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ABSTRACT 

High-Level music descriptors are key ingredients for music 
information retrieval systems. Although there is a long 
tradition in extracting information from acoustic signals, the 
field of music information extraction is largely heuristic in 
nature. We present here a heuristic-based generic approach 
for extracting automatically high-level music descriptors 
from acoustic signals. This approach is based on Genetic 
Programming, used to build relevant features as functions of 
mathematical and signal processing operators. The search of 
relevant features is guided by specialized heuristics that 
embody knowledge about the signal processing functions 
built by the system. Signal processing patterns are used in 
order to control the general processing methods. In addition, 
rewriting rules are introduced to simplify overly complex 
expressions, and a caching system further reduces the 
computing cost of each cycle. Finally, the features build by 
the system are combined into an optimized machine learning 
descriptor model, and an executable program is generated to 
compute the model on any audio signal. In this paper, we 
describe the overall system and compare its results against 
traditional approaches in musical feature extraction à la 
Mpeg7. 

1. INTRODUCTION 

The exploding field of Music Information Retrieval has 
recently created extra pressure to the community of audio 
signal processing, for extracting automatically high level 
music descriptors. Indeed, current systems propose users i.e. 
the possibility to access music titles based on their actual 
content, rather than on file names. Existing systems today are 
mostly based on editorial information (e.g. Kazaa), or 
metadata which is with millions of music titles (e.g. the peer-
to-peer systems such as Kazaa) and query functions limited 
usually to string matching on title names. The natural 
extension of these systems is content-based access, entered 
manually, either by pools of experts (e.g. All Music Guide) 
or in a collaborative manner (e.g. MoodLogic). Because 
these methods are costly and do not allow scale up, the issue 
of extracting automatically high-level features from acoustic 
signals is key to the success of online music access systems.  

Extracting automatically content from music titles is a long 
story. Many attempts have been made to identify dimensions 
of music that are perceptually relevant and can be extracted 
automatically. One of the most known is tempo or beat. Beat 
is a very important dimension of music that makes sense to 
any listener. [1] introduced a beat tracking system that 
successfully computes the beat of music signals with good 
accuracy. There are, however, many other dimensions of 
music that are perceptually relevant, and that could be 
extracted from the signal: the presence of voice in a music 
title, the perceived intensity (subjective impression of energy 
that music titles convey: with the same volume, a Hard-rock 
music title conveys more energy than an acoustic guitar 
ballad with a soft voice), difference between “live” and 
studio recording, recognition of typical musical genres, 
evaluation of the danceability of a song, etc. Yet this 
information is difficult to extract automatically, because 
music signals are usually highly complex, polyphonic in 
nature, and incorporate characteristics that are still poorly 
understood and modeled. 

2. TOWARDS AUTOMATIC EXTRACTION OF 
MUSICAL DESCRIPTORS 

2.1. The traditional method: combination of generic Low-
Level Descriptors 

Typically, the design of a descriptor extractor consists in 
combining generic Low-Level Descriptors (LLDs) as 
relevant characteristics of acoustic signals (features), using 
machine learning algorithms (see, e.g. [2], [3], [4]):  
- Several features are computed. A typical reference for 

audio signal features is the Mpeg7 standardization 
process [5] that proposes a battery of LLDs for 
describing basic characteristics of audio signals. 

- the most relevant features are selected and 
combined into machine learning processes, to 
provide an optimal model for the descriptor. 

The traditional method sketched above works well only for 
relatively easy problems; problems for which generic low 
level features are adapted. However, generic features can 
only extract information which is “predominant” in the 
signal, and are, by definition, unable to focus on specific, 
problem-dependent properties. The core assumption of this 
paper is precisely that in order to solve more difficult 
problems one needs specific features adapted to the problem 
at hand. 
Our second assumption is that these specific features can be 
extracted automatically as compositions of signal processing 
operations. 
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2.2. Improving generic LLD combination using automatic 
operators composition 

