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ABSTRACT

We present a new method for establishing an alignment
between a polyphonic musical score and a corresponding
sampled audio performance. The method uses a graphi-
cal model containing both discrete variables, correspond-
ing to score position, as well as a continuous latent tempo
process. We use a simple data model based only on the
pitch content of the audio signal. The data interpretation
is defined to be the most likely configuration of the hidden
variables, given the data, and we develop computational
methodology for this task using a variant of dynamic pro-
gramming involving parametrically represented continu-
ous variables. Experiments are presented on a 55-minute
hand-marked orchestral test set.

Keywords: Polyphonic Score Alignment

1. INTRODUCTION

We address an audio recognition problem in which a cor-
respondence is established between a polyphonic musical
score and an audio performance of that score. There are
two versions of this problem, often called “on-line” and
“off-line” recognition or parsing.

Off-line parsing uses the complete performance to es-
timate the onset time for each score note, thus the off-line
problem allows one to “look into the future” while estab-
lishing the match. Part of our interest in off-line parsing
problem stems from a collaboration with the Variations2
Digital Music Library Project at Indiana University. One
of the many aims of this project is to allow listeners, in
particular students in their School of Music, new tools for
learning and studying music, interleaving sound, text, mu-
sic notation, and graphics. One specific goal is to give the
user “random access” to a recording allowing playback to
begin at any time, expressed in musical units, e.g. the third
beat of measure 47. Clearly this application requires either
hand marking of audio or off-line parsing. Another off-
line application is the editing and post-processing of dig-
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ital audio, in which many tasks require the user to locate
and modify a specific place in a very large audio datafile.
Our personal interest in off-line parsing is motivated by
yet another application: our work in musical accompani-
ment systems. In this effort we resynthesize a prerecorded
audio performance at variable rate to accompany a live
soloist. The synchronization requires that we begin with a
correspondence between the prerecorded audio and a mu-
sical score.

On-line parsing, sometimes called score-following, pro-
cesses the data in real-time as the signal is acquired. Thus,
no “look ahead” is possible, as well as imposing speed
constraints on the real-time algorithm. The goal of on-
line parsing is to identify the musical events depicted in
the score with little latency and high accuracy. Musical
accompaniment systems must perform this task with the
live soloist’s input. Other applications include the auto-
matic coordination of audio-visual equipment with musi-
cal performance, such as opera supertitles and real-time
score-based audio enhancement e.g. pitch correction. We
will treat the off-line problem in this work, however ex-
tensions of our approach to on-line parsing are possible.

Many researchers have treated on-line and off-line mu-
sical parsing including [2], [12], [1], [6], [3], [7], [4],
[5], [9], [11], to name several. See [10] for a thorough
bibliography of the subject. While many variations exist,
the predominant approach seeks a best possible match by
“warping” the score to fit the data using some form of dy-
namic programming. The measures of match quality are
quite varied, including edit-like distances and probabilis-
tic measures, as in the popular hidden Markov model ap-
proaches. Without doubt, these efforts contain many no-
table successes, however, the problem still remains open.
In our personal experience with the HMM approach cited
above, results degrade, sometimes dramatically, as we en-
counter increasingly difficult domains such as complex
polyphony, varied instrumental texture, fast notes, reartic-
ulations and octave slurs, large tempo changes, unpitched
sounds, etc. While the literature contains very little in the
way of formal evaluations, other researchers seem to ex-
perience similar problems. The need for a more robust
and widely applicable approach is the motivation for the
current work.

