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ABSTRACT 

In order to map the spectral characteristics of the large 
variety of sounds a musical instrument may produce, 
different notes were performed and sampled in several 
intensity levels across the whole extension of a clarinet. 
Amplitude and frequency time-varying curves of 
partials were measured by Discrete Fourier Transform. 
A limited set of orthogonal spectral bases was derived 
by Principal Component Analysis techniques. These 
bases defined spectral sub-spaces capable of 
representing all tested sounds and of grouping them 
according to the distance metrics of the representation. 
A clustering algorithm was used to infer timbre classes. 
Preliminary tests with resynthesized sounds with 
normalized pitch showed a strong relation between the 
perceived timbre and the cluster label to which the notes 
were assigned. Self-Organizing Maps lead to results 
similar to those obtained by PCA representation and K-
means clustering algorithm.   

1. INTRODUCTION 

Representation of a musical instrument involves the 
estimation of the physical parameters that contribute to 
the perception of pitch, intensity levels and timbres of 
all sounds the instrument is capable of producing. Of 
these attributes, timbre poses the greatest challenges to 
the measurement and specification of the parameters 
involved in its perception, due to its inherently 
multidimensional nature. Unlike timbre, intensity and 
pitch time-varying levels can be classified according to 
soft/loud and low/high one-dimensional scales and are, 
hence, capable of being quantitatively expressed by the 
traditional music notation system. Timbre is perceived 
by means of the interaction of a variety of static and 
dynamic properties of sound grouped into a complex set 
of auditory attributes. The identification of the 
contribution of each one of these competitive factors has 
been the main subject of psychoacoustics research on 
timbre perception. 

The introduction of the notion of "similarity rate" of 
hearing judgment responses together with 
Multidimensional Scaling (MDS) techniques allowed 
the reduction of this multidimensionality. "Timbre 
values" of different instruments were positioned on low-

dimensional timbre space according to their 
similarity/dissimilarity responses between pairs of 
distinct timbres, providing a quantification of a 
relatively complex structure upon quite simple data. 
More recent studies were able to relate measurable 
physical parameters with the dimensions shared by the 
timbre represented in these spaces, establishing 
correlations between purely perceptive factors related to 
timbre and acoustic measurements extracted directly 
from sound [4, 10]. A historical review of the 
development of research on musical timbre is found in 
[8]. 

Most studies on musical timbre research have 
approached comparisons among isolated notes of 
different musical instruments outside any musical 
context, focusing on the perceptive mechanism that 
discriminates a musical instrument from another. Little 
has been achieved regarding perceptive discrimination 
within the timbre palette produced by a single musical 
instrument, or even along the extent of a single note. 
Focused on the timbre of a single instrument, this study 
investigates methods for representing the variety of 
sonorities produced by the instrument.  

2. TIMBRE SET SPECIFICATION 

Timbre representation here investigated was built upon 
spectral parameters extracted from samples of sounds 
performed along the entire pitch range of the 
instrument. Two major simplifications were considered 
in defining the timbre set used in this study: (i) it was 
limited to the sound palette commonly produced on 
musical instruments in traditional classical western 
music performance, excluding sonorities produced on 
the instrument on the context of other musical 
traditions,  as well as those regularly used in 
contemporary music known as “extended techniques”; 
(ii) only the sustained part of relatively long sounds was 
considered, excluding attack, decay and transitions 
between consecutive notes. Due to dependence of 
timbre on these parts of the sound, the second 
simplification limits the investigation to the perception 
of slow variation of timbre, which commonly happens 
along longer notes.  

Intentional variations of timbre, together with 
fluctuations of intensity and duration are commonly 
used by the player, in order to convey his or her expres-
sive intentions. Although timbre may vary independ-
ently of intensity and duration, its dependence on inten-
sity is evident. This high level of correlation facilitates 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage 
and that copies bear this notice and the full citation on the first page. 

© 2004 Universitat Pompeu Fabra. 



the sampling of different timbre “values” of the same 
note upon specification of intensity levels. Thus, four 
different timbres were sampled for each note by asking 
the player to perform each note in four different inten-
sity levels, with minimal variation: pianissimo (pp), 
mezzo-piano (mp), mezzo-forte (mf) and fortissimo (ff). 
The performer was asked to establish the lowest and 
highest level limits as softer and louder as possible, 
respectively, within the range of commonly used 
timbres on western classical music. Intermediate levels 
were to be defined by comparison with these limits. 
Samples were obtained through high quality recordings 
of all notes of the two lowest registers of a B flat 
clarinet, ranging from D3 (147 Hz) through A5 (880 
Hz), played at the four levels of intensity defined above, 
with an average duration of 3 seconds. 

