
TOWARDS CHARACTERISATION OF MUSIC VIA RHYTHMIC
PATTERNS

Simon Dixon
Austrian Research Institute for AI

Vienna, Austria

Fabien Gouyon
Universitat Pompeu Fabra

Barcelona, Spain

Gerhard Widmer
Medical University of Vienna
Medical Cybernetics and AI

ABSTRACT

A central problem in music information retrieval is finding
suitable representations which enable efficient and accu-
rate computation of musical similarity and identity. Low
level audio features are ideal for calculating identity, but
are of limited use for similarity measures, as many aspects
of music can only be captured by considering high level
features. We present a new method of characterising mu-
sic by typical bar-length rhythmic patterns which are au-
tomatically extracted from the audio signal, and demon-
strate the usefulness of this representation by its applica-
tion in a genre classification task. Recent work has shown
the importance of tempo and periodicity features for genre
recognition, and we extend this research by employing the
extracted temporal patterns as features. Standard classifi-
cation algorithms are utilised to discriminate 8 classes of
Standard and Latin ballroom dance music (698 pieces).
Although pattern extraction is error-prone, and patterns
are not always unique to a genre, classification by rhyth-
mic pattern alone achieves up to 50% correctness (base-
line 16%), and by combining with other features, a classi-
fication rate of 96% is obtained.

1. INTRODUCTION

Most music can be described in terms of dimensions such
as melody, harmony, rhythm, instrumentation and form.
These high-level features characterise music and at least
partially determine its genre, but they are difficult to com-
pute automatically from audio. As a result, most audio-
related music information retrieval research has focussed
on extracting low-level features and then using machine
learning to perform tasks such as classification. This ap-
proach has met with some success, but it is limited by
two main factors: (1) the low level of representation may
conceal many of the truly relevant aspects of the music;
and (2) the discarding of too much information by the fea-
ture extraction process may remove information which is
needed for the accurate functioning of the system.
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In this work, we address one aspect of these limitations
by a novel approach of extracting rhythmic patterns di-
rectly from audio in order to characterise musical pieces.
It is hypothesised that rhythmic patterns are not randomly
distributed amongst musical genres, but rather they are in-
dicative of a genre or small set of possible genres. There-
fore, if patterns can be extracted successfully, we can test
this hypothesis by examining the usefulness of the pat-
terns as features for genre classification.

As dance music is characterised by repetitive rhythmic
patterns, it is expected that the extraction of prominent
rhythmic patterns would be particularly useful for clas-
sification. However, rhythmic patterns are not necessar-
ily unique to particular dance styles, and it is known that
there is a certain amount of overlap between styles. In this
work, rather than assuming a fixed dictionary of patterns,
we use an automatic extraction technique which finds the
most salient pattern for each piece. Thus the techniques
used are generalisable to other musical genres.

First the bar length patterns in the amplitude envelope
are found and clustered using the k-means algorithm with
a Euclidean distance metric. The centre of the most sig-
nificant cluster is used to represent the piece, and a fea-
ture vector consisting of this rhythmic pattern and vari-
ous derived features is used for classification on a music
database of the first 30 seconds of 698 pieces of Standard
and Latin ballroom dance music.

Although we focus solely on the rhythmic aspects of
music, we show that for genre classification of dance mu-
sic, a very high level of accuracy is obtainable. The results
show an improvement over previous methods which used
periodicity or inter-onset interval histograms and features
derived from these. Other possible applications of auto-
matically extracted rhythmic patterns are query and re-
trieval of music, playlist generation, music visualisation,
synchronisation with lights and multimedia performances.

In the following section we outline the background and
related work, and then in the subsequent sections describe
the pattern extraction algorithm and genre classification
experiments, concluding with a discussion of the results
and future work.

2. RELATED WORK

Audio feature extraction was first addressed in the context
of speech recognition, and was later applied to classifi-
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Figure 1. The importance of temporal sequence: these
two different rhythm patterns have the same distribution of
inter-onset intervals but are typical of two different genres,
Cha Cha (above) and Rumba (below).

cation tasks in order to separate speech from non-speech
signals such as music and environmental sounds [19, 26].
More recently, several authors have addressed classifica-
tion tasks specific to music, such as instrument recogni-
tion [14] and detection of segments of music that contain
singing [2]. Others have focussed on determining similar-
ity judgements for content-based retrieval [8], for the or-
ganisation and navigation of large music collections [16,
17] and for computation of high level semantic descrip-
tors [21].