We believe the “Achilles’ heel” of all past approaches
we know, including our own, is the modeling of length



for the individual notes. If the issue is treated at all, note
lengths are either constrained to some range or modeled
as random, with the range or distribution depending on a
global tempo or learned from past examples. Either im-
plicitly or explicitly, the note lengths are regarded as inde-
pendent variables. However, note lengths are anything but
independent. Our belief, bolstered by conventional musi-
cal wisdom, is that the lion’s share of note length variation
can be explained in terms of a time-varying tempo pro-
cess. The failure to model time-varying tempo shifts more
burden to the audio data modeling, requiring the method
to follow the score almost exclusively using sound, with-
out regard for one of the most basic aspects of musical
timing. This work explicitly models tempo as a real-valued
process, hoping that the more powerful model will be able
explain what the data model cannot. Our data model, in-
troduced in Section 2, is indeed simple-minded, focusing
exclusively on pitch content. While we expect that im-
provements to our system will be achieved by strength-
ening this model, the results presented in Section 4 argue
that our focus on the tempo model is well-placed.

The most straightforward approach to tempo model-
ing would represent the “state” of the performance as a
score position and tempo pair — both discrete variables.
From frame to frame the position would be updated using
the current tempo while the tempo would be allowed to
gradually vary. We have attempted such an approach us-
ing a HMM framework, but found that the discretization
of position and tempo needed to be extremely fine before
useful results were achieved. This earlier effort is, by no
means, a “straw man” created only to motivate the cur-
rent approach. Rather, our current approach stems from a
deeper understanding of the computational issues learned
from this previous effort.

We first present in Section 2 a mathematical model
that combines a note-level model for rhythmic interpre-
tation with a frame-by-frame data model. The note-level
model explicitly represents tempo variation and note-by-
note deviations. The data model is based completely on
the pitch content of the audio. The most likely parse is
not computable by conventional means, however Section
3 introduces a method by which excellent approximations
to the most likely parse can be computed. We attribute the
success of the approach to the near-global optimization
performed in this section. Section 4 presents results on a
55 minute widely varied test set of short orchestral move-
ments containing examples from Mozart to Shostakovich.
The results demonstrate that the note onset estimates are
generally quite accurate, and only very rarely does the al-
gorithm become irrecoverably lost. Our dataset has been
made publicly available to facilitate comparisons.

2. THE MODEL

In the case of monophonic music, a musical score can be
represented as a sequence of score positions, expressed in
beats, with associated pitches. Polyphonic music can be
viewed, similarly, as a sequence of score positions with

associated chords. In the polyphonic case, the score po-
sitions would be created by sorting the collection of all
musical event locations (in beats) over all parts, and dis-
carding duplicate positions. Each score position, in beats,
would then be associated with the collection of pitches
that sound until the next musical event. Thus our sim-
plified score does not represent which notes come from
which instruments or distinguish between “attacking” and
“sustaining” notes in a chord, although these aspects could
be included in a more sophisticated audio model than we
use at present. We notate this score by
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where the � th event begins at
���

beats and
�
�

is the col-
lection of currently-sounding pitches. By convention,

������
and

���
is a 0-note “chord” corresponding to the silence

at the end of the audio.
Let  �!�
�������  � be the sequence of times, in seconds, at

which the chord onsets occur. Typically the onset times
are the product of numerous interpretative issues as well
as the inevitable inaccuracies of human performance. We
model here what we believe to be the most important fac-
tors governing musical timing: time-varying tempo as well
as note-by-note deviations. More precisely, we model a
random process on  � ���
�����  � and " � ���
���
� " � through

" � � " ��#$�&%(')� (2) � �  ��#*�+%-,�� " �.%(/
� (3)
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where

,��
is the length, in beats, of the� th chord:

,�� �4� �65 � ��#$�
." � ���
���
� " � described by Eqn. 2 is our tempo process

where " � is the local beat length (secs. per beat) at the� th chord. The
')�

variables are assumed to have 0 mean
so the model gives the local tempo at each new musical
event as the previous tempo plus a small error. In other
words, tempo is modeled as a “random walk.”

According to the model, each onset time,  � , is given
as the previous onset time,  ��#*� , plus the current chord
length as predicted by the current tempo (

,7� " � ), plus a
random increment (

/��
). These last random increments,

the
/ �

, are also assumed to be 0 mean variables so they
tend to be small. One possible view of the

/ �
variables

is as agogic accents — at least when they are positive
and hence correspond to note lengthenings. However, in-
dependent of any musical modeling considerations, these
variables give the model a means of explaining note length
variations as something other than tempo change, thus sta-
bilizing the model.