The design of specific features that are relevant for a given 
description problem is usually done by hand by signal 
processing experts. This section introduces the idea of 
generating automatically such specific features adapted to a 
particular problem.  
Although there is no known general paradigm for designing 
domain-specific features, their design usually follows some 
sort of patterns. One of them consists in filtering the signal, 
splitting it into frames, applying specific treatments to each 
segment, then aggregating all these results back to produce a 
single value. This is typically the case of the beat tracking 
system described in [1] that yields eventually a float 
representing the tempo. The same applies to timbre 
descriptors proposed in the music information retrieval and 
more generally to most audio descriptors described in the 
literature ([6]). Of course, this global scheme of 
expansion/reduction is under specified, and an infinite 
number of such schemes could be envisaged.  
Our goal is therefore to design a system that is able to 1) 
search automatically relevant signal processing features, seen 
as compositions of functions and build a model of the 
descriptor and 2) reduce the search space significantly using 
generic knowledge on signal processing operators. 

3. EDS, AN EXTRACTOR DISCOVERY SYSTEM 

We describe here the main ingredients of the EDS system: 
the definition of a description problem, the automatic 
construction of relevant signal processing functions, and their 
combination into a general descriptor model. 

3.1. Definition of a description problem 

The definition of the description problems handled by the 
system has to remain simple to preserve the generality of the 
approach. One simple way to define a description problem is 
to use the supervised learning approach: a set of labeled 
signals, also called learning database, defines the 
description problem. These labels are either numeric values, 
such as an evaluation of their “musical energy” (between 0 
and 1), or a class label, such as the “presence of a singing 
voice or not”, or the genre chosen in a given taxonomy. The 
system will then finds the rules of the labeling of the signals, 
i.e. the model of the descriptor, by designing a function 
which produces outputs as close as possible to the learning 
database labels. 

3.2. General principles of EDS 

Our system EDS composes automatically operators to 
discover features as signal processing functions that are 
optimal for a given descriptor extraction task. Its global 
architecture consists in two fully automatic parts: modeling 
of the descriptor and synthesis of the extractor. 
The modeling of the descriptor is the main part of EDS. It 
consists in searching automatically for relevant features and 
then for the optimal model that combines these features. The 
search for specific features is based on genetic programming, 
a well-known technique for exploring search spaces of 

function compositions (see [7]). The genetic programming 
engine composes automatically signal processing operators to 
build arbitrarily complex functions, and evaluates their 
relevance to extract a given descriptor on a given learning 
database. The evaluation of a function is very costly, as it 
involves complex signal processing on whole audio 
databases. Therefore, to limit the search, a set of heuristics 
are introduced to improve the a priori relevance of the 
created functions, as well as rewriting rules to simplify 
functions before their evaluation. Once the system has found 
relevant features, it combines them to feed them into various 
machine learning models, and then optimizes the model 
parameters. 
The synthesis part consists in generating an executable file to 
compute the best model on any audio signal. This program 
allows computing this model on arbitrary audio signals, to 
predict their value for the modeled descriptor. 

3.3. Automatic construction of features 

Functions are represented in EDS as compositions of basic 
operations applied on an arbitrary input audio signal. The 
basic operators can be mathematical, such as taking the mean 
values of a set, or can process a signal, temporally (such as 
correlation), or spectrally (such as a low-pass filtering). In 
addition, some operations are parameterized using constant 
values (like cut-off frequencies), or external signals (for 
example a correlation with a fixed reference signal). 
Consequently, the functions can be represented as signal 
processing operators trees (see Fig.1): 
 

Fft(Derivation(InSignal), Max(Correlation  
(InSignal, Constant_Signal)) 

<==> 
F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l  

Fig. 1: The syntactic tree of a function in EDS 
 

3.4. Automatic construction of features 

The automatic construction of correct functions relies on the 
control of the types of data handled by the functions, and on 
the introduction of signal processing expertise as heuristics. 

