

AUTOMATIC EXTRACTION OF MUSIC DESCRIPTORS
FROM ACOUSTIC SIGNALS

Pachet François, Zils Aymeric

Sony CSL Paris
{pachet, zils}@csl.sony.fr

ABSTRACT

High-Level music descriptors are key ingredients for music
information retrieval systems. Although there is a long
tradition in extracting information from acoustic signals, the
field of music information extraction is largely heuristic in
nature. We present here a heuristic-based generic approach
for extracting automatically high-level music descriptors
from acoustic signals. This approach is based on Genetic
Programming, used to build relevant features as functions of
mathematical and signal processing operators. The search of
relevant features is guided by specialized heuristics that
embody knowledge about the signal processing functions
built by the system. Signal processing patterns are used in
order to control the general processing methods. In addition,
rewriting rules are introduced to simplify overly complex
expressions, and a caching system further reduces the
computing cost of each cycle. Finally, the features build by
the system are combined into an optimized machine learning
descriptor model, and an executable program is generated to
compute the model on any audio signal. In this paper, we
describe the overall system and compare its results against
traditional approaches in musical feature extraction à la
Mpeg7.

1. INTRODUCTION

The exploding field of Music Information Retrieval has
recently created extra pressure to the community of audio
signal processing, for extracting automatically high level
music descriptors. Indeed, current systems propose users i.e.
the possibility to access music titles based on their actual
content, rather than on file names. Existing systems today are
mostly based on editorial information (e.g. Kazaa), or
metadata which is with millions of music titles (e.g. the peer-
to-peer systems such as Kazaa) and query functions limited
usually to string matching on title names. The natural
extension of these systems is content-based access, entered
manually, either by pools of experts (e.g. All Music Guide)
or in a collaborative manner (e.g. MoodLogic). Because
these methods are costly and do not allow scale up, the issue
of extracting automatically high-level features from acoustic
signals is key to the success of online music access systems.

Extracting automatically content from music titles is a long
story. Many attempts have been made to identify dimensions
of music that are perceptually relevant and can be extracted
automatically. One of the most known is tempo or beat. Beat
is a very important dimension of music that makes sense to
any listener. [1] introduced a beat tracking system that
successfully computes the beat of music signals with good
accuracy. There are, however, many other dimensions of
music that are perceptually relevant, and that could be
extracted from the signal: the presence of voice in a music
title, the perceived intensity (subjective impression of energy
that music titles convey: with the same volume, a Hard-rock
music title conveys more energy than an acoustic guitar
ballad with a soft voice), difference between “live” and
studio recording, recognition of typical musical genres,
evaluation of the danceability of a song, etc. Yet this
information is difficult to extract automatically, because
music signals are usually highly complex, polyphonic in
nature, and incorporate characteristics that are still poorly
understood and modeled.

2. TOWARDS AUTOMATIC EXTRACTION OF
MUSICAL DESCRIPTORS

2.1. The traditional method: combination of generic Low-
Level Descriptors

Typically, the design of a descriptor extractor consists in
combining generic Low-Level Descriptors (LLDs) as
relevant characteristics of acoustic signals (features), using
machine learning algorithms (see, e.g. [2], [3], [4]):
- Several features are computed. A typical reference for

audio signal features is the Mpeg7 standardization
process [5] that proposes a battery of LLDs for
describing basic characteristics of audio signals.

- the most relevant features are selected and
combined into machine learning processes, to
provide an optimal model for the descriptor.

The traditional method sketched above works well only for
relatively easy problems; problems for which generic low
level features are adapted. However, generic features can
only extract information which is “predominant” in the
signal, and are, by definition, unable to focus on specific,
problem-dependent properties. The core assumption of this
paper is precisely that in order to solve more difficult
problems one needs specific features adapted to the problem
at hand.
Our second assumption is that these specific features can be
extracted automatically as compositions of signal processing
operations.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page.

© 2004 Universitat Pompeu Fabra.

2.2. Improving generic LLD combination using automatic
operators composition

The design of specific features that are relevant for a given
description problem is usually done by hand by signal
processing experts. This section introduces the idea of
generating automatically such specific features adapted to a
particular problem.
Although there is no known general paradigm for designing
domain-specific features, their design usually follows some
sort of patterns. One of them consists in filtering the signal,
splitting it into frames, applying specific treatments to each
segment, then aggregating all these results back to produce a
single value. This is typically the case of the beat tracking
system described in [1] that yields eventually a float
representing the tempo. The same applies to timbre
descriptors proposed in the music information retrieval and
more generally to most audio descriptors described in the
literature ([6]). Of course, this global scheme of
expansion/reduction is under specified, and an infinite
number of such schemes could be envisaged.
Our goal is therefore to design a system that is able to 1)
search automatically relevant signal processing features, seen
as compositions of functions and build a model of the
descriptor and 2) reduce the search space significantly using
generic knowledge on signal processing operators.