The dependency structure of the " and  variables is ex-
pressed as a directed acyclic graph in the top of Figure 1.
In interpreting this picture, the behavior of each variable
(node in the graph) can be described given only its parents
in the graph, e.g.  � depends on  ��#*� and " � .

Letting " �8� " �����
����� " ��� and  �8�  �����
�����  ��� , this
model leads to a simple factorization of the joint probabil-
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Figure 1. The dependency structure of the model vari-
ables expressed as a directed acyclic graph (DAG). Circles
denote continuous variables, while squares denote discrete
variables. The darkened squares represent observed vari-
ables — the spectrogram frames.

ity density, 9 � " �  � , as

9 � " �  �:� 9 � " �
� 9 �  ���
�;�<*� 9 � " �>= " ��#*��� 9 �  �>=  ��#*�?� " �?�

The factors in this equation are, more explicitly,

9 � " ���@� A(� " �?BDCFEDG?� ' �E G �9 �  � �@� A(�  � BDC$H7G?� ' �H G �9 � " � = " ��#*� �@� A(� " � B " ��#$� � ' �EJI � (4)9 �  �K=  ��#*�!� " ���@� A(�  �LB  ��#*� %-, � " �M� ' �H I � (5)

� �N0��������	3
, where

A-�JOP�DCQ� ' � �
denotes the univariate

normal density function with mean
C

and variance
' �

.
The model parameters

C E G?� ' �E	G �DC$H7G?� ' �H G
and R ' �EJI � ' �H IMS � �<*�

are assumed known. In practice,
C E G

and
' �EDG

would be
chosen to reflect our knowledge about the initial tempo.
The R ' �EJI � ' �H IMS � �<*� variances should reflect that both tempo
changes and note-by-note changes in note length increase
with longer note value. The

' �H G
variance should be es-

sentially infinite, corresponding to our lack of knowledge
about where the first note of the piece will begin, thereby
rendering the choice of

C H G
irrelevant.

Our audio data come from a sampled audio signal which
we partition into a sequence of overlapping frames, TMU ���
��� TWV #$� ,
each corresponding to X seconds of sound ( XZY\[ � ms.
in our experiments). For each frame, ] � � �
���
���	A 54^

,
we let _)` denote the index of the chord that is sounding
for the frame. For example, the sequence of values:

_ U � _ � � _ � �����L� �W� ����� �a b�c degf ^W^ �
��� ^a bc de G 0h0i���
�	0a bc degj ���
�
(6)

would signify that the first note begins at k�U?X seconds and
lasts for k � X seconds, the second note begins at

� k�U % k ��� X
seconds and lasts for k � X seconds, etc. In our model each
frame of audio data depends only on the current chord
which is sounding, thus if _ � _ U �
�����
� _ V #*� and T �T U ���
����� T V #$� , we have

9 � T = _ �+� V
#$�;
` < U 9

� TW` = _)` �

0 2 4 6 8 10

0
5

10
15

20
25

freq

sp
ec

tra
l e

ne
rg

y

0 2 4 6 8 10

0
10

20
30

40

x

y1
 +

 y
2

Figure 2. Left: An idealized spectrum for a single
note. Right: An analogous spectrum for two simulta-
neous notes created as a superposition of two single-note
spectra.

The conditional distribution of T given _ is depicted in the
bottom of Figure 1.

Our actual data model is given by

9 � T ` = _ ` �&�l��� T ` �-m;n <o�MpWq�r �7s$�Dt rMu n�v�wyx (7)

In Eqn. 7, p q r is an idealized power spectrum associated
with chord indexed by _z` and is obtained as a superpo-
sition of the idealized individual note spectra and then
normalized to sum to 1 over the frequency variable,

s
.

