
AUDIO FEATURES FOR NOISY SOUND SEGMENTATION

Pierre Hanna, Nicolas Louis, Myriam Desainte-Catherine, Jenny Benois-Pineau
SCRIME - LaBRI
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ABSTRACT

Automatic audio classification usually considers sounds
as music, speech, silence or noise, but works about the
noise class are rare. Audio features are generally specific
to speech or music signals. In this paper, we present a new
audio feature sets that lead to the definition of four classes:
colored, pseudo-periodic, impulsive and sinusoids within
noises. This classification relies on works about the per-
ception of noises. This audio feature set is experimented
for noisy sound segmentation. Noise-to-noise transitions
are characterized by means of statistical decision model
based on Bayesian framework. This statistical method has
been trained and experimented both on synthetic and real
audio corpus. Using proposed feature set increases the
discriminant power of Bayesian decision approach com-
pared to a usual feature set.

1. INTRODUCTION

Advances in consumer home devices and broadcast tech-
nologies permit individuals to enjoy a large amount of au-
dio/visual (A/V) content. To manage such wide quantity
of incoming data, users need automatic techniques. In the
last decade, different authors such as [1, 2] have proposed
methods for structuring A/V content which are based on
audiovisual descriptors. In parallel, a significant progress
has been made in automatic audio classification for var-
ious application areas [3, 4]. Namely, a large amount
of work addresses the problem of classification of audio
into music, speech, silence and noise. Amongst those four
classes, the noise class is the most complex and unstruc-
tured one. Still few research is devoted to the analysis of
noise in audio.

In this paper, we are interested in a characterization of
noisy sounds and its application to the problem of detect-
ing noise-to-noise transitions in sound tracks. The work is
based on the assumption that audio classification in speech,
music, noise and silence has already been done. In fact,
audio tracks in broadcast A/V programs or A/V works
contain various noise segments and transitions between
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them. Locating those transitions is essential in the field
of A/V content structuring. Thus, we are firstly interested
in audio features which can characterize noisy sounds in
the best way. Then, an adequate method for noise tran-
sition detection can be proposed, which we formulate as
a semi-blind segmentation problem based on selected fea-
tures. The paper is organized as follows. The choice of
audio features and characterization of noisy sounds is pre-
sented in section 2. The segmentation method is intro-
duced in section 3. Some results are presented in section
4. Conclusion and perspectives are given in section 5.

2. CLASSES OF NOISY SOUNDS AND AUDIO
FEATURES

According to our previous work [5], noisy sounds can be
classified into four classes. This classification is based
on perceptual properties. In this section, we focus on
these classes and propose the choice of relevant features
for their identification.

2.1. Colored Noise

The first category of noisy sounds is intuitively the cat-
egory composed of sounds that can perfectly be synthe-
sized by filtering white noise: all the perceptual properties
of these sounds are assumed to be contained in the short-
time spectral envelopes [6]. The name of Colored Noises
is due to the analogy with the color of light. The exam-
ples of such sounds are numerous: sounds from seashore,
wind, breathing, etc. . .

The main characteristic of colored noises is the en-
velopes of their short-time spectra. It is useful to deter-
mine one or a few parameters for describing this property.
A few features have been shown as useful for speech sig-
nal or musical sounds. For example the Spectral Roll-Off
[7] or the spectral centroid are particularly useful to dis-
criminate voice from unvoiced music. However, the ap-
plication of these features to noisy sounds is less precise.
We propose here to apply the research results of Good-
win about the residual modeling of sounds [8]. This work
relies on the noise model of perception which states that
a broadband noise is correctly represented by the time-
varying energy in Equivalent Rectangular Bands (ERBs).
However we propose to adapt this method by choosing
the Bark scale instead of the ERBs, because the number
of bark bands is smaller than the number of ERBs: this



choice implies a fewer number of features. Short-time
spectral envelopes of noisy sounds are represented by the
short-time energies within each Bark band. Therefore, one
feature (composed of 26 values) characterizes the color of
the noisy sounds. Variations of only one value indicate
a modification of the color, that may be perceived, since
each feature is related to the perception.

