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ABSTRACT

High-Level music descriptors are key ingredients rfausic
information retrieval systems. Although there islang
tradition in extracting information from acoustigsals, the
field of music information extraction is largely uréstic in
nature. We present here a heuristic-based genpgooach
for extracting automatically high-level music deptors
from acoustic signals. This approach is based one@Ge
Programming, used to build relevant features astfons of
mathematical and signal processing operators. €aech of
relevant features is guided by specialized heugsstihat
embody knowledge about the signal processing fansti
built by the system. Signal processing patterns used in
order to control the general processing methodsdutition,
rewriting rules are introduced to simplify overlypraplex

expressions, and a caching system further redubes t

computing cost of each cycle. Finally, the featubedd by
the system are combined into an optimized macleéaening
descriptor model, and an executable program is rgéee to
compute the model on any audio signal. In this pape
describe the overall system and compare its resugtsnst
traditional approaches in musical feature extractié la
Mpeg?7.

1. INTRODUCTION

The exploding field of Music Information Retrievdias
recently created extra pressure to the communityawafio
signal processing, for extracting automatically hhitgvel
music descriptors. Indeed, current systems propeses i.e.
the possibility to access music titles based orr thetual
content, rather than on file names. Existing systesday are
mostly based on editorial information (e.g. Kazaay,
metadata which is with millions of music titlesdethe peer-
to-peer systems such as Kazaa) and query funclimited
usually to string matching on title names. The raltu
extension of these systems is content-based aceasmed
manually, either by pools of experts (e.g. All Mussuide)
or in a collaborative manner (e.g. MoodLogic). Besa
these methods are costly and do not allow scalé¢hapissue
of extracting automatically high-level featuresrfr@acoustic
signals is key to the success of online music acegstems.
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Extracting automatically content from music titlssa long
story. Many attempts have been made to identifyedsions
of music that are perceptually relevant and carexteacted
automatically. One of the most known is tempo ocatb&8eat
is a very important dimension of music that makessg to
any listener. [1] introduced a beat tracking systémat
successfully computes the beat of music signalé wdod
accuracy. There are, however, many other dimensafns
music that are perceptually relevant, and that cobé
extracted from the signal: the presence of voice imusic
title, the perceived intensity (subjective impressof energy
that music titles convey: with the same volume, axd4drock
music title conveys more energy than an acoustitagu
ballad with a soft voice), difference between “livand
studio recording, recognition of typical musical nges,
evaluation of the danceability of a song, etc. Mhis
information is difficult to extract automaticallyhbecause
music signals are usually highly complex, polypleorim
nature, and incorporate characteristics that aite pgtorly
understood and modeled.

2. TOWARDSAUTOMATIC EXTRACTION OF
MUSICAL DESCRIPTORS

2.1. The traditional method: combination of generic L ow-
Level Descriptors

Typically, the design of a descriptor extractor ists in
combining generic Low-Level Descriptors (LLDs) as
relevant characteristics of acoustic signals (flesly using
machine learning algorithms (see, e.qg. [2], [3]):[4
- Several features are computed. A typical referefoce
audio signal features is the Mpeg7 standardization
process [5] that proposes a battery of LLDs for
describing basic characteristics of audio signals.
the most
combined into machine learning processes, to
provide an optimal model for the descriptor.
The traditional method sketched above works wely dar
relatively easy problems; problems for which gemdow
level features are adapted. However, generic featwan
only extract information which is “predominant” ithe
signal, and are, by definition, unable to focus specific,
problem-dependent properties. The core assumptiahi®
paper is precisely that in order to solve more idift
problems one needs specific features adapted tprdtgdem
at hand.
Our second assumption is that these specific featoan be
extracted automatically as compositions of sigrmakpssing
operations.

relevant features are selected and



2.2. Improving generic LLD combination using automatic
operator s compaosition

The design of specific features that are relevantaf given
description problem is usually done by hand by align
processing experts. This section introduces thea idé
generating automatically such specific featuresptathto a
particular problem.

Although there is no known general paradigm forigigag
domain-specific features, their design usuallydatt some
sort of patterns. One of them consists in filterthg signal,
splitting it into frames, applying specific treatnte to each
segment, then aggregating all these results bapkaduce a
single value. This is typically the case of the theacking
system described in [1] that yields eventually aafl

function compositions (see [7]). The genetic prograng
engine composes automatically signal processingatqes to
build arbitrarily complex functions, and evaluatéseir
relevance to extract a given descriptor on a gilearning
database. The evaluation of a function is very Igpsis it
involves complex signal processing on whole audio
databases. Therefore, to limit the search, a séteafistics
are introduced to improve the a priori relevance tioé¢
created functions, as well as rewriting rules tongify
functions before their evaluation. Once the systas found
relevant features, it combines them to feed theim various
machine learning models, and then optimizes the emnod
parameters.