The left panel of Figure 2 shows an example of an ideal-
ized single-note spectrum, while the right panel gives the
idealized spectrum for a two-note chord. Thus, the right
spectrum, normalized to sum to one would play the role
of pWq�r in Eqn. 7 for the corresponding two-note chord.
in Eqn. 7, T ` is the observed spectrum for the ] th audio
frame, and { is a scaling constant that weights the contri-
bution of the data term to the overall model. The factor��� Th` � can be disregarded since the TM` variables are fixed,
thus the

�W� Th` � ’s are constant. This data model would re-
sult if we were to assume that the observed spectrogram
was the histogram of a random sample from the probabil-
ity distribution given by p q r . However, even without such
justification, the model is intuitively plausible.

We are interested in specifying a joint model on the
variables " �  � _ � T . The key observation here is that, up to
a discretization error,  and _ contain identical informa-
tion: the partitioning of the audio signal into chords. Thus
we lose nothing by eliminating  and modeling 9 � " � _ � T � .
To do this, note that any sequence _ � _zU �
������� _|V #*� im-
plicitly fixes the the actual onset times through

 �2� _ �+�l}�~P� R�]���_)` � � S X (8)

so we have 9 � " � _ ��� 9 � " �  � _ �	� where the later proba-
bility is given by the model of Eqns. 2 and 3. We have
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Figure 3. The search tree associated with optimization.
The label of a tree node is the score index describing the
current chord.

already described the conditional distribution 9 � T = _ � , so

9 � " � _ � T �@� 9 � " � _ � 9 � T = _ � (9)� 9 � " �
� 9 �  ���
�

�;�<*� 9 � " �K= " ��#$�
� 9 �  �K=  ��#*�?� " �?� (10)

� V #*�;
` < U 9

� T ` = _ ` �
While the right hand side of Eqn. 10 appears to depend on , we recall that  � �  � � _ � , as in Eqn. 8.

We cannot write any simple DAG representation of the
probability distribution on " � _ � T . The actual DAG would
be completely connected between the " and _ layers. How-
ever, the model is still computationally tractable, as we
show in the following section.

3. COMPUTING THE MAP ESTIMATE

Our goal is now phrased as follows: Given the observed
data, T , we seek the most likely configuration of the unob-
served variables, " and _ :���" �L�_ �+�4�����:}��?�Ey� q 9 � " � _ � T � (11)

If all variables were discrete, this problem would be solv-
able through traditional dynamic programming techniques,
however, note that the tempo process, " , is continuous. We
describe here a method for approximating the global solu-
tion to Eqn. 11 using a technique that is similar to dynamic
programming, but allows us to treat continuous variables.

Consider the tree of Figure 3, which describes an enu-
meration of all possible realizations of the labeling pro-
cess _ . First, the root of the tree is labeled 0. Then, any
node in the tree with label ��� 3 will have two children
labeled by � and � %4^ , while a node labeled

3
will have

a single child labeled
3

. The labels
�

and
3

correspond
to the silence at the beginning and end of the audio data.
Note that any path from the root of the tree to a node at
depth ] traverses a sequences of labels corresponding to a
possible realization of the _)U �
������� _|` , and hence an align-
ment of the first ] %�^

frames of audio data; clearly all
possible realizations are contained in the tree.

Traversing a partial path through the tree (fixing _ U �
�����
� _ ` )
implies that the first ] %�^ frames contain � notes where� � _)` . Additionally, the first variables  �!���
�����  � are also
determined through Eqn. 8. For the partial path, _)U ���
����� _|` ,
the probability density for the variables _ `U ��� _|U �
������� _|` � ,T `U ��� T�U ���
����� TW` � , " � � ��� " �!�
���
��� " �?� is

9 � " � � � _ `U � T `U �@� 9 � " � � 9 �  � �
�

�;
� <*� 9 � " � = " � #$��� 9 �  � =  � #$�?� " � � (12)

� `;
� < U 9

� T � = _ � �
(again  � �  � � _ `U � ) For each partial path _ `U define�9 q rf � " �W�+� }��?�E G����� � E Iy� G 9 � " � � � _ `U � T `U � (13)

�9 q rf � " ��� gives the quality of a particular path _ `U as a func-
tion of the current tempo " � , assuming the most favorable
choice of past tempo variables " �?���
����� " ��#$� .