2.2. Pseudo-periodic Noises

Several natural noisy sounds are characterized by the pitch
that can be perceived, for example machine noises, insect
flies, scratching noise, etc. . . The pitch may have different
strengths, and several pitches can be perceived at the same
time. This property may have different explanations: the
spectral envelope of sounds is composed of a frequency
band of high energy [9], the noisy sounds are mixes of
several sounds, the noisy sounds are considered as a sum
of a few sinusoids that imply noises with perceived pitch
[5] or the noisy sounds are assumed as rippled noise [10].
The two first cases respectively are presented in the sec-
tions 2.1 and 2.4. In this section, we propose two features
which may characterize the class of noisy sounds that is
described by the two other cases.

The feature we define has to describe the perceived
pitch of a sound in two ways: the strength of the pitch
and its value. A few methods have been proposed in psy-
choacoustics to measure the pitch strength of rippled noise
[10]. The method we choose relies on the autocorrela-
tion function Γ, and more precisely on the ratio (denoted
AR) of the second maximum of the autocorrelation func-
tion (denoted Γ(τ)) to its first value Γ(0) (total energy of
the signal). This feature is already known as a technique
for the segmentation of speech into voiced and unvoiced
parts, for the pitch estimation of a harmonic sound and
for speech recognition [11]. Nevertheless it appears to be
very useful to characterize noisy sounds.

Furthermore, two pseudo-periodic noises may have one
similar autocorrelation ratio without being the same sound.
That’s why we propose a second feature to represent pseu-
do-periodic noises: the estimation of the period p = τ

R (R
sample rate).

2.3. Impulsive Noise

Several natural noisy sounds are composed of periodic or
aperiodic impulses. For example, one can think about ap-
plauses, walking steps, rain drops, etc. . . They are referred
as impulsive noise [12]. Frequency of pulses composing
this type of sounds has to be lower than approximately
20Hz. Otherwise this frequency is detected by the hearing
system as a pitch.

The pulses contained in impulsive noises are similar
to the transients (attacks) of instrumental sounds. Some
methods for the detection of the transients have been de-
veloped relying on the variations of energy or on the zero-
crossing rate (ZCR). However, we think that these meth-
ods can hardly lead to the definition of features for the
characterization of impulsive noises. Indeed, the presence

of energy in high frequencies may indicate pulses but also
just the level of noise.

We propose to study the distribution of samples as ex-
plained in [5]. Properties about this distribution can be
quantified by the kurtosis. A local pulse, characterized by
a sharp probability density function, induces a high value
of kurtosis. A kurtosis value is affected to each frame. A
threshold has to be chosen in order to define frames that
are assumed to contain one pulse. Each kurtosis value
greater than the threshold is considered as an impulsive
frame. The more important and audible the pulse is, the
higher the kurtosis value is. Therefore, the kurtosis value
is not only an indicator of the presence of pulses, but also
a feature that describes the nature of the pulse.

We think that it is also important to be able to discrim-
inate impulsive noises that do not differ by the nature of
the pulses, but by their periodicity. That’s why we pro-
pose to complete the kurtosis value with the periodicity of
the pulses composing impulsive noises. This periodicity
is null if only one pulse has been detected.

2.4. Sinusoids within Noise

Classification systems usually consider natural sounds as
music sound, speech sound or noise. However, real world
noises can rarely be assumed as pure noises, because they
may be nothing but mixes of several sounds from different
sources, that may be harmonic.

Here we consider the real world sounds which are as-
sumed as being mixes of several sound sources. If one or
some of these sources are harmonic or pseudo-harmonic
and if the noise level is not too high, these harmonic sources
can be perceived: they are thus important perceptual char-
acteristics of such sounds. The examples of real world
sounds of this class are numerous: street sounds-capes
with horns, wind in trees with singing birds, seashore with
seagulls, etc. . .