3. EDS, AN EXTRACTOR DISCOVERY SYSTEM

We describe here the main ingredients of the EDS system:
the definition of a description problem, the automatic
construction of relevant signal processing functions, and their
combination into a general descriptor model.

3.1. Definition of a description problem

The definition of the description problems handled by the
system has to remain simple to preserve the generality of the
approach. One simple way to define a description problem is
to use the supervised learning approach: a set of labeled
signals, also called learning database, defines the
description problem. These labels are either numeric values,
such as an evaluation of their “musical energy” (between 0
and 1), or a class label, such as the “presence of a singing
voice or not”, or the genre chosen in a given taxonomy. The
system will then finds the rules of the labeling of the signals,
i.e. the model of the descriptor, by designing a function
which produces outputs as close as possible to the learning
database labels.

3.2. General principles of EDS

Our system EDS composes automatically operators to
discover features as signal processing functions that are
optimal for a given descriptor extraction task. Its global
architecture consists in two fully automatic parts: modeling
of the descriptor and synthesis of the extractor.
The modeling of the descriptor is the main part of EDS. It
consists in searching automatically for relevant features and
then for the optimal model that combines these features. The
search for specific features is based on genetic programming,
a well-known technique for exploring search spaces of

function compositions (see [7]). The genetic programming
engine composes automatically signal processing operators to
build arbitrarily complex functions, and evaluates their
relevance to extract a given descriptor on a given learning
database. The evaluation of a function is very costly, as it
involves complex signal processing on whole audio
databases. Therefore, to limit the search, a set of heuristics
are introduced to improve the a priori relevance of the
created functions, as well as rewriting rules to simplify
functions before their evaluation. Once the system has found
relevant features, it combines them to feed them into various
machine learning models, and then optimizes the model
parameters.
The synthesis part consists in generating an executable file to
compute the best model on any audio signal. This program
allows computing this model on arbitrary audio signals, to
predict their value for the modeled descriptor.

3.3. Automatic construction of features

Functions are represented in EDS as compositions of basic
operations applied on an arbitrary input audio signal. The
basic operators can be mathematical, such as taking the mean
values of a set, or can process a signal, temporally (such as
correlation), or spectrally (such as a low-pass filtering). In
addition, some operations are parameterized using constant
values (like cut-off frequencies), or external signals (for
example a correlation with a fixed reference signal).
Consequently, the functions can be represented as signal
processing operators trees (see Fig.1):

Fft(Derivation(InSignal), Max(Correlation
(InSignal, Constant_Signal))

<==>
F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l

Fig. 1: The syntactic tree of a function in EDS

3.4. Automatic construction of features

The automatic construction of correct functions relies on the
control of the types of data handled by the functions, and on
the introduction of signal processing expertise as heuristics.

3.4.1. Data Types

The need for typing is well-known in Genetic Programming,
to ensure that the functions generated are at least
syntactically correct. Different type systems have been
proposed for GP, such as strong typing ([8]) that mainly
differentiate between the “programming” types of the inputs
and outputs of functions. To control the physical processes in
EDS, we need to distinguish how the functions built by the
system handle the data, at the level of their “physical
dimension”. For instance, audio signals and spectrum are
both as vectors of floats, but are different in their

dimensions: a signal is a time to amplitude representation, a
spectrum frequency to amplitude.
Our typing system, based on the following constructs,
represents this difference, to ensure that our resulting
functions make sense. Using only three physical dimensions
(time “t”, frequency "f", and amplitudes or non-dimensional
data “a”), we are able to represent most of the data types
handled by the system, by building atomic (single value),
vector (multiple values), and functional (data of a given type
evolving in a dimension of another type) types.

3.4.2. Operator types

The operations in EDS transform physically the data, and can
therefore be specified using the typing system. For each
operator, we define typing rules that provide the type of its
output data, depending on the types of its input data. The
typing rules are usually reduced into a dimensionality rule
and a transformation rule. For example, the “Spectrum”
operation transforms a signal of type “t:a” into a frequency
spectrum of type “f:a”.