While the calculations are somewhat involved,
�9 q rf � " � �

can be shown to follow the simple parametric form

3-� " B��F�D���D�2�:�4�|� #
Gj u E�#)� v j w	� (14)

with parameters
�*�	���	�

. In fact, a simple recursion can
be developed for this function as one proceeds down a
particular path in the tree of Figure 3, as follows. Sup-
pose _ ` #$�U ��� _ U ���
���
� _ ` #$� � is such that _ ` #$� � � and�9 q r � Gf � " � �6��3-� " � B��F�D���D�2� . There are two cases. First,
if _ ` � _ ` #$� (the � th chord persists through the ] th
frame), then�9 q rf � " ���@� �9 q r � Gf � " �W� 9 � TW` = _|` �� 3-� " � By� 9 � T ` = _ ` ��D���D�2�
Otherwise,�9 q rf � " ��o� �@� }��?�EJI �9 q r � Gf � " � � 9 � " ��o� = " � �� 9 �  ��o�h=  �L� " ��o�
� 9 � TW` = _|` � (15)� 3�� " ��o��B��|���	���7�D�L���
where

�>�8� � 9 � Th` = _)` �0?� ' �EJID� G ' �H�ID� G �
# Gj� ¢¡ I	� G � ¡ I �h£ ID� GJ¤o¥ j£ j ID� G  ¢¦ �h§ j¨ ID� G ¥ �h§ j¡ ID� G

� � � � ' �H ID� G %-, ��o�W�  ��o� 5  ������� %(' �EJID� G �, ����o� ��� %-' �EJI	� G � %-' �H ID� G
�M�8� ��� %(' �E ID� G � ' �H�I	� G, ���o� ��� %(' �EJID� G � %-' �H I	� G

Note that, rather than having a single “score” for each
partial path, _ `U , we describe the quality of the path as a
function of the current tempo, " � : �9 q rf � " ���:�©3-� " �MBy�*�	���	�L� .
In interpreting this representation, the scaling parameter,



Figure 4. Left: The functions R �9 q rf � " � � S before Right:
The reduced collection of functions after thinning.

�
, gives an overall description of the quality of the partial

path since it is the maximal probability attainable. That is}��?�E 3�� " B��F�D���D�2�:�©3-� � ���F�D���D�2�Q�4��
describes the best value of the current tempo, " � , for the

path.
�

is a measure of how fast the path quality decreases
as we move away from the best tempo,

�
.

Clearly the number of tree nodes is exponential in the
tree’s depth making it impossible to explore the tree thor-
oughly without additional insight. The key observation
here is that some partial paths can be eliminated without
sacrificing the search for the optimal path.

Suppose that two partial paths _ `U and ª_ `U are such that
both begin the � th note at the ] th frame: _ ` � ª_ ` � �
and _ ` #$� � ª_ ` #$� � � 5©^ . If we also have

�9 q rf � " � �¬«�9®q rf � " � � for all values of the current tempo " � , then no
matter how the paths continue, the _ `U branch will always
beat the ª_ `U branch. So, without any loss, we can eliminate
the latter branch.

More generally, suppose that k is the collection of paths
that begin the � th note on the ] th frame, i.e.

k � R�_ `U ��_ ` #$� � � 5¯^ � _ ` � � S
Define the set °i± ~P�F� k � as the smallest subset of k such
that }��?�q rfM²�³|´�µ ¶ u e v �9 q rf � " � �:�©}��?�q rf ² e �9 q rf � " � �
for all " � as in Figure 4. Thus °i± ~·�o� k � are the Gaus-
sians that attain the maximum value for some tempo value.
Paths not in k are not optimal for any value of " � , so, rea-
soning as above, we can eliminate any such path without
loss of optimality. Due to the simple parametric form of
the

�9 q rf � " � � functions, the thinning procedure can be com-
puted with a computational cost that is quadratic in

= k = .
The thinning algorithm can be performed on a restricted
set of possible tempo values, say

� "!¸ µ ¶ � "
¸Q¹Dº � to achieve
greater reduction of the partial paths. An algorithm for the
thinning operation is discussed in [8] as well a discussion
of computational complexity and the optimality properties
of the restricted thinning algorithm.