Automatic musical genre classification has a shorter
history. Tzanetakis et al. [23, 22] used three sets of fea-
tures representing the timbral texture, rhythmic content
and pitch content of musical pieces, and trained statistical
pattern recognition classifiers to achieve a 61% classifica-
tion rate for ten musical genres. McKinney and Breebaart
[15] examined the use of various low level feature sets and
obtained 74% classification on 7 musical genres. Dixon
et al. [7] compared two methods of periodicity detection,
and developed a simple rule based system to classify 17
styles of Standard and Latin ballroom dance music based
only on the distribution of periodicities, with an accuracy
of 37%.

In the abovementioned work, limited rhythmic infor-
mation is encoded in the beat histogram [22], modula-
tion energy [15] or periodicity distribution [7]. Each of
these representations provides information about the rel-
ative frequency of various time intervals between events,
but discards the information about their temporal sequence.
For example, consider the two rhythmic patterns in Fig-
ure 1. Both patterns have the same distribution of inter-
onset intervals (three quarter notes and two eighth notes),
but the patterns are perceptually very different. The up-
per pattern, which is typical of a Cha Cha rhythm, would
not be described as syncopated, whereas the lower pattern,
more likely to be found in a Rumba piece, is somewhat
syncopated.

Rhythmic patterns were used by Chen and Chen [4]
for song retrieval using symbolic queries and a database
of symbolic music, in which approximate string matching
provided the similarity measure. The patterns used were
not general patterns which summarise a piece or a genre,
but specific patterns which did not need to occur more than
once in the piece.

Genre Pieces Metre Tempo Tempo
(nominal) (actual)

Cha Cha 111 4 128 92–137
Jive 60 4 176 124–182
Quickstep 82 4 200–208 189–216
Rumba 98 4 104 73–145
Samba 86 4 200 138–247
Tango 86 4 128–132 112–135
Viennese Waltz 65 3 174–180 168–186
Waltz 110 3 84–90 78–106

Table 1. Statistics of the data used in the experi-
ments. Tempo is given in BPM, where a beat corre-
sponds to a quarter note (except for Samba and some Vi-
ennese Waltzes which have an eighth note beat). Nom-
inal tempo values are according to the overviews at the
www.ballroomdancers.com web site.

The only work we are aware of in which rhythmic pat-
terns were automatically extracted from audio data is by
Paulus and Klapuri [18], who extracted bar-length patterns
represented as vectors of loudness, spectral centroid and
MFCCs, and then used dynamic time warping to measure
similarity. Their work did not include genre classification,
although they did indicate that the similarity of drum pat-
terns was higher within genre than between genres.

Other relevant research that involves the extraction of
rhythmic content from a musical performance is beat track-
ing [10, 11, 20, 3, 5], that is, finding the times of the beats
(at various metrical levels). If we assume that rhythmic
patterns exist within a particular metrical unit, e.g. within
bars, then finding the boundaries of these metrical units
becomes a prerequisite to pattern finding. The main dif-
ficulty in beat tracking is not in finding the periodicities,
but their phase. That is, the length of a pattern can be esti-
mated much more reliably than its starting point. We use
an interactive beat tracking system [6] in order to annotate
the first bar of each piece.

3. PATTERN EXTRACTION

3.1. Data

Two major difficulties for developing music information
retrieval systems are the lack of reliably labelled data sets,
and the fuzziness of class boundaries of the attributes.
Ballroom dance music has the advantage of providing a
set of genres for which there is a high level of agree-
ment among listeners concerning the genre. We collected
698 samples of Standard and Latin ballroom dance music
(http://www.ballroomdancers.com ), each con-
sisting of approximately the first 30 seconds of a piece.
The music covers the following eight classes: Cha Cha,
Jive, Quickstep, Rumba, Samba, Tango, Viennese Waltz
and (Slow) Waltz. The distribution of pieces over the
classes, the nominal tempo of each class, and the actual
tempo ranges of the excerpts are shown in Table 1.