3.4.3. Controlling processing methods using patterns

The types of data handled by a function are a signature of the
general processing methods used in the function. In order to
control globally the processing methods through the
successive types of data handled by the functions, we have
introduced "generic operators" that stand for one or several
random real operator(s) whose output types are forced. EDS
can deal with three different generic operators (notated "*",
"!", and "?") that have different functionalities. These generic
operators allow specifying locally the processes to use in a
function. By composing them in patterns, we describe a
global set of processes to apply on an audio signal to obtain a
final value. For instance, the simple pattern "?_a (!_Va (Split
(*_t:a (Signal))))" is a translation of the general extraction
scheme presented in 3.1, standing for the process “Temporal
domain – Split – Agregation”. There are various ways to
instantiate this pattern, for example “Suma (SquareVa (MeanVa

(SplitVt:a (HpFiltert:a (Signalt:a, 1000Hz)))))”.
Patterns are specified in the EDS algorithm in order to guide
the search of functions.

3.4.4. Heuristics

In order to guide the instantiation of the patterns, we need to
introduce knowledge in the system, as signal processing
heuristics that represent the know-how of signal processing
experts, about functions seen a priori, both favoring a priori
interesting functions and ruling out obviously non-interesting
ones.
A heuristic in EDS associates a score to a potential
composition of operators, between 0 (forbidden composition)
and 10 (very recommended composition). These scores are
used when EDS builds a new function, to select the
candidates between all the possible operations.
Basically, the heuristics allow controlling the structure of the
functions, avoiding bad combination of operations, ranging
constant parameters values, and avoiding usually useless
operations.

3.4.5. Automatic construction of functions

The automatic synthesis of functions is performed in bottom-
up fashion, starting from the input signal, and grafting
sequentially the operators one after the other up to the top of
the tree, all the generic operators being instantiated, i.e.
replaced by real operators.

3.5. Search for optimized features

The function search part in EDS consists in building signal
processing functions that are increasingly relevant, using an
algorithm based on genetic programming, i.e. the application
of genetic search to the world of functions, as introduced by
[9]. The algorithm builds a population of functions from a
given pattern, and tries to improve them iteratively by
applying various genetic transformations on them. Running
this algorithm once provides one optimal function to be used
in the final model. Therefore, this algorithm is run N times to
build N optimized functions constituting the final feature set
used in the final model of the descriptor.

During the genetic search, each new population is created by
applying genetic transformations on the most relevant
functions of the current population. 3 main transformations
are used in EDS: variations of the constant parameters
(keeps the tree structure a function and applies
variations on its parameters such as cut-off frequencies
or window sizes), mutation of operations in the function,
and crossover of two parts of two functions.

Eventually, in order to search more efficiently, rewriting
rules (simplifying functions using a fixed point mechanism)
and a caching mechanism (keeping the most useful results in
memory, depending on their computation time, utility, and
size) have been included in the system.

3.6. Final model of the descriptor

After running the genetic search, EDS finds relevant features
well adapted to the description problem at hand. These
features are then combined into an optimized model of the
descriptor, using generic machine learning techniques (kNN,
Neural Nets, Decision Trees, etc…).

Each of these models carries with it a certain number of
parameters such as the number of neighbours in the k-NN
method, or the number of layers for the Neural Networks.
The processes of selecting the optimal model with the
optimal parameters are entirely automated in EDS.
The final descriptor model is the best model found, defined
by a set of relevant features and a modelling technique with
optimized parameters, such as for instance:
“6-NN (‘Max(Fft(S))’,‘Variance(Autocorrelation(S))’)”.

The performance of this model is evaluated on a test
database (different from the learning database) for assessing
definitively its performance.
And finally, a self-executable extractor is generated
automatically to compute the model on a .wav signal.

4. PERFORMANCE OF THE SYSTEM

We present here the performance on the two steps of EDS:
the relevance of the features and the quality of the models
found by EDS, compared to those made using the Mpeg7
LLDs dataset (called “LLDs”).

4.1. Regression problem: Musical energy

The problem consists in providing a model of the subjective
energy of musical extracts, based on the results of perceptive
tests (see [10]). This descriptor addresses the intuitive
difference there is, for example, between a punchy punk-rock
song with loud saturated guitars and screaming voice
conveys and an acoustic guitar ballad with a soft voice, at a
constant volume level.

