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ABSTRACT 

A number of metadata standards have been published in 
recent years due to the increasing availability of 
multimedia content and the resulting issue of sorting and 
retrieving this content. One of the most recent efforts for a 
well defined metadata description is the ISO/IEC MPEG-7 
standard, which takes a very broad approach towards the 
definition of metadata. Herein, not merely hand annotated 
textual information can be transported and stored, but 
also more signal specific data that can in most cases be 
automatically retrieved from the multimedia content itself. 

In this publication an algorithm for the automated 
transcription of rhythmic (percussive) accompaniment in 
modern day popular music is described. However, the 
emphasis here is not a precise transcription, but on 
capturing the “rhythmic gist” of the piece of music in 
order to allow a more abstract comparison of musical 
pieces by their dominant rhythmic patterns. A small-scale 
evaluation of the algorithm is presented along with an 
example representation of the thus gained semantically 
meaningful metadata using description methods currently 
discussed within MPEG-7.   

1. INTRODUCTION 

Stimulated by the ever-growing availability of musical 
material to the user via new media and content 
distribution methods an increasing need to automatically 
categorize audio data has emerged.  
Descriptive information about audio data which is 
delivered together with the actual content represents one 
way to facilitate this search immensely. The aims of so-
called metadata (”data about data”) are to e.g. detect the 
genre of a song, specify music similarity, perform a 
segmentation on a song, or simply recognize a song by 
scanning a database for similar metadata.  
There have been a number of publications describing an 
approach to achieve these aims using features that 
belong to a lower semantic hierarchy order (“Low-
Level-Tools”) [1].  

 
These features are extracted directly from the signal 
itself in a computationally efficient manner, but carry 
little meaning for the human listener. The usage of high 
level semantic information relates to the human 
perception of music.  
The rhythmic elements of music, determined by the 
drum and percussion instruments, play an important role 
especially in contemporary popular music. Therefore, 
the performance of advanced music retrieval 
applications will benefit from using mechanisms that 
allow the search for rhythmic styles or particular 
rhythmic features. 

1.1. The Metadata Standard MPEG-7 
One example of a number of upcoming standards for the 
specification of metadata for audiovisual data is the 
MPEG-7 standard, which was finalized in late 2001.  
The first version of MPEG-7 Audio (ISO/IEC 15938-4) 
does not, however, cover high level features in a 
significant way. Therefore the standardization committee 
agreed to extend this part of the standard. The work of 
contributing high level tools is currently being 
assembled in MPEG-7 Audio Amendment 2 (ISO/IEC 
15938-4 AMD2). One of its features is 
RhythmicPatternDS. The internal structure of its 
representation depends on the underlying rhythmic 
structure of the considered pattern. The main advantage 
consists in the fact that for every pattern the most 
compact representation can be provided, resulting in an 
efficient comparison of the patterns and minimal 
memory needed for storage. 
The system presented in this paper has been designed to 
extract an MPEG-7 Audio AMD2 conformant 
RhythmicPatternDS out of a musical audio signal. The 
system's complexity is low enough to allow real time 
operation on today's personal computers. 

2. SYSTEM OVERVIEW 

The system presented in this paper consists of three 
different parts. At the first processing stage occurrences 
of un-pitched percussive instruments are detected and 
classified. Based on the resulting drum transcription 
actual drum patterns are extracted. Finally, an MPEG-7 
Audio conformant XML description is created. 
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2.1. Transcription of Percussive Instruments 
This section gives an overview on the method for 
detection and classification of un-pitched percussive 
instruments, described in detail in [2]. The detection and 
classification of percussive events is carried out using a 
spectrogram-representation X  of the audio signal. 
Differentiation and halfway-rectification of X  yield a 
non-negative difference spectrogram X̂ , from which the 
times of occurrence t  and the spectral slices tX̂  related 
to percussive events are deduced. Principal Component 
Analysis (PCA) is applied to tX̂  according to (1). 

                                 WXX ⋅= t
ˆ~

 (1) 

Thereby, transformation matrix W  reduces the number 
of slices to d  components unifying decorrelation and 
variance normalization. The principal components X~  
are subjected to Non-Negative Independent Component 
Analysis (NNICA) [3], which attempts to find un-mixing 
matrix A  by optimizing a cost function describing the 
non-negativity of the components. 
The spectral characteristics of un-pitched percussive 
instruments, especially the invariance of spectra of 
different notes compared to pitched instruments allows a 
separation of X~  using un-mixing matrix A  into 
spectral profiles F  according to equation (2).  