3.4.1. Data Types 

The need for typing is well-known in Genetic Programming, 
to ensure that the functions generated are at least 
syntactically correct. Different type systems have been 
proposed for GP, such as strong typing ([8]) that mainly 
differentiate between the “programming” types of the inputs 
and outputs of functions. To control the physical processes in 
EDS, we need to distinguish how the functions built by the 
system handle the data, at the level of their “physical 
dimension”. For instance, audio signals and spectrum are 
both as vectors of floats, but are different in their 



  

 

 

dimensions: a signal is a time to amplitude representation, a 
spectrum frequency to amplitude.  
Our typing system, based on the following constructs, 
represents this difference, to ensure that our resulting 
functions make sense. Using only three physical dimensions 
(time “t”, frequency "f", and amplitudes or non-dimensional 
data “a”), we are able to represent most of the data types 
handled by the system, by building atomic (single value), 
vector (multiple values), and functional (data of a given type 
evolving in a dimension of another type) types. 

3.4.2. Operator types 

The operations in EDS transform physically the data, and can 
therefore be specified using the typing system. For each 
operator, we define typing rules that provide the type of its 
output data, depending on the types of its input data. The 
typing rules are usually reduced into a dimensionality rule 
and a transformation rule. For example, the “Spectrum” 
operation transforms a signal of type “t:a” into a frequency 
spectrum of type “f:a”. 

3.4.3. Controlling processing methods using patterns 

The types of data handled by a function are a signature of the 
general processing methods used in the function. In order to 
control globally the processing methods through the 
successive types of data handled by the functions, we have 
introduced "generic operators" that stand for one or several 
random real operator(s) whose output types are forced. EDS 
can deal with three different generic operators (notated "*", 
"!", and "?") that have different functionalities. These generic 
operators allow specifying locally the processes to use in a 
function. By composing them in patterns, we describe a 
global set of processes to apply on an audio signal to obtain a 
final value. For instance, the simple pattern "?_a (!_Va (Split 
(*_t:a (Signal))))" is a translation of the general extraction 
scheme presented in 3.1, standing for the process “Temporal 
domain – Split – Agregation”. There are various ways to 
instantiate this pattern, for example “Suma (SquareVa (MeanVa 

(SplitVt:a (HpFiltert:a (Signalt:a, 1000Hz)))))”. 
Patterns are specified in the EDS algorithm in order to guide 
the search of functions. 

3.4.4. Heuristics 

In order to guide the instantiation of the patterns, we need to 
introduce knowledge in the system, as signal processing 
heuristics that represent the know-how of signal processing 
experts, about functions seen a priori, both favoring a priori 
interesting functions and ruling out obviously non-interesting 
ones.  
A heuristic in EDS associates a score to a potential 
composition of operators, between 0 (forbidden composition) 
and 10 (very recommended composition). These scores are 
used when EDS builds a new function, to select the 
candidates between all the possible operations. 
Basically, the heuristics allow controlling the structure of the 
functions, avoiding bad combination of operations, ranging 
constant parameters values, and avoiding usually useless 
operations. 

3.4.5. Automatic construction of functions 

The automatic synthesis of functions is performed in bottom-
up fashion, starting from the input signal, and grafting 
sequentially the operators one after the other up to the top of 
the tree, all the generic operators being instantiated, i.e. 
replaced by real operators.  

3.5. Search for optimized features 

The function search part in EDS consists in building signal 
processing functions that are increasingly relevant, using an 
algorithm based on genetic programming, i.e. the application 
of genetic search to the world of functions, as introduced by 
[9]. The algorithm builds a population of functions from a 
given pattern, and tries to improve them iteratively by 
applying various genetic transformations on them. Running 
this algorithm once provides one optimal function to be used 
in the final model. Therefore, this algorithm is run N times to 
build N optimized functions constituting the final feature set 
used in the final model of the descriptor. 
 
During the genetic search, each new population is created by 
applying genetic transformations on the most relevant 
functions of the current population. 3 main transformations 
are used in EDS: variations of the constant parameters 
(keeps the tree structure a function and applies 
variations on its parameters such as cut-off frequencies 
or window sizes), mutation of operations in the function, 
and crossover of two parts of two functions. 
 