Natural noises are represented by short time amplitude
spectra that are composed of peaks which correspond to
sinusoids contained in the sound. The feature associated
to this class of noisy sounds is simply the number of sinu-
soids. Several analysis methods have been proposed in the
context of sound analysis/synthesis. An original method
has been proposed in [5]. This technique is accurate with
noisy sounds and it is independent from the general vol-
ume of the sound. It is based on the statistical analysis
of the intensity fluctuations. A measure for each bin of
the amplitude spectra is computed and a chosen threshold
permits to define the number of bins that correspond to
sinusoids. Therefore, a number of sinusoids is associated
to each analysis frame. We consider the analyzed sound
as a mix of noise and harmonic sounds if this number of
sinusoids is greater than a chosen threshold.

3. STATISTICAL SEGMENTATION OF NOISE
TRANSITIONS

After the study of noise signal features we address here
the problem of detection of transitions between different



noisy sounds in a time-varying audio signal. This tran-
sition can happen both between noises of the same class
and between noises from different classes as described in
section 2. In any case we propose a blind segmentation
scheme which consists in the following. For a pair of
consecutive temporal windows on a temporal noise sig-
nal the problem is to check if the boundary between the
windows corresponds to a change from one sound to an-
other or the sound is continuous. This segmentation can
be called ”semi-blind”. In fact we will use the descriptors
which characterize noisy sounds the best (versus speech
and music descriptors), but still realize a blind segmenta-
tion approach similarly to [1]. We formulate the segmen-
tation problem in a general Bayesian framework. In our
problem, the stochastic variable x = (x1, ..., xm)T repre-
sents a vector of audio features with m the total number of
features measured along the time and two hypotheses are
considered, H1 - ”the absence of audio variation at time
t0” and H2 - ”audio variation at time t0”. We will sup-
pose that H1 and H2 form the partition of the space of
hypotheses, that is Pr(H1) + Pr(H2) = 1 (Obviously,
from the sense of our problem Pr(H1×H2) = 0). From
the well-known Bayes formula the following may be in-
duced:

{

Pr(H1/x) = f(x/H1).Pr(H1)
f(x)

Pr(H2/x) = f(x/H2).Pr(H2)
f(x)

(1)

with f(x) and f(x/Hk) representing the probability den-
sity function and the conditional probability density re-
spectively. We will suppose Gaussian distributions N0(µ0,
Σ0) associated to H1 for the interval [t0 − n, t0 + n],
N1(µ1, Σ1) and N2(µ2, Σ2) associated to H2 for the in-
tervals [t0−n, t0] and [t0+1, t0+n] respectively with n
a parameter. Then a change of audio stream at time t0 can
be expressed in terms of the likelihood ratio as: L1

L2 = A
B
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with Lj = f(x/Hj)×Pr(Hj) the likelihood function of
the hypothesis Hj, j = 1, 2 and Σk the covariance matrix,
k = 0, 1, 2 and X a centered measurement vector.

Following the usual development, that is taking the log-
arithm of the likelihood ratio, we obtain:

M = n
2 [ln(det(Σ1)) + ln(det(Σ2))] − n × ln(det(Σ0))

+ 1
2 [

∑t0
t=t0−n(XT
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+
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T
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−
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t=t0−n(XT
t × Σ−1
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M
<
>

2 × n × ln(P/(1− P ))
=> H2
=> H1

(2)
Here, P is the probability of the hypothesis H2 - noise
transition. The segmentation method is thus as follows.
Feature vectors x will be measured in two consecutive
sliding windows. The decision on change will be made
according to (2). In the next section the results on the use

of various noise descriptors for semi-blind segmentation
are presented.

4. EXPERIMENTS

Here we compare two sets of descriptors for noise seg-
mentation using statistical method from Section 3. The
first set of descriptors is constituted of Spectral Centroid,
Spectral Flow, Roll-Off, Zero-Crossing Rate and Mel Fre-
quency Spectral Coefficients (only the 13 first coefficients)
[7]. The second one, which we propose, consists in the
energy distribution amongst the Bark’s Bands, Kurtosis,
Period of Kurtosis, Auto-Correlation Ratio (ACR), Period
of the ACR and Number of Sinusoids [7, 5].