                                  XAF ~
⋅=  (2) 

The spectral profiles can be used to extract the 
spectrogram’s amplitude basis, from here forward 
referred to as amplitude envelopes E  according to (3). 

                                  XFE ⋅=  (3) 

This procedure is closely related to the principle of Prior 
Subspace Analysis (PSA) [4], modified to estimate the 
spectral profiles from the analyzed audio signal itself. In 
further contrast to the original procedure introduced in 
[4] no further ICA-computation is carried out on the 
amplitude envelopes.  
The extracted components are classified using a set of 
spectral-based and time-based features.  
The classification shall provide two sources of 
information. Firstly, components should be excluded 
from the rest of the process which are clearly 
harmonically sustained. Secondly, the remaining 
dissonant percussive components should be assigned to 
pre-defined instrument classes.  
A suitable measure for the distinction of the amplitude 
envelopes is represented by the percussiveness, which is 
introduced in [5]. A slightly modified version is 
employed to distinguish the amplitude envelopes related 
to percussive instruments from the ones related to 
sustained sounds. 
A spectral-based measure is constituted by introducing 
the spectral dissonance, earlier described in [5], [6]. A 
slightly modified version is employed to distinguish the 
spectra of harmonic sustained sounds from dissonant 
ones related to percussive sounds. 

The assignment of spectral profiles to a priori trained 
classes of percussive instruments is provided by a k-
nearest neighbour classifier with spectral profiles of 
single instruments from a training database. To verify 
the classification in cases of low reliability or several 
occurrences of the same instruments, additional features 
describing the shape of the spectral profile, e.g. centroid, 
spread, and skewness, are extracted. Other features are 
the center frequencies of the most prominent local 
partials, their intensity, spread, and skewness.  
Drum-like onsets are detected in the amplitude 
envelopes using conventional peak picking methods.   
The intensity of the onset candidate is estimated from 
the magnitude of the envelope signal. Onsets with 
intensities exceeding a predetermined dynamic 
threshold are accepted. This procedure reduces crosstalk 
influences of harmonic sustained instruments as well as 
concurrent percussive instruments. 

2.2. Extraction of Drum Pattern 
The extraction of recurring pattern (drum pattern) from 
a list of automatically detected events (see section 2.1.) 
is illustrated in Figure 1.  
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Figure 1: Block diagram of the second stage of drum 
pattern extraction 

At first, the audio signal is segmented into similar and 
characteristic regions using a self-similarity method 
initially proposed by Foote [7]. The segmentation is 
motivated by the assumption, that within each region 
not more than one representative drum pattern occurs, 
and that the rhythmic features are nearly invariant. 
Subsequently, the temporal positions of the events are 
quantized on a tatum grid. The term tatum grid refers to 
the pulse series on the lowest metric level [8]. Tatum 
period and phase is computed by means of a two-way 
mismatch error procedure, originally proposed for the 
estimation of the fundamental frequency in [9] and 
applied to tatum estimation before in [10]. An additional 
note onset detection process, finding note onsets in the 



  
 

 

audio signal, complements the list of note onsets from 
the percussive un-pitched instruments. 
The pattern length is estimated by searching for the 
prominent periodicity in the quantized score with 
periods equaling an integer multiple of the bar length. 
The periodicity function is obtained by calculating a 
similarity measure between the signal and its time 
shifted version. The similarity between two score 
representations is calculated as weighted sum of the 
number of simultaneously occurring notes and rests in 
the score. 
An estimate of the bar length is obtained by comparing 
the derived periodicity function to a number of so-called 
metric models, each of them corresponding to a bar 
length. A metric model is defined here as a vector 
describing the degree of periodicity per integer multiple 
of the tatum period, and is illustrated as a number of 
pulses, where the height of the pulse corresponds to the 
degree of periodicity. The best match between the 
periodicity function derived from the input data and pre-
defined metric models is computed by means of their 
correlation coefficient. A periodicity function and two 
exemplary metric models are illustrated in Figure 2. 
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Figure 2: Periodicity function and two examples of metric 
models corresponding to four-four time (dotted line) and 
five-four time (dashed line) 

 
A histogram-like representation Hi,j of the score Ti,l is 
obtained by measuring the frequency of occurrence of 
events per instrument and metric position according (4). 
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where i=1…n and j=1…b, n represents the number of 
instruments, b is the bar length and r equals the number 
of bars. 
The drum patterns are extracted by choosing the 
positions whose occurrence exceeds a threshold qi (5). 
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The final processing step estimates the start position of 
the pattern. It is assumed that the start of the pattern 
corresponds to the position featuring the strongest 
occurrence of kick drum notes. A further strategy is to 
identify common playing styles and to compare the 
extracted pattern to various exemplary patterns. 

