraction
is to deduce a quantization of

R
and to find its relative

position to the extracted beat.

We will present a new approach with the aid of Gaussi-
fication. For musically reasonable applications more con-
straints have to be added, which naturally come from mu-
sic psychological research.

3. PSYCHOLOGY OF RHYTHM

Much research, empirical and theoretical, has been done
in the field of rhythm, though a general accepted definition
of rhythm is still lacking. Likewise there are many dif-
ferent terms and definitions for the basic building blocks,
like tempo, beat, pulse, tactus, meter etc. We will only
assemble some well-known and widely accepted empiri-
cal facts from the literature, which serve as an input for
our model. In addition we will restrict ourselves to exam-
ples from westen music which will be considered to have
a significant level of beat induction capability, and can be
described with the usual western concepts of an underly-
ing isochronous beat and a regular meter.

A review of the literature on musical rhythm speaks
for the fact, that there is a hierachy of time scales for
musical rhythm related to physiological processes. (For
a summary of the facts presented here see e.g [10] or [7]
and references therein). Though music comprises a rather
wide range of possible tempos, which range roughly from
60-300 bpm (200 ms - 1s), there is no general scale in-
variance. The limitations on either side are caused from



perceptual and motorical constraints. The fusion thresh-
old, ie, the minmal time span at which two events can be
perceived as distinct lies around 5-30 ms, and order re-
lation between events can established above 30 - 50 ms.
The maximal frequency of a limb motion is reported to
be around 6-12 Hz ( �>� � 80-160 ms), and the max-
imum time span between two consecutive events to be
perceived as coherent, the so-called subjective present, is
around

@ 2�� s. Furthermore, subjects asked to tap an
isochronous beat at a rate of their choice tend to tap around
120 bpm ( �>� ��� ) ) ms), the so-called spontaneous
tempo ( [3], [7], [12]). Likewise, the preferred tempo,
i.e. the tempo where subjects feel most comfortably while
tapping along to music lies around within a similar range,
and is often used synonymously to spontaneous tempo.

With this facts in mind, we will now formulate an al-
gorithm for solving the quantization task and the beat and
meter extraction problem.

4. METRICAL HIERARCHY ALGORITHM

Input to our algorithm is the rhythm � � ���9��
���������� as
measured from a musical rendition. For testing purposes
we used MIDI files of single melodies from western pop-
ular music. Without loss of generality we set � � � ) @�� .

1. Prepare a Gaussification
P "�� $ with coefficeints com-

ing from temporal accent rules.

2. Calculate the autocorrelation function # � .

3. Determine set of maxima and maxima points C of
# �

4. Find beat ��� and timebase �>� from C ";# � $
5. Get a list of possible meters 8�� with best phases �#�

and weights 	 � with cross-correlation.

4.1. Gaussification with accents rules

The calculation of a Gaussification from a list of onsets
was already describe above. We chose a value of < �
25 ms for all further investigations. The crucial point is
the setting of the coefficients � � . We will consider the
values of a Gaussification as accent values, so the ques-
tion is how to assign (perceptual) meaningful accents to
each onset. it is known from music psychology that there
are a lot of sources for perceived accents, ranging from
loudness, pure temporal information along pitch clues to
involved harmonical (and therefore highly cultural depen-
dent) clues. Since we are dealing with purely temporal in-
formation, only temporal accent rules will be considered.
Interestingly enough, much of the temporal accent rules
([7], [8], [9]) are not causal, which seems to be evidence
for some kind of temporal integration in the human brain.
For sake of simplicity we implemented only some of the
simplest accent rules, related to inter-onset interval (IOI)
ratios.
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Figure 1. Example: Gaussification of the beginning of the
Luxembourgian folk song ’Plauderei an der Linde’, at 120
bpm with temporal noise added ( < �
� ) @�� ).

Let ������ (����� � ( > be two free accent parameters
for major and minor accents respectively. Furthermore,
we write �-� � � � � 24� � ! � for IOIs. Then the accent algo-
rithm is given by

1. INITIALIZE

Set �;� � > , � � ��� �� � , �#� ��� �� �
2. MINOR ACCENT

If ";� � ���3� 2 @ <=$�� �-� � ( > then � � ������ �
3. MAJOR ACCENT

If ";� �����3� � <=$�� � ��� ( @ then �;�1��� ����
The second rule assigns a minor accent.to every event,

which following IOI is significantly longer then the pre-
ceding IOI. The third rule assigns a major accent to an
event, if the following IOI is around two times as long as
the preceding IOI. It seems that accent rules, even sim-
ple one like these, are inevitable for musically reasonable
results. After some informal testing we used values of
������ ��� and ���� � � @ throughout.