In order to determine the relative discriminative power
of the two sets of descriptors we conducted the experi-
ments both on synthetic noise test data set and on ex-
cerpts from audio tracks of real-world broadcast corpus.
The synthetic corpus was composed of impulsive, peri-
odic, sinusoidal and colored noises generated with con-
trolled parameters by the noise generation tool developed
in [5]. Various combinations of noises inside the same
class, described in section 2 such as impulsive, colored,
etc ..., were tested. All combinations of noises from differ-
ent classes following each other along the time were pro-
duced as well and submitted to the change detector. The
real noise corpus contained a limited number (15) of tran-
sitions. The likelihood ratio normalized by the cardinal of
feature set was computed for both sets of descriptors. The
results of this comparison are shown in Figure 1. These
results were obtained on a synthetic noisy sound corpus.
Figure 1a presents the normalized log likelihood ratio for
the descriptors of the group 1. Results for the proposed
group 2 are shown in figure 1b. It can be seen that the
group 2 exhibits much stronger minimum of the normal-
ized log likelihood ratio in the case of noise change. This
situation is typical. In table 1 we also show the differences
between the global minimum and the closest minimum of
normalized log likelihood ratio curve. The first column
in table 1 contains the type of transition, e.g. i−i means
that the transition is observed in ground truth between two
impulsive noises. The second column contains the sound
feature changed in the synthetic sound generated. The in-
ter class transitions are notated with the key-word ”Class”.
The last two columns contain the absolute difference be-
tween the global minimum and the closest minimum of
the normalized log likelihood ratio. It can be stated that
this difference in case of the second group of features is
stronger in its absolute value. Therefore the discriminative
power of the second group of descriptors is stronger.

As it can be seen from (2) the decision on a noise change
is based on a probability dependent threshold and on the
size of measurement window. It can be seen from the ta-
ble 1 that the variability of the gap between the ”change”
minimum and the closest minimum is rather strong. This
makes us conclude, that the threshold should be adaptive
and we dynamically train it on the first measured windows
supposing the continuity of noise. With this assumption
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Figure 1. Normalized log likelihood ratio for groups of
audio features: a) First group, b) Second proposed group

Transitions Differences Gr. 1 Gr. 2
i1−i2 Period 0.50 4.10
i1−i3 Peaks’ Magnitude 0.32 0.40
i−p Class 0.50 19.00
i−s Class 0.30 4.20
i−c Class 0.35 3.40
p−s Class 1.17 7.80

p1−p2 Magnitude of ACR 10.50 18.65
p1−p3 Period 10.00 18.80

p−c Class 0.52 19.35
s1−s2 Magnitude of sin 1.30 4.85
s1−s3 Number of sin 0.60 2.55
s−c Class 0.55 4.50
c−c Color 0.68 3.86

Table 1. Comparison of discriminative power of two
groups of descriptors: (i− impulsive, p− pseudo-periodic,
c− colored noise and s− sinusoidal)

and on the proposed second descriptor set, the semi-blind
segmentation method performs well on a limited real test
data set we have. With dynamic training of a threshold
we obtain a recall figure of 86.67% and the same preci-
sion of 86.67% with regard to the ground truth on a real
broadcast audio noise transitions using the second group
of descriptors.

5. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new set of features to charac-
terize noisy sounds. We proposed a semi-blind segmen-
tation of noise transition based on a classical Bayesian
approach. We have also shown that noise-to-noise tran-
sition detection can be improved using relevant features.
For that purpose, our comparison between classical and
proposed features illustrates that the discriminant power
of the statistical segmentation rule has been considerably
increased using our proposed feature set both on synthetic
sound and real sound corpus.

However, on the one hand, more tests on real audio data
set have to be done to validate the robustness of our deci-
sion method and to consolidate our choice of feature set
proposed. On the other hand, conscious on the classical
chicken-and-egg problem, we are nevertheless interested
in a more extensive study of features appropriated to the
classes of noisy sounds described in this paper, for change

detection.
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