2.3. MPEG-7 AudioRhythmicPattern 
The AudioRhythmicPattern descriptor uses a non-linear 
indexing of the velocity values with help of a so-called 
PrimeIndex, derived from prime factorization of the grid 
indices. The PrimeIndex indicates the rhythmic 
significance (rhythmic level) within the pattern. In 
general, velocity values that occur on a beat will be 
indicated by a PrimeIndex with a lower integer value 
than velocity values occurring between two beats 
(offbeat). Depending on meter and micro time different 
levels of rhythmic hierarchy will result. 
 

Part of 
the bar 

1 1+ 2 2+ 3 3+ 4 4+ 

Rhythmic 
level 

*** * ** * *** * ** * 

Grid 
position 

1 2 3 4 5 6 7 8 

Prime 
index 

1 5 3 6 2 7 4 8 

Velocity 100 0 112 0 150 68 120 0 

Table 1: Example of a Rhythmic Pattern 

The term micro time defines as the (close to) integer 
ratio between the beat period and the tatum period. 
An example for a rhythmic pattern is given at Table 1. 
The meter is 4/4 and the micro time equals 2. This 
results in a total pattern size of 8. 
 

Rhythmic 
level 

*** *** ** ** * 

Prime index 1 2 3 4 7 
Velocity 100 150 112 120 68 

Table 2: Rhythmic Pattern after deleting zeros and re-
ordering 

All velocity values equal to zero and their corresponding 
prime indices (elements) are deleted. According to the 
ascending order of the prime indices the elements will be 
rearranged, resulting in the final representation (see 
Table 2).  
      
    … 

      <Audio xsi:type="AudioSegmentType"> 
        <AudioDescriptionScheme    
          xsi:type="AudioPatternType"> 
          <Meter> 
            <Numerator>4</Numerator> 
            <Denominator>4</Denominator> 
          </Meter> 
          <TimePoint>PT00N1000F</TimePoint> 
          <Pattern> 
            <BarNum>1</BarNum> 
            <InstrumentID>36</InstrumentID> 
            <Microtime>2</Microtime> 
            <PrimeIndex>1 2 3 4 7 </PrimeIndex> 
            <Velocity>110 150 112 120 68 </Velocity> 
          </Pattern>           
        </AudioDescriptionScheme> 
      </Audio> 
… 

Figure 3: section of an example rhythmic pattern 
XML description   



  
 

 

3. TEST RESULTS 

An informal listening test has been conducted in order 
to quantify the abilities of the presented system. Nine 
human listeners (a mixture of lab members and students 
with varying degree of musical training ranging from 
non-musicians to skilled performers) were confronted 
with 92 excerpts of 40 test songs. Each excerpt features 
a minimum duration of six seconds. The songs include a 
wide range of musical genres where the appearance of 
drum patterns is common, e.g. Rock, Pop, Latin, Soul 
and House. The human listeners were instructed to 
compare the original excerpts to the synthetic rendition 
of the extracted patterns. The rating ranges from five 
(for a perfect extracted pattern) to one (for an 
unrecognizable pattern). Details on the results of the 
listening test are displayed in Figure 4. The solid line 
shows the mean score value per test item in descending 
order. The dashed line shows the corresponding 
standard deviation arranged as a tolerance interval 
around the mean value. It can be seen that almost 70 
percent of the test items have been assigned a score 
equal or greater three. Another interesting observation is 
the fact, that the standard deviation does not diverge 
strongly amongst the test subjects. The presumption that 
a rating of pattern quality could be a very subjective 
task is invalidated by a small average standard deviation 
of 0.74 score points. 
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Figure 4: Results of Listening Tests 

4. CONCLUSIONS 

In this publication an algorithm for the automated 
extraction of rhythmic patterns from popular music 
items has been introduced and evaluated. The presented 
test results verify that the algorithm produces viable 
results, and can indeed be deployed for the comparison 
of rhythmic aspects of different music items. The 
extracted rhythmic patterns are represented using the 
latest description methods under preparation within the 
international standard ISO/IEC MPEG-7.  
Thus, with the tools and methods presented above the 
realization of a complete, fully automated system for 

efficient rhythmic characterization and comparison of 
contemporary popular music tunes is possible.   
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