
CSOUNDXML: A META-LANGUAGE IN XML FOR SOUND SYNTHESIS

Pedro Kröger
Federal University at Bahia, Brazil

ABSTRACT

The software sound synthesis is closely related to the Mu-
sic N programs started with Music I in 1957. Although
Music N has many advantages such as unit generators and
a flexible score language, it presents a few problems like
limitations on instrument reuse, inflexibility of use of pa-
rameters, lack of a built-in graphical interface, and usually
only one paradigm for scores. Some solutions concen-
trate in new from-scratch Music N implementations, while
others focus in building user tools like pre-processors and
graphical utilities. Nevertheless, new implementations in
general focus in specific groups of problems leaving oth-
ers unsolved. The user tools solve only one problem with
no connection with others. In this paper we investigate
the problem of creating a meta-language for sound synthe-
sis. This constitutes an elegant solution for the above cited
problems, without the need of a yet new acoustic compiler
implementation, allowing a tight integration which is dif-
ficult to obtain with the present user tools.

1. INTRODUCTION

The history of software sound synthesis is closely con-
nected to the programs written by Max Mathews in the
50’s and 60’s such as Music IV and Music V. A large num-
ber of programs (e.g. Music 4BF, Music 360, Music 11,
Csound, Cmusic, Common Lisp Music, only to cite a few)
were developed taking Music V as a model. Usually these
programs are called “Music N”-type programs. (Although
not entirely correct we will call these programs “Music N
implementations”).

Despite its strengths, such as unit generators, a flexible
score language, power and speed, Music N has a few prob-
lems that can be divided in: instrument design, score ma-
nipulation, and integration between instrument and score.

Regarding instrument design, the first problem is in-
strument reuse. Only a few Music V based programs have
named instruments and tables instead of numbered. Only
very few implementations have great communication flex-
ibility and data exchange between instruments, and none
allow the definition of context dependent sound output.
The second problem is the well-known ordered list; all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

parameters are defined as an ordered list. This makes uti-
lization more difficult for the user (it’s hard to remember
the order and function of all parameters, specially when
an unit generator uses a dozen of them) and programs to
extract instrument data. The third problem is the lack of
scalability of the tools developed to describe instruments
graphically. They have to have a deep understanding of
the language syntax, not infrequently implementing a (yet
another) full parser. Some programs such as Supercollider
and Csound have specific opcodes for graphical widgets.
Unfortunately, this solution results in having graphical el-
ements in the same level of the sound synthesis. This
is one of the reasons this solution is not scalable; if the
graphical representation has to be changed, the instrument
core has to be modified.

Score manipulation represents an entirely different prob-
lem because a composition is described on it. And differ-
ent composers compose in different ways and need dif-
ferent tools. Some solutions as preprocessors and generic
programming languages are useful but limited. At one
hand preprocessors usually have only one fixed syntax and
paradigm, not being flexible enough to accommodate the
composer’s style. On the other hand, when using a generic
programming language the composer has all the flexibil-
ity not found with preprocessors, but it is necessary to
learn a complete programming language before compos-
ing, which is not reasonable.

The last problem is the lack of integration between the
orchestra and the score, and specially the lack of integra-
tion between solutions for the score (i.e. preprocessors)
and the orchestra. Tools for score processing usually de-
fine musical representation in a higher level then the flat
note list. However this breaks the communication be-
tween the “pre-score”—the file to be processed and con-
verted in the score—and the orchestra (fig. 1). Communi-
cation between the preprocessor file and the orchestra, or
better yet, between the “pre-score” and a “pre-orchestra”
would be highly needed (fig. 2).

Figure 1. Relationship between score, orchestra, and pre-
processor



Figure 2. Relationship between score, orchestra, and pre-
processor

In this paper we investigate the problem of creating a
meta-language for sound synthesis. This constitutes an el-
egant solution for the above cited problems, without the
need of a yet new acoustic compiler implementation, al-
lowing a tight integration which is difficult to obtain with
the present user tools. The details of the use of a score
language with csoundXML is the subject for another pa-
per. A preliminar work and introduction can be found at
[5].

2. CSOUNDXML

CsoundXML is a meta-language in XML for sound syn-
thesis developed by the author of this paper. A meta-
language is usually used to define or describe another lan-
guage. It describes the Csound orchestra language with a
few added features.

The ideal and highly desirable goal would be a unique
meta-language for sound synthesis capable of describing
all synthesis algorithms. However, this language is very
difficult to develop, if not impossible. The original goal
of the MPEG-4 Structured Audio [4] was to function as
an intermediate format between any synthesis program,

but it rapidly became clear that this idea is unten-
able. The different software synthesizers—Csound,
SAOL, SuperCollider, Nyquist, and the commer-
cial graphical ones—all have different underlying
conceptions of events, signals, opcodes, and func-
tions that makes it impossible to have a single for-
mat that captures anything but the very simplest
aspects of behavior [9].

