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ABSTRACT

Repeating sounds and patterns are widely exploited
throughout music. However, although analysis and mu-
sic information retrieval applications are often concerned
with processing speed and music description, they typi-
cally discard the benefits of sound redundancy cancella-
tion. We propose a perceptually grounded model for de-
scribing music as a sequence of labeled sound segments,
for reducing data complexity, and for compressing audio.

1. INTRODUCTION

Typical music retrieval applications deal with large
databases of audio data. One of the major concerns of
these programs is the meaningfulness of themusic de-
scription, given solely the audio signal. Another concern
is the efficiency ofsearchingthrough a large space of in-
formation. With those considerations, some recent tech-
niques for annotating audio include psychoacoustic pre-
processing models [1], and/or a collection of frame-based
(i.e., 10-20 ms) perceptual audio descriptors [2] [3]. The
data is highly reduced, and the description hopefully rel-
evant. However, although the annotation is appropriate
for sound and timbre, it remains complex and inadequate
for describingmusic, a higher-level cognitive mechanism.
We propose a meaningful, yet more compact description
of music, rooted on the segmentation of audio events.

In [4], Jonathan Foote and Matthew Cooper intro-
duced a novel approach to musical structure visualiza-
tion. They used self similarity of Mel-frequency cepstral-
coefficient feature vectors as a signature for a given audio
piece. From the resulting matrix could be derived a rep-
resentation of the rhythmic structures, which they called
beat spectrum. In [5], they proposed a statistically-based
framework for segmenting and clustering large audio seg-
ments viaSingular Value Decomposition. The analysis
could for instance return the structural summarization of
a piece, by recognizing its “most representative” chorus
and verse patterns. Our approach, on the other hand, starts
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Figure 1. [A] 26-second audio excerpt of “Watermelon
Man” by theHeadhunters(1974). From top to bottom:
waveform, auditory spectrogram, and loudness curve with
segmentation markers (129 segments of about 200 ms).
[B] resynthesis of the piece with only 30% of the segments
(less than 8 seconds of audio). From top to bottom: new
waveform, auditory spectrogram, loudness curve, and seg-
mentation. Note that there are few noticeable differences,
both in the time and frequency domains.

with a perceptual technique for describing the audio spec-
tral contentfirst, derives a meaningful segmentation of the
musical contentthen, and onlylater computes a matrix of
similarities. Our goals are both description and resynthe-
sis. We assume no prior knowledge about the music being
analyzed. For instance, the segment sizes are automati-
cally derived from the music itself.



2. PSYCOACOUSTICALLY INFORMED
SEGMENTATION

Segmenting is the process of dividing the musical signal
into smaller units of sounds [6]. A sound is considered
perceptually meaningfulif it is timbrally consistent, i.e.,
it does not contain any noticeable abrupt changes. We
base our segmentation on anauditory model. Its goal is
to remove the information that is the least critical to our
hearing sensation, while retaining the important parts.

We first apply a running STFT, and warp the spectrum
to a 25-critical-band Bark scale. We then model the non-
linear frequency response of the outer and middle ear [7],
and apply frequency and temporal masking [8], turning
the outcome into a “what-you-see-is-what-you-hear” type
of spectrogram [9] (see figure 1-[A]-2). Aloudnessfunc-
tion is easily derived by summing energy across frequency
channels (see figure 1-[A]-3).
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Figure 2. Short 3.2-second audio excerpt extracted from
figure 1. From top to bottom: the unfiltered event detec-
tion function, the event detection function convolved with
a 150-ms Hanning window, the loudness curve. Vertical
red lines represent onset markers.

We convert the spectrogram into anevent detection func-
tion by first calculating the first-order difference function
for each spectral bands, and by summing across channels
(see figure 2-1). Transients are localized bypeaks, which
we smooth slightly by convolving the function with a 150-
ms Hanning window to combine those perceptually fused
together (i.e., two events separated in time by less than
50 ms [10]). The required onsets can finally be found by
extracting every local maxima within that function (see
figure 2-2). Since our concern is resynthesis by concate-
nating audio segments, we refine the onset location by
searching the corresponding previous local minimum in
the loudness function, and the closest zero-crossing in the
waveform (see figure 2-3).

3. LABELING AND SIMILARITIES

Music could be described as anevent-synchronous path
within a perceptual multidimensional space of audio seg-
ments. Musical patterns can be recognized as loops within
that path. A perceptual multidimensional scaling (MDS)
of sound is a geometric model which provides us with
the determination of the Euclidean space that describes
the distances separating timbres as they correspond to
listeners’ judgments of relative dissimilarities. It was
first exploited by Grey [11] who found that traditional
monophonic pitched instruments could be represented in
a three-dimensional timbre space with axes correspond-
ing roughly to attack quality (temporal envelope), spec-
tral flux (evolution of the spectral distribution over time),
and brightness (spectral centroid). However, little work
has previously been done on the similarity of rich poly-
phonic arbitrary sound segments. We seek to label these
segments in a way that the perceptually similar ones fall
in the same region of the space. Redundant segments get
naturally clustered, and shall becodedonly once.
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Figure 3. Matrix of perceptual self similarities for the
129 segments of the “Watermelon Man” excerpt of figure
1-[A]. White means very similar, and black very dissim-
ilar. Note the black lines, which represent very unique
segments, and the white diagonal stripes, which illustrate
pattern redundancies in the music, although the music was
fully performed and not loop-based, i.e., no digital copies
of the same material.