In our experiments the number of kernels that survive
the thinning process does not increase with the number
of original kernels. Assuming that the number of surviv-
ing kernels of each thinning operation is bounded by some

maximum, the thinning procedure reduces the number of
partial paths at each frame to a number that is, at worst,
linear in

3
— the number of chords in the score. The

paths surviving thinning represent a tiny fraction of what
would exist otherwise since, without thinning, the number
of partial paths grows exponentially in ] , the current anal-
ysis frame. In our applications,

3
can be in the thousands,

so an algorithm that is linear in
3

is still not tractable and
more pruning must be done. We discuss further pruning
in the following section.

The final parse is obtained by tracing back the best sur-
viving path at the final frame,

A
. That is, our parse esti-

mate is
�_ VU �©�����Q}��?� q�»f �F� _ VU � where�9 q!»f �©3-� " � B��o� _ VU ���D�¼� _ VU ���D�z� _ VU �	�

and only paths that reach the final score position,
3

, in
the

A
th frame are considered. It is also straightforward

to recover the hidden tempo variables, although we do not
do so in this particular application.

3.1. Further Pruning

As observed above, we still need to prune paths to make
the proposed algorithm feasible. A simple approach would
be to sort the current (surviving) hypotheses on the “

�
” pa-

rameter and prune the smallest of these. In experimenting
with this pruning method, we have observed that branches
already exceeding a reasonable amount of time for the
current chord avoid being pruned by delaying the chord
change, thereby delaying incurring the associated note length
factor 9 �  ��o� =  � � " � � . This phenomenon is analogous to
the “horizon effect” of computer chess in which hypothe-
ses receive falsely inflated scores by postponing an in-
evitable end beyond the search horizon.

A second problem is that, at any particular analysis
frame, ] , the various partial paths, _ ��� _)U �����
��� _|` � , will
represent different positions in the musical score. Sup-
pose that a particular path is currently in the � th note in
the score. Then the likelihood of this partial path will con-
tain a factor for each of the  �!�
���
���  � as in Eqn. 12. Since� varies over the partial paths, the

�
-scores are composed

of different numbers of factors and direct comparison is
suspect.

We remedy these problems by sorting the partial paths
over ½ � _ �:�4¾�� _ � % � `VÀ¿ u q v� and pruning the paths hav-
ing the lowest ½ � _ � scores, where

¾�� _ �Á� `Â
� < U>ÃPÄ

� 9 � T � = _ � �
Å � _ �@� }��?�E G � ����� � E ID� Gy� H�I	� GyÆ ` Ã·Ä

� R�9 � " ��� 9 �  �����Ç�;
� <*� 9 � " � = " � #$��� 9 �  � =  � #$�?� " � � S

In the above equation,
¾�� _ � is simply the data log like-

lihood of the partial path.
Å � _ � is the optimal model

log likelihood for the first � %©^ tempo and position vari-
ables with  ��o� taking some value in the future. Since a



partial path, _ , implicitly fixes the first � position vari-
ables  � ���
�����  � , we only maximize over the remaining
variables. While we omit the calculation, one can easily
compute

Å � _ � recursively as ] increases. At any fixed
iteration, then we are sorting over the data log likelihood
plus a constant times the average model likelihood, there-
fore not penalizing the paths with more notes. However,
as ]ÉÈ A

and �¼È 3
this gradually reduces to the the

original log likelihood
¾�� _ � % Å � _ � as in 13.