4.2. Calculation of # � and its maximum points

The calculation of the autocorrelation function is done ac-
cording to equation 6. Afterwards the maxima are searched
and stored for further use. We denote the set of maxima
and corresponding maximum points with

C "�# � $���� "�� � :�� � $�:�� � � #%� "�� � $�� @ � �1: ) N ^ ' P 


4.3. Determination of beat and time-base

4.3.1. Determination of the beat

It is a widely observed fact that the ’beat’-level in a mu-
sical performance is the most stable one. First, we weight
the autocorrelation with a tempo preference function, and
then choose the point of the highest peaks to be the beat
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Figure 2. Example: Autocorrelation of the beginning of
’Plauderei an der Linde’. One clearly sees the peaks at the
timebase of 246 ms, at the beat level of 516 ms and at the
notated meter 2/4 (975 ms)

��� . The tempo preference function can be modelled fairly
well by a resonance curve with critical damping as in [12].
Parncutt [7] also uses a similar curve, derived from a fit to
tapping data , which he calls pulse-period salience. Be-
cause the exact shape of the tempo preference curve is
not important, we used the Parncutt function, which has a
more intuitive form:

	-"��	$�� B
!���� ��� LL �	�
�	� : (12)

where �
� denotes the spontaneous tempo, which is a free
model parameter that was set by us to 500 ms through-
out, and  being a damping factor, which is another free
parameter ranging from  � > to  � @ . (See Fig. 3).

The set of beat candidates can now be defined as

��� � � � � 14C "�#%�($�:�	 "�� � $ � � ��������
 (13)

But another constraint has to be applied on � � to achieve
musical meaningful results, coming from the correspond-
ing timebase. The timebase is defined as the smallest
(ideal) time unit in a musical piece 1 , and must be a in-
teger subdivision of the beat. But subdivisions of the beat
are usually only multiples of 2 (’binary feel’) or 3 (’ternary
feel’), or no subdivision at all. So, the final definition of
the beat is:

��� �������� ����� 1 C��T"�# � $�:�	-"�����$ �&�1��������
 : (14)

with

C � ";# � $(� �����	: � ���
�>�-"�� � $�� � @ G � � :�.;: @ 1 3 5 
 : (15)

where the symbol ! D " denotes the nearest integer (round-
ing) operation, and we take the minimal candidate in the
extremely rare case of more than one possibility.

1 sometimes called pulse
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Figure 3. Tempo preference function with different
dampings

4.3.2. Determination of the timebase

For a given beat candidate � � the timebase �>� can be
derived from C "�# �($ with the following algorithm.

Consider the set of differences

� C ��";� � � :�� � � :ESFSES :�� � � $
of the points from C ";# � $ , with the properties � � � NU� �
and � � �$# �I< . The second property rules out ’unmusi-
cal’ timebases, which might be caused by computational
artifacts or grace notes. Then the timebase �>� 1 � C , is
defined by%%%% � ��>� 2 � � �

�>��� %%%% �&�'���=: � � ��>��� � @ G � � :�.;: @ 14365 (16)

If there is no such a timebase for a beat candidate, the
candidate is ruled out. If for all beat candidates no ap-
propiate timebase can be found, the algorithm stops.

4.4. Determination of meters and phases

Given the beat, the next level in a metrical hierarchy is the
meter. It is defined as a subgrid of the beat grid. Although
it can be presumed that the total duration of a (regular)
meter should not exceed the subjective present of around@ 2 � � , there are no clear measurements as, e.g., for the
preferred tempo. Likewise, meter is much more ambigu-
ous than the beat level, as e.g. the decision between 2/4
or 4/4 meter is often merely a matter of convention (or
notation).

So the strategy used for meter determination is more
heuristic, resulting in a list of possible meters with a weight,
which can be interpreted as a relative probability of per-
ceiving this meter, and which can be tested empirical. The
problem of determining the correct phase is the most dif-
ficult one. One might conjecture that the interplay of pos-
sible but different phases for a given meter, or even of dif-
ferent meters, is a musical desirable effect, which might
account for notions like groove or swing.