3. SPECTRAL BASES FOR TIMBRE 
CHARACTERIZATION 

3.1. Spectral parameters estimation 

Amplitude curves of partials were estimated according 
to McAulay and Quatieri’s method, which searches for 
maximum amplitude values (“peak detection”) of a 
Fourier Transform and establishes a correspondence 
between the closest peak values in adjacent frames 
(“peak continuation”), associating these values to 
instantaneous frequency and amplitude values of 
harmonic components [9, 12]. It was assumed that all 
sampled sounds could be represented by a weighted sum 
of sinusoids without abrupt variations of amplitude and 
frequency values. Components with intensity more than 
60 dB below the maximum level were discarded and 
amplitude curves were smoothed by a low pass filter 
with cut-off frequency of 10 Hz. 

3.2. Principal Component Analysis   

The high correlation of spectral parameters, presented in 
both frequency and time domains, which is a common 
characteristic of spectral distribution of sounds of 
musical instruments, allowed an efficient data reduction 
using Principal Component Analysis (PCA) [5]. PCA 
calculates an orthogonal basis determined by the 
directions of maximum variance of a set of 
multidimensional variables. The projections of the 
original data on this basis, denominated principal 
components (PCs), follow trajectories that accumulate 
the maximum variance of the data in a decreasing order. 
This allows an approximate representation of the data, 
using only a reduced number of dimensions. Recent 
works presented the effectiveness of this kind of 
representation of musical timbre [1-3, 11]. 

3.3. Physical Timbre space trajectories 

In order to represent the spectral distributions of the 
tested sounds, spectral basis were calculated using as 
input data the concatenation of the four samples of each 

note, pp, mp, mf and ff, as defined in Section 2. Samples 
were normalized in amplitude and duration, with 75 
frames (approx. 870 ms) each, taken from the center of 
the note. The spectral basis thus obtained constitutes a 
timbre space for these notes, where each sound occupies 
a unique position, according to its spectral 
configuration. Figure 1 shows three-dimensional 
trajectories of four intensity levels of four contiguous 
notes, A3 (220 Hz), Bb3 (233 Hz), B3 (247 Hz) and C4 
(262 Hz), represented in the principal component space 
defined by them. 

The correlation between intensity level and the first 
PC is evident as the spectral points belonging to each 
sound are separated in groups positioned in increasing 
order from pp to ff along the first PC dimension, while 
the 2nd and 3rd PCs vary differently in different 
directions for each sound. Moreover, we can identify 
clustering of different sounds from different notes: 
softer sounds (pp and mp) on the right side of the space 
and louder sounds on the left. We can also observe that 
louder sounds such as A3 ff, A3 mf and C4 ff have their 
trajectories more spread then softer sounds. 
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Figure 1: Three-dimensional trajectories of notes A3 

(220 Hz), Bb3 (233 Hz), B3 (247 Hz) and C4 (262 Hz) 
in the spectral space defined by them. 

4. TIMBRE CLASSIFICATION 

4.1. K-means Cluster Analysis 

An attempt to investigate the timbre distribution along 
the entire instrument was made with Cluster Analysis, 
using the K-means algorithm [6]. Comparison of timbre 
parameters among notes of different pitch becomes 
more complex, as timbre may vary significantly as a 
function of the note played, depending on the instru-
ment. Clarinet sounds, as used in this study, present 
irregular variation of timbre from note to note, which 
can be very accentuated, depending on the region of the 
instrument, like the abrupt timbre change between the 
low and mid registers, a well known characteristic of the 
clarinet. At first, a cluster analysis was performed using 
the 19 notes (76 sounds) from the low register of the 



clarinet, from D3 (147 Hz) through Ab4 (415 Hz). Nine 
clusters provided the best correlation between auditory 
tests and the classification obtained for this set of 
sounds. Very few of these sounds had their principal 
component coordinates split into different clusters and, 
when this happened, no more than 2 clusters were 
involved and the cluster assigned to the central part of 
the sound was always the cluster where the majority of 
points lied. 