4. EXPERIMENTS

To evaluate our algorithm we constructed a test set of short
orchestral movements (and one opera selection), repre-
senting a variety of musical styles. The restriction to the
orchestral domain does not reflect a known limitation of
our methods — to the contrary, orchestral music is quite
heterogeneous and contains many of the data types we be-
lieve to be most problematic for score matching, such as
tempo changes, rubato, fast notes, and varied instrumen-
tal texture. The choice of data was influenced by personal
taste.

Recall that our musical score is represented as a se-
quence of (musical time, chord) pairs as in Eqn. 1. In
many cases, this representation can be constructed auto-
matically from a MIDI file. To this we collected around
20 MIDI files from the Classical Midi Archives. In creat-
ing our scores we replaced note sequences within a single
voice that appeared to be trills or tremolos by sustained
notes. In addition, two notes very nearly sharing the same
onset time are both assumed to begin at the “simpler” mu-
sical time (the one with the smaller denominator, when
expressed in beats). Aside from these special cases, the
processing consists of a straightforward extraction of data
from the MIDI files. In particular, our algorithm creates,
for each MIDI file, a note list containing the musical onset
times with the corresponding MIDI note commands, a list
of tempo changes, and list of meter changes.

About half of these files were rejected for various rea-
sons, either before or after this preprocessing stage: some
files were piano reductions, some had suspiciously com-
plex reconstructed rhythm suggesting expressive timing,
some contained other assorted anomalies. There is no rea-
son to assume that our matching algorithm would fail on
the MIDI files we rejected. In fact, a previous experi-
ment showed excellent results with a piano transcription
of the Sacrificial Dance from Stravinsky’s Le Sacre du
Printemps. However, our goal here was to keep the ex-
perimental conditions as constant as possible over the test
set. Despite this goal, the accepted MIDI files were not of
uniform quality. Some contain many wrong notes, some
contain numerous tempo changes while others only mark
sudden and significant tempo changes, and other sources
of variability probably exist. Nonetheless, we resisted the
urge to “tweak” the scores by hand.

For each of the surviving files we then took correspond-
ing audio data from a CD, downsampled to mono 8 KHz.
Table 1 gives the test set totaling nearly 55 minutes of mu-

Work Orchestra Conductor Year Mins.
Mahler
Symphony 4 Mvmt. 1 Boston Ozawa 1987 5.23
Holst
The Planets Mercury Toronto Davis 1986 4.03
The Planets Mars Toronto Davis 1986 6.88
Mozart
Symph. 41 Mvmt 2 Berlin von Karajan 1978 7.78
Symph. 41 Mvmt 4 (1) Berlin von Karajan 1978 2.20
Symph. 41 Mvmt 4 (2) Berlin von Karajan 1978 3.84
Cosi Fan Tutte Overture London Haitink 1987 4.54
ibid. “Soave Sia il Vento” London Haitink 1987 3.02
Debussy
Trois Nocturnes Fêtes Cleveland Boulez 1995 6.52
Dvorak
Symphony 8 Allegretto London Leppard 1997 6.05
Shostakovich
Symphony 1 Mvmt 2 Chicago Berstein 1989 4.88

Table 1. The test set for the score matching experiments.

sic. The Mahler example is only the first five or so minutes
of the movement. The last movement of the Mozart sym-
phony was broken into two sections due to a repeat that
appeared in the MIDI file (and hence our score) but not
the performance — a common problem.

For each of these examples we created ground truth by
playing the audio file from the computer and tapping along
on the keyboard while recording the times of each key
press. Each section of constant meter was given a fixed
number of taps per measure. These files were then hand-
corrected using an interactive program that allows the user
to see, hear, and adjust the taps which are superimposed
visually over the the audio spectrogram and aurally (as
clicks) over the sound file. The tap files are not particu-
larly accurate in identifying individual beat locations, but
also do not accumulate error over time. That is, they never
“get lost.”