Meter period Relative Accents
2 � 2,0 

3 � 2,0,0 

4 � 2,0,1,0 

5 � 2,0,0,1,0 

5 � 2,0,1,0,0 

5 � 2,0,0,0,0 

6 � 2,0,1,0,1,0 

6 � 2,0,0,1,0,0 

7 � 2,0,1,0,2,0,0 

7 � 2,0,0,2,0,1,0 

7 � 2,0,0,2,0,2,0 


Table 1. List of prototypical accent structures

Nevertheless, our strategy is straightforward and is ba-
sically a pattern matching process with the help of cross-
correlation of gaussifications. For the most common mu-
sical meters in western music prototypical accent patterns
( [6]) are gaussificated on the base of the determined beat
� � , and then the cross-correlation with the rhythm is cal-
culated over one period of the meter. The maximum value
of this cross-correlation is defined as the match between
the accent pattern and the rhythm, and along this way we
also acquired the best phase for this meter. The match-
ing value is then multiplied with the corresponding value
of the autocorrelation function, this is the final weight for
the meter.

The prototypical accent patterns we used can be found
in Tab. 1. For some meters several variants are given, be-
cause they can be viewed as compound meters.

So from an accent pattern ��� for a meter with period 8
and beat � � we get the following Gaussification:

P � "���7�� � :���� $��
�������.
a�/1� �;� 56"���7!7 ��� : <=$�: (17)

with
P �
	�� such, that

P �
	�� � ��# � �
The match @ � is the maximum of the cross-correlation

@ � � �����5 �L�� � -�� � ���F� "�	 $ (18)

and the best phase � is the corresponding time-lag. The
weight 	�� is the value

	��-�X#�� " 8 � � $ @ �

5. EXAMPLES

In Fig. 1 the Gaussification of a folk song from Luxem-
bourg (’Plauderei an der Linde’) is shown. The input was
quantized but distorted with random temporal noise of
magnitude < � 50 ms. The original rhythm was notated
in 2/4 meter with a two eight-note upbeat. The grid shown
in the picture is based on the estimated beat � � � 516 ms.
Fig. 2 displays the corresponding autocorrelation func-
tion.
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Figure 4. Best 2/4 Meter for ’Plauderei an der Linde’.
One can see how the algorithm picks the best balancing
phase.

Meter Phase Match Weight

2 545 ms 1.39953 1.55218
3 540 ms 0.882693 0.587578
4 545 ms 1.04741 0.803957

Table 2. Phases, match and total weights for ’Plauderei
an der Linde’

The important peaks are clearly identifiable. In Fig. 4
the best 2/4 meter is shown along with the original Gaus-
sification. The cross-correlation algorithm searches for a
good interpolating phase. The correponding cross-correlation
function can be seen in Fig. 5 The weights, matches and
best phases for this example are listed in Tab. 2

We also tested a MIDI rendition of the German popu-
lar song ’Mit 66 Jahren’ by Udo Jürgens (Fig. 6) played
by an amateur keyboard player. The autocorrelation can
be seen in Fig. 7. Though the highest peak of the autocor-
relation is around 303 ms, the algorithm chooses the value
of 618 ms ( � 97 bpm) for the beat, cause of influence ot
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Figure 5. Cross-correlation function for 2/4 meter for
’Plauderei an der Linde’.
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Figure 6. Gaussification of ’Mit 66 Jahren’ and best 2/4
meter.

the tempo preference curve. The timebase is chosen to be
103 ms, indicating thet the player adopted a ternary feel to
the piece, which is reasonable, because the original song
has kind of a blues shuffle feel. The best meter is 2/4 (or
4/4 for the half beat), but the best phase is 738 ms. Com-
pared to the original score, which is notated in 4/4, the
calculated meter is phase-shifted by half a measure.

6. SUMMARY AND OUTLOOK

We presented a new algorithm for determining a metrical
hierarchy from a list of onsets.

The first results are promising. For simple rhythm like
they can be found in (western) folksongs, the algorithm
works stable giving acceptable results compared to the
score.

For more complicated or syncopated rhythm, as well
as for ecological obtained data the results are promising,
but not perfect in many cases, especially for meter extrac-
tion. However, it is the question, whether human listener
are able to determine beat, meter and phase from those
rhythms in a ’correct’ way, if presented without the musi-
cal context and with no other accents present. This will be
tested in the near future.

The algorithm can be expanded in a number of ways.
The extension to polyphonic rhythms should be straight-
forward and might even stabilize the results. Furthermore,
a window mechanism could be implemented, which is
necessary for larger pieces and to account for tempo changes
as accelerations or decelerations.
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