Since a universal language for synthesis is not viable,
one solution is to create a standard and wait for its adop-
tion [9]. Another solution is to define a generic and exten-
sible language with a few target languages [2]. CsoundXML
is an example of the latter while SAOL [3] is an example
of the former.

2.1. Advantages

2.1.1. Languages conversion

XML has been used with success in the creation of meta-
languages for conversion between different languages [6,
1, 8, 7]. CsoundXML works as a starting point in the sense
that instruments written in it can be converted to differ-
ent synthesis languages such as Csound, Cmix, and so on.

Although CsoundXML is not a “universal language”, it is
compatible with the Csound orchestra format, and conse-
quently, other programs in the Music N family.

2.1.2. Databases

The existence of a large collection of Csound instruments
is one of the main sources of learning. Now that the num-
ber of these instruments is more then 2000, is necessary
the creation of a more formal database. Having these
instruments converted to CsoundXML allows the use of
meta-information tags such as author, description, local-
ization, and so on. This information can be easily ex-
tracted and manipulated.

2.1.3. Pretty-print

Pretty-Print is more than an eye candy feature. The pos-
sibility to print Csound code with typographical quality
is a necessity of book and article authors. Having an in-
strument written in XML, the conversion to Csound can
be done in different ways. One simple example is the use
of comments. One can choose if they will or will not be
printed and how they will be printed; if above, below, or
sideways of an expression.

2.1.4. Graphical tools

Because CsoundXML is a formal and structured language
it is possible to describe instruments graphically automat-
ically. There are two basic problems:

1. design decisions to define how elements will be drawn.
Sound generators such as oscillators are easy to rep-
resent while opcodes that convert values and flow
control are hard to represent graphically.

2. algorithms to distribute the synthesis elements in
the screen avoiding collision. Having the previous
item solved is necessary to have “smart” algorithms
to allow different kinds of visualization and com-
plexity.

2.1.5. Integration

XML allows the integration of different paradigms and vi-
sualizations modes. For example, a system can be built on
top of CsoundXML to display instruments as flowcharts
or as a parameter editor, or to emulate a Music N-style
syntax (fig. 3).

2.2. CsoundXML syntax

This section will show a few syntatic elements to give an
idea of how CsoundXML looks like. In addition it also
supports flow control, different types of output, functions,
expressions, and meta information.



Figure 3. XML helps integration

Example 2.1 A typical Csound opcode

afoo oscil 10000, 440, 1 ; some comment here

2.2.1. Opcodes

The heart of Csound instruments are the unit generators,
implemented as opcodes. The ex. 2.1 shows a typical
opcode, oscil, where afoo is an a-variable that will
hold the opcode output. 10000 is the amplitude, 440 is
the frequency, and 1 is the function number with a wave
shape. The text after the semi-colon is a comment that
will be disregarded by Csound.

In CsoundXML the opcodes are defined by the opcode
element and its parameters by the par element. The op-
code and parameter name is defined by the name attribute.
The id attribute defines a unique name for each element.
It can also be used to provide connection between ele-
ments, like variables (see 2.2.2). The ex. 2.2 shows the
code of ex. 2.1 in CsoundXML.

Information about the opcodes (e.g. how many and
which parameters) and parameters (e.g. the possible val-
ues) is defined in an XML library for Csound, CXL 1 , also
developed by the author of this paper. A kind of cross-
reference between CsoundXML and CXL is achieved us-
ing the name attribute.

The type attribute indicates the variable type (e.g. k,

1 This is the subject for another paper, yet to be published.

Example 2.2 A Csound instrument in XML

<opcode name=”oscil” id=”foo” type=”a”>

2 <out id=”foo out”/>
<par name=”amplitude”>

4 <number>10000</number>
</par>

6 <par name=”frequency”>

<number>440</number>
8 </par>

<par name=”function”>

10 <number>1</number>
</par>

12 <comment>some comment here</comment>
</opcode>

Example 2.3 Parameter definition

<defpar id=”gain” type=”i”>

2 <default>20</default>
</defpar>

i, or a). Variables can have any name, CsoundXML makes
sure the variable will start with the right letter when con-
verting to Csound. This is a valuable feature for automatic
conversion between variables.

Each parameter may have three kinds if input, a simple
numeric value (e.g. “1”), a variable (e.g. “iamp”), or an
expression (e.g. “iamp+1/idur”). If the input is a numeric
value, the number element is used (line 4 of ex. 2.2).
If the input is an expression, the expr element is used.
Finally, if the input is a variable, the par element will be
empty and the variable will be defined by the vvalue
attribute. Vvalue stands for “variable value”. The value
of vvalue must be the same of the id of the variable
defined by defpar (see section 2.2.2).