Figure 2 orders all 76 sounds of the low register of 
the clarinet by pitch and shows the cluster to which each 
one was assigned. Each sound is represented by the 
location of its central frame on the low register timbre 
space. This figure highlights the correlation of the 
cluster to intensity level and shows that intensity level 
variation spreads the sounds more than pitch variation. 
Informal auditory tests showed strong coupling between 
perceived brightness and clusters assignment. Due to the 
known relationship of spectral centroid to the perception 
of brightness, cluster labels were ordered according to 
the mean spectral centroid of the group of sounds 
assigned to it. Note that the first 3 clusters group almost 
every pp and mp sounds of the whole set. Some notes of 
higher pitch in mf and ff were also assigned to those 
clusters. While higher pitched notes were grouped more 
tightly into these clusters, the four last clusters contain 
almost only mf and  ff notes of the lower octave, 
showing the tendency of timbre variation reduction as 
pitch increases. 
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Figure 2: Cluster Label of the 19 notes of the low 

register of the clarinet, D3 (147 Hz) through Ab4 (415 
Hz). Notes are ordered by pitch and cluster labels by 

the mean of the spectral centroids. 

4.2. Self-Organizing Maps 

Self-Organizing Maps are algorithms formalized by 
Kohonen for non-supervised neural nets, capable of 
mapping input data of large dimensions into lower 
dimensional spaces, preserving the essential topological 
relationships of the original data [7]. Toiviainen [13] 
compared the efficiency of musical timbre 
representations in spaces built by topological distances 

calculated by SOM to subjective measurements of 
similarity, proving a high correlation degree between 
the two domains. De Poli [3], Cosi and colleagues [2] 
developed studies on classification of musical timbre 
using SOM. This paper used a Matlab Toolbox from 
Versanto and colleagues [14]. 

An hexagonal SOM of size 16-by-9 was used to map 
the 76 sounds (19 notes) of the low register of the 
clarinet. Figure 3 shows the relation of this mapping to 
sound intensity levels. pp and mp sounds were more 
tightly clustered than mf and ff sounds, which can be 
verified by the distance metrics distribution of the SOM 
shown on the graph on the right side of Figure 3, in 
which distances between hexagons represent distances 
between map cells. 

Although SOM mapping is projected onto two 
dimensions, some consistency between both 
representations was identified. Like the K-means, SOM 
was able to map together every frame of a single sound 
into one or at most two cells. 
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Figure 3: SOM mapping of intensity levels (left) of the 
76 sounds (19 notes) of the low register of the clarinet, 
(D3 to Ab4); distribution of the distance between map 
cells (right). Larger cells mean closer matching units. 

Figure 4 shows the trajectories of six notes of the lower 
octave of the instrument: D3, Eb3, F3, F#3, Ab3 and 
A3. Despite being closer in pitch, they were mapped 
onto two distinct groups on opposite sides. Comparing 
Figures 2 and 4 we observe that notes mapped on the 
upper left corner (D3, Eb3 and Ab3) were assigned to 
the same clusters by the K-means as were also the notes 
mapped on the lower right corner (F3, F#3 and A3). 
Moreover, in both classifications Ab3 sounds were po-
sitioned tightly together, while A3 sounds were widely 
spread over clusters and cells, corroborating the high 
correlation between the K-means and the Kohonen map. 

5. CONCLUSION 

This study carries out timbre representation of a musical 
instrument based on spectral parameters extracted from 
sounds performed on that instrument. Principal compo-
nent analysis is used for dimensionality reduction, and 
clustering techniques are used to categorize the different 
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Figure 4: SOM mapping of the trajectories of notes 

D3, Eb3, F3, F#3 Ab3 and A3. 

timbres produced. The construction of spectral sub-
spaces involving all possible sounds produced by the 
instrument made it possible a compact representation of 
the whole timbre palette of the instrument. This unified 
representation allowed a timbre classification according 
to the distance metrics of the PC timbre space. Both K-
means and Self-Organized Maps provided a descriptive 
comparison of the dynamic variation of timbre. These 
representations and clustering techniques showed a 
strong matching, as they are mapping data from the 
same timbre space. It was clearly verified across all the 
results presented in this study that timbre classes tend to 
be divided as a function of spectral brightness, which is 
known to be correlated to intensity level in wind 
instruments. It was also noted that the lower pitched 
notes of the clarinet exhibit in general much more 
richness of timbre variation and spectral brightness than 
higher pitched notes.  

The results of this study applied to wider dynamic 
timbre variation will facilitate the investigation of the 
use of intentional timbre differentiation by the 
performer to convey musical expressiveness. Other 
perspectives for this project are to extend the 
investigation to shorter sounds, like staccati and 
pizzicati, as well as attack, decay and transition between 
notes, for which auditory models seem to be an 
adequate analysis tool. 
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