Eventually, in order to search more efficiently, rewriting 
rules (simplifying functions using a fixed point mechanism) 
and a caching mechanism (keeping the most useful results in 
memory, depending on their computation time, utility, and 
size) have been included in the system. 

3.6. Final model of the descriptor 

After running the genetic search, EDS finds relevant features 
well adapted to the description problem at hand. These 
features are then combined into an optimized model of the 
descriptor, using generic machine learning techniques (kNN,  
Neural Nets, Decision Trees, etc…).  
 
Each of these models carries with it a certain number of 
parameters such as the number of neighbours in the k-NN 
method, or the number of layers for the Neural Networks. 
The processes of selecting the optimal model with the 
optimal parameters are entirely automated in EDS. 
The final descriptor model is the best model found, defined 
by a set of relevant features and a modelling technique with 
optimized parameters, such as for instance:  
“6-NN (‘Max(Fft(S))’,‘Variance(Autocorrelation(S))’)”. 
 
The performance of this model is evaluated on a test 
database (different from the learning database) for assessing 
definitively its performance. 
And finally, a self-executable extractor is generated 
automatically to compute the model on a .wav signal. 



  

 

 

4. PERFORMANCE OF THE SYSTEM 

We present here the performance on the two steps of EDS: 
the relevance of the features and the quality of the models 
found by EDS, compared to those made using the Mpeg7 
LLDs dataset (called “LLDs”). 

4.1. Regression problem: Musical energy 

The problem consists in providing a model of the subjective 
energy of musical extracts, based on the results of perceptive 
tests (see [10]). This descriptor addresses the intuitive 
difference there is, for example, between a punchy punk-rock 
song with loud saturated guitars and screaming voice 
conveys and an acoustic guitar ballad with a soft voice, at a 
constant volume level. 

4.1.1. LLDs 

The best LLD found was “Mean (SpectralSkewness (Split 
(Signal, 250.0)))”, with correlation=0,548 on learn and 0,658 
on test. A forward features selection (see[12]) on the LLDs 
kept 25 features to build the final model of musical energy. 
The best method found was a Model Tree provided a 
correlation=0.698 (0.810 on test), which corresponds to an 
average model error of 12.80% (13,26%). 

4.1.2. EDS 

The best function found by EDS is 
“BestEDS(Signal)=Square (Log10 (Mean (Min (Fft (Split 
(Testwav, 4009))))))”, with correlation=0,744 on learn, and 
0,812 on test. A forward selection kept 4 features to build 
the final model of musical energy. The best method found 
was a Linear Regression that provided a correlation=0.780 
on learn, and 0.836 on test, which corresponds to an average 
model error of 11.52% (13,06%). 

4.2. Objective classification problem: Presence of singing 
voice 

The problem consists in providing a model that allows 
detecting the presence of singing voice in polyphonic audio 
signals (see [11]). 

4.2.1. LLDs 

The best LLD found was “SpectralSpread (Testwav)” (Fisher 
= 0,282 on learn, and 0,215 on test). A forward selection 
kept 8 features. The best method found is a Naïve Bayes 
classifier providing a 72% of good classification on learn and 
69.5% on test. 

4.2.2. EDS 

The best function found by EDS is “Log10 (Range 
(Derivation (Sqrt (Blackman (MelBands (Testwav, 
24.0))))))” (Fisher=1,209 on learn, and 0,831 on test).  
A forward selection kept 12 features to build the final EDS 
model of musical energy. The best method found was a kNN 
classifier providing 86.5% of good classifications on learn, 
and only 78.5% on test. 

5. CONCLUSION 

We have introduced a new approach for designing 
automatically efficient extractors for high-level audio 
descriptors. Although it uses a limited palette of signal 
processing functions, the proposed system, EDS, already 
produces better results than standard approaches using the 
Mpeg7 generic features. 
The generality of the approach allows EDS to address the 
whole class of extraction problems in the large, from the 
detection of “live” recordings or the modeling of music 
danceability or percussivity, etc... 
Substantial increase in performance is expected by extending 
the palette of signal operators to more refined operators, as 
well as in adding more refined heuristics and rewriting rules 
to prune the search space.  
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