4.1.1. LLDs

The best LLD found was “Mean (SpectralSkewness (Split
(Signal, 250.0)))”, with correlation=0,548 on learn and 0,658
on test. A forward features selection (see[12]) on the LLDs
kept 25 features to build the final model of musical energy.
The best method found was a Model Tree provided a
correlation=0.698 (0.810 on test), which corresponds to an
average model error of 12.80% (13,26%).

4.1.2. EDS

The best function found by EDS is
“BestEDS(Signal)=Square (Log10 (Mean (Min (Fft (Split
(Testwav, 4009))))))”, with correlation=0,744 on learn, and
0,812 on test. A forward selection kept 4 features to build
the final model of musical energy. The best method found
was a Linear Regression that provided a correlation=0.780
on learn, and 0.836 on test, which corresponds to an average
model error of 11.52% (13,06%).

4.2. Objective classification problem: Presence of singing
voice

The problem consists in providing a model that allows
detecting the presence of singing voice in polyphonic audio
signals (see [11]).

4.2.1. LLDs

The best LLD found was “SpectralSpread (Testwav)” (Fisher
= 0,282 on learn, and 0,215 on test). A forward selection
kept 8 features. The best method found is a Naïve Bayes
classifier providing a 72% of good classification on learn and
69.5% on test.

4.2.2. EDS

The best function found by EDS is “Log10 (Range
(Derivation (Sqrt (Blackman (MelBands (Testwav,
24.0))))))” (Fisher=1,209 on learn, and 0,831 on test).
A forward selection kept 12 features to build the final EDS
model of musical energy. The best method found was a kNN
classifier providing 86.5% of good classifications on learn,
and only 78.5% on test.

5. CONCLUSION

We have introduced a new approach for designing
automatically efficient extractors for high-level audio
descriptors. Although it uses a limited palette of signal
processing functions, the proposed system, EDS, already
produces better results than standard approaches using the
Mpeg7 generic features.
The generality of the approach allows EDS to address the
whole class of extraction problems in the large, from the
detection of “live” recordings or the modeling of music
danceability or percussivity, etc...
Substantial increase in performance is expected by extending
the palette of signal operators to more refined operators, as
well as in adding more refined heuristics and rewriting rules
to prune the search space.

6. REFERENCES

[1] Eric D. Scheirer. Tempo and beat analysis of acoustic
musical signals. J. Acoust. Soc. Am. (JASA) 103:1 (Jan
1998), pp 588-601.
[2] Eric D. Scheirer, and Malcolm Slaney. Construction and
evaluation of a robust multifeature speech/music
discriminator. Proc. ICASSP ’97.
[3] P. Herrera, A. Yeterian, F. Gouyon. Automatic
classification of drum sounds: a comparison of feature
selection methods and classification techniques. Proceedings
of 2nd International Conference on Music and Artificial
Intelligence, Edinburgh, Scotland, 2002.
[4] Geoffroy Peeters, Xavier Rodet. Automatically selecting
signal descriptors for sound classification. Proceedings of the
2002 ICMC, Goteborg (Sweden), September 2002.
[5] Perfecto Herrera, Xavier Serra, Geoffroy Peeters. Audio
descriptors and descriptors schemes in the context of MPEG-
7. Proceedings of the 1999 ICMC, Beijing, China, October
1999.
[6] JJ Aucouturier, François Pachet. Music similarity
measures: what's the use ? In proceedings of the 3rd
international symposium on music information retrieval
(ISMIR02), Paris, October 2002.
[7] John R. Koza. Genetic Programming: on the
programming of computers by means of natural selection.
Cambridge, MA: The MIT Press.
[8] David J Montana. Strongly typed genetic programming.
In Evolutionary Computation 3-2, 1995, pp 199-230.
[9] David E. Goldberg. Genetic algorithms in search,
optimization and machine learning. Addison-Wesley Pub.
Co. 1989. ISBN: 0201157675.
[10] Aymeric Zils, François Pachet. Extracting automatically
the perceived intensity of music titles. Proceedings of 6th
International Conference on Digital Audio Effects
(DAFX03), London, UK, September 8-11, 2003.
[11] A.L. Berenzweig, Dan P. W. Ellis. Locating singing
voice segments within music signals. IEEE workshop on
applications of signal processing to acoustics and audio
(WASPAA01), Mohonk NY, October 2001.
[12] Fukunaga, K., "Statistical pattern recognition",
Academic press, 1990.