The synthesis part consists in generating an eabiufile to
compute the best model on any audio signal. Thigym

representing the tempo. The same applies to timbrgiows computing this model on arbitrary audio sign to

descriptors proposed in the music information estl and
more generally to most audio descriptors descrimethe
literature ([6]). Of course, this global
expansion/reduction is under specified, and annibefi

number of such schemes could be envisaged.

Our goal is therefore to design a system that is &b 1)

search automatically relevant signal processintufea, seen
as compositions of functions and build a model bé t
descriptor and 2) reduce the search space signiljcasing

generic knowledge on signal processing operators.

3. EDS AN EXTRACTOR DISCOVERY SYSTEM

We describe here the main ingredients of the EDSesy.
the definition of a description problem, the auttima
construction of relevant signal processing functicend their
combination into a general descriptor model.

3.1. Definition of a description problem

The definition of the description problems handlkeg the
system has to remain simple to preserve the getyeddlthe
approach. One simple way to define a descriptiablem is
to use the supervised learning approach: a setléléd
signals, also calledlearning database defines the
description problem. These labels are either nunalues,
such as an evaluation of their “musical energy"t{lzen 0
and 1), or a class label, such as the “presence sihging
voice or not”, or the genre chosen in a given taxon The
system will then finds the rules of the labelingtioé¢ signals,
i.e. the model of the descriptor, by designing acfion
which produces outputs as close as possible tdemaing
database labels.

3.2. General principlesof EDS

Our system EDS composes automatically operators
discover features as signal processing functiorst #re
optimal for a given descriptor extraction task. Bkbal
architecture consists in two fully automatic pamsodeling
of the descriptor and synthesis of the extractor.

The modeling of the descriptor is the main parteafS. It
consists in searching automatically for relevamitdiees and
then for the optimal model that combines theseufest The
search for specific features is based on genetigremming,
a well-known technique for exploring search spad#s

scheme of

predict their value for the modeled descriptor.

3.3. Automatic construction of features

Functions are represented in EDS as compositionsasic
operations applied on an arbitrary input audio aigihe
basic operators can be mathematical, such as t#kénmean
values of a set, or can process a signal, tempofsiich as
correlation), or spectrally (such as a low-pastefiihg). In
addition, some operations are parameterized usimgtant
values (like cut-off frequencies), or external sifgn (for
example a correlation with a fixed reference signal
Consequently, the functions can be representedigmmls
processing operators trees (see Fig.1):

Fft(Derivation(InSignal), Max(Correlation
(InSignal, Constant_Signal))
<==>
Fft

—_—

Deriv M ax

InputSignal Correlation

InSignal Constant_Signal

Fig. 1: The syntactictree of afunction in EDS

3.4. Automatic construction of features

The automatic construction of correct functionselon the
control of the types of data handled by the fundioand on
the introduction of signal processing expertisdesristics.

3.4.1Data Types

tdhe need for typing is well-known in Genetic Pragraing,

to ensure that the functions generated are at
syntactically correct. Different type systems hakeen
proposed for GP, such as strong typing ([8]) thatinty
differentiate between the “programming” types of thputs
and outputs of functions. To control the physicalgesses in
EDS, we need to distinguish how the functions bioyitthe
system handle the data, at the level of their “plals
dimension”. For instance, audio signals and spectare
both as vectors of floats, but are different in ithe

least



dimensions: a signal is a time to amplitude repmest®n, a
spectrum frequency to amplitude.

3.4.5 Automatic construction of functions

Our typing system, based on the following consspct The automatic synthesis of functions is performedattom-

represents this difference, to ensure that our ltiegu
functions make sense. Using only three physicaledsions
(time “t", frequency "f*, and amplitudes or non-dimsional
data “a”), we are able to represent most of thea dgpes
handled by the system, by building atomic (sing&ue),
vector (multiple values), and functional (data ajigen type
evolving in a dimension of another type) types.

3.4.2 Operator types

The operations in EDS transform physically the datad can
therefore be specified using the typing system. Each
operator, we define typing rules that provide tiget of its
output data, depending on the types of its inpua.dahe
typing rules are usually reduced into a dimensibnalle
and a transformation rule. For example, the “Spactr
operation transforms a signal of type “t:a” intdraquency
spectrum of type “f:a”.

3.4.3.Controlling processing methods using patterns

The types of data handled by a function are a sigaaf the
general processing methods used in the functiowrdier to

up fashion, starting from the input signal, and fting
sequentially the operators one after the otherouihé top of
the tree, all the generic operators being insttadiai.e.
replaced by real operators.