One may be bothered by the verbosity of XML docu-
ments. Our original example (ex. 2.1) has only one line
while the CsoundXML version (ex. 2.2) has 13! Never-
theless, XML verbosity is a feature and not a bug. It per-
mits, among other things, more complete searches. Still
in the example 2.2, a program for drawing functions could
quickly and easily see how many and which functions an
instrument is using looking for the “function” attribute in
the <par> tag. It is important to keep in mind that re-
gardless the first impression, having structured informa-
tion in XML make life easier for the programmer/user.
All the process of reading the XML file, determinating the
structure and propriety of data, dividing the data in pieces
to send to other components is done by the XML parser.
Since there are many parsers available, both commercially
and freely, the developer does not have to make one from
scratch.

2.2.2. Parameters and variables

In CsoundXML variables are defined with the defpar
element. It also has the id and type attributes (ex. 2.3).

A more complex example is shown in ex. 2.4 where the
gain parameter is defined. The description element
contains a brief description, the default element has a
valid default value for the parameter, and the range ele-
ment defines the numerical range. A graphical tool could
extract the information in range to automatically create
sliders for each parameter.

If the auto attribute is equal to “yes” its value will be
automatically assigned to a pfield. That is, the CsoundXML
code <defpar id="notes" auto="yes"/> is equiv-
alent to the code inote = p4 in Csound. The differ-
ence is that the exact pfield is not determined by the instru-
ment designer but by the program implementing CsoundXML.
This is a more flexible solution than the conventional use
since the parameters in the score will be called by the vari-
able names, not by pfields.



Example 2.4 A parameter with a default value and range

<defpar id=”gain”>

2 <description>

gain factor , usually between 0 − 1
4 </description>

<default>1</default>
6 <range steps=”float”>

<from>0</from>

8 <to>1</to>

</range>
10</defpar>

2.3. Parameter editor

The figure 4 shows an overview of the creation of a pa-
rameter editor. After DTD validation (in order to check
the correctness of the XML file) the needed data is ex-
tracted from the instrument. The program looks for ele-
ments with the auto="yes" attribute to create sliders
for each parameter and selection boxes for each function.
Since the functions are defined in a separate file, the pro-
gram reads all functions in that file and shows all of them
in the selection box.

Figure 4. Parameter editor—GUI creation

The greatest advantage of this approach is that the GUI
is created from a regular CsoundXML, that is, no specific
graphical information has to be coded in the instrument.
The GUI is generated automatically.

Data can easily be obtained from the instrument by us-
ing Xpath queries. The Xpath code for extracting all func-
tions is //par[@name=’function’], for example.
This kind of data can be very useful for creating instru-
ment debuggers, for knowing the most used opcodes in a
collection of instruments, for controlling functions, and so
on.

3. CONCLUSIONS AND FUTURE WORK

The creation of a meta-language for sound synthesis solves
some of the problems raised in section 1.

Instrument reuse is made possible by a high-level de-
scription, named instruments, flexible signal input and out-
put, and mainly the possibility to be able to define multiple
outputs depending on context.

The use of a structured syntax (such as XML’s) allows
bypassing the limitations of Music N’s flat lists. It is pos-
sible to extract informations from the instrument easily
(section 2.3).

Unlike other solutions that add graphical commands in
the instrument, the meta-language XML structure allows
the automatic creation of graphical instruments, without
extra opcodes (section 2.3).

Finally, the problem of lack of integration between the
solutions for the score (preprocessors) and the orchestra is
solved with a description of both in a higher level and the
use of parameter automation and context. The proposed
solution allows the creation of an integrated system that
can be accessed with different interfaces.

The solutions presented in this work can be applied in
different context. They can be implemented as tools to
expand programs already existent like Csound, constitute
the basis for a new compositional system, be incorporated
to existent sound synthesis programs, be extended to use
other synthesis languages than Csound as basis.

4. REFERENCES

[1] Yannis Chicha, Florence Defaix, and Stephen M.
Watt. A C++ to XML translator. The FRISCO con-
sortium, 1999.

[2] Michael Gogins. Re: SML (synthesis modelling lan-
guage), Jan 2000.

[3] ISO/IEC. Information technology—coding of audio-
visual objects, 1999.

[4] Rob Koenen. Overview of the mpeg standard. Tech-
nical report, ISO/IEC JTC1/SC29/WG11, 1999.

[5] Pedro Kröger. Desenvolvendo uma meta-linguagem
para sı́ntese sonora [Developing a meta-language for
sound synthesis]. PhD thesis, Federal University at
Bahia, Brazil, 2004.

[6] Manuel Lemos. MetaL: XML based meta-
programming engine developed with php. In PHP
Conference 2001, Frankfurt, November 2001. PHP-
Center and Software & Support Verlag.

[7] Alagappan Meyyappan. GUI development using
XML, 2000.

[8] Soumen Sarkar and Craig Cleaveland. Code genera-
tion using xml based document transformation, 2001.
Available at http://www.theserverside.
com/resources/articles/XMLCodeGen/
xmltransform.pdf.

[9] Eric Scheirer. Re: SML (synthesis modelling lan-
guage), 2000.