Our model is completely specified once we describe
the variances of Eqns. 4 and 5, R ' �EDI � ' �H I S . We model the
variances as parametric functions of the expected note du-
rations, computed using the note lenths R , � S and the lo-
cal tempo prescribed in the scores derived from the MIDI
files. In particular, we model these variances as linear
functions of the expected note duration. It would also be
possible to model the variances as parametric functions of
the expected duration, derived from the expected tempo
associated with each brach of the search tree. While we
believe these two approaches would give nearly identi-
cal results, the latter introduces a modeling complication,
since our model assumes the variances are known a pri-
ori, rather than functions of unkwnown tempo variables.
However, the latter method also uses a more accurate ex-
pected duration in the computation of the model variances
and might benefit from this. The linear parameters were
chosen by trial and error, though we will estimate a more
complex parametric model in future work.

We then processed each of our audio files according to
our alignment method, as described in the preceding sec-
tions. Every time a branch of the search tree began a note
corresponding to a tempo change (as given by the MIDI
file) We reset the tempo distribution to have the mean in-
dicated by the MIDI file with a rather large and fixed vari-
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Figure 5. Top: Histogram of errors less than 1 sec. in
absolute value. Bottom: The remaining errors. Note
that similar bar heights represent about 50 times as many
counts on the left panel.

ance. The result of the process is a collection of estimated
onset times, one for each note of the score, written out to
a file. For each note that falls on a beat, we compute the
“error” as the difference between the estimated onset time
and the corresponding tap time. Of the entire collection of
5038 error estimates, 95% of the errors were less than .25
sec. in magnitude, while 72% were less than .125 secs.
In interpreting these results, one should keep in mind that
the tapping ground truth is not especially accurate, thereby
making the measured performance of the algorithm ap-
pear worse than they are in truth. In fact, our listening
of the “click” files for both the recognized data and the
ground truth suggests that the recognized results are gen-
erally more accurate than the ground truth. Since display-
ing all errors in the same histogram renders the rarer large
errors invisible, Figure 5 gives two histograms: the left
panel shows the distribution of the errors that are less than
1 sec., while the right histogram gives the remaining er-
rors. Note the 50-fold difference in scale between the two
histograms. We suspect that the left histogram really says
more about the ground truth than our recognition accu-
racy.

The histograms of Figure 5 show that our algorithm
gives accurate performance when it is not lost. Figure 6
shows a different aspect of the algorithm’s performance
by giving the errors, plotted against beat times, for each
piece in the collection. In Figure 6 the individual traces
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Figure 6. Error vs. beat time for each piece in the data
set. The various examples are stacked vertically for ease
of comparsion, so errros are seen as deviations from the
“baseline” rather actual heights.



are stacked vertically for the sake of comparison, so the
errors should be interpreted as deviations from the “base-
line,” thus we see occasional bursts of errors on the order
of several seconds. Figure 6 demonstrates the rather sur-
prising ability of our algorithm to recover after significant
errors. In fact, the only places in which our system does
not recover from being lost are near the very ends of the
excerpts.

The predominant cause of the significant errors appear-
ing in Figure 6 is sections of music with little or no pitch
variation. Recall that our data model is based solely on
pitch content so the data model contributes essentially no
information when the pitch content is static. Not sur-
prisingly, our algorithm experienced difficulty with such
sections, as in the repeated ffff tritone-laden chords in the
brass and strings ending Mars; the pianissimo open fifths
in the strings ending the Shostakovich movement; the harp,
string, and timpani ostinato the precedes the trumpet trio
in Fêtes; the long cadence into G Major at the end Mahler
excerpt (bar 102); and the final chords of the Mozart over-
ture. This suggests that rather simple improvements to our
data model, such as modeling note attacks, might produce
better performance in such cases.

The graphs and analyses provide a sense of our al-
gorithm’s performance on this difficult test set, however,
they are no substitute for an audio demonstration. To this
end, we have put “click files” of each piece on the web at

http://fafner.math.umass.edu/ismir04

These audio (.wav) files contain the original performance
with clicks superimposed at every detected note onset.
We encourage the interested reader to listen to some of
these examples. In addition, to facilitate comparisons, the
above directory also contains the original MIDI files, the
tap files, the estimates produced by our algorithm, as well
as the original 8KHz audio files.
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