3.5. Search for optimized features

The function search part in EDS consists in buddaignal
processing functions that are increasingly relevasing an
algorithm based on genetic programming, i.e. theliegtion
of genetic search to the world of functions, asodticed by
[9]. The algorithm builds a population of functiofi®m a
given pattern, and tries to improve them iteratively
applying various genetic transformations on themniing
this algorithm once provides one optimal functionbe used
in the final model. Therefore, this algorithm isirN times to
build N optimized functions constituting the finf@glature set
used in the final model of the descriptor.

During the genetic search, each new populatioméated by
applying genetic transformations on the most raieva
functions of the current population. 3 main tramsfations
are used in EDS: variations of the constant pararset

control globally the processing methods through thékeeDS the tree structure a function and applies

successive types of data handled by the functiaseshave
introduced "generic operators" that stand for oneseveral
random real operator(s) whose output types aretbrEDS
can deal with three different generic operatorstetea "*",
"I",and "?") that have different functionalitieEhese generic
operators allow specifying locally the processesise in a
function. By composing them ipatterns we describe a
global set of processes to apply on an audio signabtain a
final value. For instance, the simpattern"?_a(!_Va (Split
(*_t:a (Signal))))" is a translation of the general egtian
scheme presented in 3.1, standing for the procésmporal
domain — Split — Agregation”. There are various wag
instantiate this pattern, for exampl&um: (Squarea. (Mean/a
(Splityt:a (HpFilter.a (Signal.a, 1000H2))))".

Patterns are specified in the EDS algorithm in otdeguide
the search of functions.

3.4.4Heuristics

In order to guide the instantiation of the pattenne need to
introduce knowledge in the system, as signal preiogs
heuristics that represent the know-how of signalcpssing
experts, about functions seen a priori, both fang@ priori
interesting functions and ruling out obviously niateresting
ones.

A heuristic in EDS associates a score to a potenti

composition of operators, between 0 (forbidden cositpn)

and 10 (very recommended composition). These scares
to select th

used when EDS builds a new function,
candidates between all the possible operations.
Basically, the heuristics allow controlling theuwstture of the
functions, avoiding bad combination of operatiorsnging
constant parameters values, and avoiding usualBless
operations.

variations on its parameters such as cut-off freqgies
or window sizey mutation of operations in the function,
and crossover of two parts of two functions.

Eventually, in order to search more efficiently,wriing
rules (simplifying functions using a fixed point af@nism)
and a caching mechanism (keeping the most usedultsein
memory, depending on their computation time, wtiliand
size) have been included in the system.

3.6. Final model of the descriptor

After running the genetic search, EDS finds reléviaatures
well adapted to the description problem at handesth
features are then combined into an optimized madehe

descriptor, using generic machine learning tectesq(kNN,

Neural Nets, Decision Trees, etc...).

Each of these models carries with it a certain rembf
parameters such as the number of neighbours irktNél
method, or the number of layers for the Neural Neks.
The processes of selecting the optimal model whe t
optimal parameters are entirely automated in EDS.

The final descriptor model is the best model foudefined
by a set of relevant features and a modelling tieglenwith
pptimized parameters, such as for instance:

“6-NN (‘Max(Fft(S))’, 'Variance(Autocorrelation(S))”.

dhe performance of this model is evaluated on & tes
database (different from the learning databasepfsessing
definitively its performance.

And finally, a self-executable extractor is genedat
automatically to compute the model on a .wav signal



4. PERFORMANCE OF THE SYSTEM 5. CONCLUSION
We present here the performance on the two ste@&D&: We have introduced a new approach for designing
the relevance of the features and the quality ef miodels automatically efficient extractors for high-leveludio

found by EDS, compared to those made using the Mpeglescriptors. Although it uses a limited palette sagnal
LLDs dataset (called “LLDs"). processing functions, the proposed system, EDSadjr
produces better results than standard approachieg the
Mpeg?7 generic features.

The generality of the approach allows EDS to adsre
whole class of extraction problems in the largenfrthe
detection of “live” recordings or the modeling ofusic

4.1. Regression problem: Musical energy

The problem consists in providing a model of thejsctive
energy of musical extracts, based on the resulteofeptive
tests (see [10]). This descriptor addresses theitire danceability or percussivity, etc...

difference there is, for example, between a pummink-rock ~ Substantial increase in performance is expecteexbgnding
song with loud saturated guitars and screaming evoicthe palette of signal operators to more refinedrajoes, as
conveys and an acoustic guitar ballad with a softe;, at a Wwell as in adding more refined heuristics and réngirules
constant volume level. to prune the search space.
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