Our current representation describes sound segments
with 30 normalized dimensions. Because segments are
small and consistent, 25 dimensions are derived from the
average amplitude of critical bands of the auditory spec-
trogram over time, and 5 are derived from the temporal
loudness function (normalized loudness at onset and at
offset, maximum loudness, length of the segment, and rel-
ative location of the maximum loudness). A more accu-
rate representation taking into account the complete dy-
namic variations of the spectral envelope, and a dynamic
programming approach is currently under development
(a collaboration with J.J. Aucouturier from Sony CSL).



However, our preliminary results have been satisfactory.
A very compact, yet perceptually meaningful vector

description of the time structure ofmusical events(much
like an “audio DNA” symbolic sequence) is now estab-
lished. We can finally compute the self similarity ma-
trix between segments with, for example, a simple mean
squared distance measure (see figure 3). Other distance
measures could very well be considered.

4. CLUSTERING AND COMPRESSION

Since the space is Euclidean, a simple k-means algorithm
can be used for clustering. An arbitrary small number of
clusters may be chosen depending on the targeted accu-
racy and compactness. The process is comparable to vec-
tor quantization: the smaller the number of clusters, the
smaller the lexicon and the stronger the quantization. Fig-
ure 4 depicts the segment distribution for a short audio
excerpt at varioussegment ratios(defined as the number
of segments retained divided by the number of original
segments). Audio examples corresponding to the resyn-
thesis of this excerpt at various segment ratio settings (see
description below), as well as many other examples are
available at:www.media.mit.edu/ ∼tristan/ISMIR04/
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Figure 4. Color-coded segment distribution for the 129
segments of the “Watermelon Man” piece of figure 1-[A]
at various segment ratios. 100% means that all segments
are represented, while 10% means that only 13 different
segments are retained. Note the time-independence of the
segment distribution, e.g., here is an example of the dis-
tribution for the 13 calculated most perceptually relevant
segments out of 129:
33 33 66 66 23 122 23 15 8 112 42 8 23 42 23 15 112 33 33 66 66 66 108 23 8 42 15 8 128 122 23 15 112 33 66
115 66 122 23 15 8 128 42 66 128 42 23 15 112 33 66 115 8 108 23 15 8 42 15 8 128 122 23 115 112 33 66 115 86
128 23 33 115 112 42 8 128 42 23 115 112 8 66 8 66 108 86 15 23 42 15 8 128 122 23 115 112 8 66 115 86 128 23
122 8 112 42 8 108 42 23 115 112 8 66 115 66 108 86 122 23 42 122 23 128 122 23 128 128

Compressionis the process by which data is reduced
into a form that minimizes the space required to store or
transmit it. While modern lossy audio coders efficiently
exploit the limited perception capacities of human hear-
ing in the frequency domain [12], they do not take into
account the perceptual redundancy of sounds in the time
domain. We believe that by canceling such redundancy,
we can reach further compression rates. The segment ra-
tio indeed highly correlates with the compression rate that
is gained over traditional audio coders.

Perceptual clustering allowed us to reduce the audio
material to the most perceptually relevant segments. These
segments can be stored along with a list of indexes and
locations. Resynthesis of the audio consists of juxtapos-
ing the audio segments from the list at their correspond-
ing locations (see figure 1-[B]). Note that no cross-fading

between segments or interpolations were used in our ex-
amples.

Currently, our implementation allows us to define a
segment ratio, regardless of the music content. However,
too few clusters may result inmusical distortionsat resyn-
thesis, i.e., the sound quality is fully maintained, but the
musical “syntax” may audibly shift from its original form.
A more useful system would in fact adapt its segment ratio
to the music being compressed (i.e., the more redundant,
the more compressed), and would prefer aperceptual ac-
curacycontrol parameter to our static segment ratio set-
ting. This is currently under development.

5. DISCUSSION AND FUTURE WORK

Reducing audio information beyond current state-of-the-
art perceptual codecs by structure analysis of itsmusical
content is arguably a bad idea. Purists would certainly
disagree with the benefit of cutting some of the original
material altogether, especially if the music was entirely
performed. There are obviously great risks for music dis-
tortion currently and the method applies naturally better
to certain genres, including electronic music, pop, or rock,
where repetition is an inherent part of its qualities. Formal
experiments could certainly be done on measuring theen-
tropy of a given piece and thecompressibilityacross sub-
categories.

We believe that, with a real adaptive strategy and an ap-
propriate perceptually grounded error estimation, the prin-
ciple has great potential, primarily in devices such as cell
phones, and PDAs, where bit rate and memory space mat-
ter more than sound quality. At the moment, segments are
compared and concatenated as raw material. There is no
attempt to transform the audio itself. However, a much
more refined system would estimate similarities indepen-
dently of certain perceptual dimensions, such as loudness,
duration, aspects of equalization or filtering, and possibly
pitch. Resynthesis would consist of transformingpara-
metricallythe retained segment (e.g., amplifying, equaliz-
ing, time-stretching, pitch-shifting, etc.) in order to match
its target more closely. This could greatly improve the
musical quality, increase the compression rate, and refine
the description, consequently enabling additional analysis
tasks.

Perceptual coders have already provided us with a valu-
able strategy for estimating the perceptually relevant audio
surface (by discarding what we cannot hear). Describing
musical structures at the core of the codec is an attrac-
tive concept that may have great significance for many
higher-level information retrieval applications, including
song similarity, genre classification, rhythm analysis, tran-
scription tasks, etc.

6. CONCLUSION

We propose alow-rate perceptual description of music
signals based on a psychoacoustic approach to segmen-
tation. The description can bequantizedmeaningfully by



clustering segments, and the audiocompressedby retain-
ing only one segment per cluster. Although the technique
is not fully developed yet, promising results were obtained
with early test examples. We believe that such approach
has potential both in the music information retrieval, and
the perceptual audio coding domains.
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