3.2. Audio Processing

The samples were uncompressed from Real Audio format
to a standard PCM format at the same sampling rate as
the original file (either 44100, 16000 or 11025 Hz, always
mono). The amplitude envelope was extracted from the
signal using an RMS filter. The frame rate was set so that
a bar would contain a fixed numberb of samples at any
tempo (where the tempo is already known, as described in
the following subsection).

If x(n) is the input signal with sampling rater and bar
lengthl seconds, then its amplitude envelope is calculated
with a sampling rate ofb samples per bar using a hop size
h given by:

h =
rl

b
(1)

The amplitude envelopey(n) is given by:

y(n) =

√∑(n+k)h−1
i=nh x(i)2

kh
(2)

wherek is the overlap factor. The bar lengthsl ranged
from 0.97 to 3.30 sec. Best results were obtained with
b = 72 andk = 2, although values ofb from 48 to 144
gave similar results.

Two alternative representations fory(n) were also tried,
by taking respectively the square and the absolute value of
the signalx(n), passing it through an eighth order Cheby-
shev Type I lowpass filter, and decimating to a sampling
rate ofb samples per bar. The choice of representation had
only a small influence on results.

3.3. Bar Finding

Much research has been conducted on beat tracking, that
is, finding the times of musical beats in audio files [10,
11, 20, 3, 5]. Although beat tracking is not a solved prob-
lem, the extraction of periodicities is reliable, with the
remaining difficulties being the mapping of periodicities
to metrical levels (e.g. estimating which periodicity cor-
responds to the rate of quarter notes), and choosing the
correct phase for a metrical level (e.g. estimating which
quarter note beats correspond to the first beat of each bar).

Since the focus of this work was not to perform beat
or measure finding, we used values for the first bar gener-
ated by BeatRoot [6] and corrected manually. This also al-
lowed us to skip irregular (i.e. tempo-less) introductions,
which are difficult to detect automatically in short (30 sec)
excerpts.

Once the first bar was known, the process of finding
subsequent bars was performed automatically, by search-
ing within ±5% of the end of the previous bar for a start-
ing point which has maximum correlation with the sum of
previous bars. That is, for each bari, a correction factor
δ(i) was calculated which determined the offset of the be-
ginning of the following barm(i + 1) from its expected
position (m(i) + b). If d =

⌊
b
20

⌋
andm(i) is the index

of the beginning of theith bar, wherem(1) is given by

BeatRoot, then:

m(i + 1) = m(i) + b + δ(i) (3)

where

δ(i) = arg
d

max
k=−d

b−1∑
j=0

y(m(i) + b + k + j) ∗ z(i, j) (4)

and

z(i, j) =
i∑

k=1

y(m(k) + j) (5)

3.4. Extracting Rhythmic Patterns

Once the bar positions were determined, bar length rhyth-
mic patterns were then extracted, consisting of the am-
plitude envelope of the signal between the start and end
points of the bar. Theith patternvi is a vector of lengthb:

vi = 〈y(m(i)), y(m(i) + 1), . . . , y(m(i) + b − 1)〉 (6)

In order to remove outliers, k-means clustering (withk =
4) was used to find clusters of similar bars, and the largest
cluster was taken as defining the most prominent rhythmic
pattern for each piece.

If Cj is the cluster containing the most bars, then the
characteristic rhythmic patternp(n) of a piece is given by:

p(n) =
1

|Cj |
∑

k∈Cj

y(m(k) + n) (7)

Furthermore, we can define the distanceD(i, j) between
two rhythmic patternspi(n) andpj(n) by the Euclidean
metric:

D(i, j) =

√√√√ b∑
k=1

(pi(k) − pj(k))2 (8)

For example, Figure 2 shows the pattern vectors of all
15 bars of one Cha Cha excerpt, where the colours indicate
the clusters to which the bars belong, and the thick black
curve shows the centre of the largest cluster, that is, the
extracted patternp(n). The perceptual onset of a sound
occurs slightly before its energy peak [24], so it is valid
to interpret peaks occurring immediately after a metrical
boundary as representing an onset at that metrical posi-
tion. For example, the extracted pattern in Figure 2 has
a peak at each eighth note, clearly implying a quadruple
metre, and if the five highest peaks are taken, the result-
ing pattern corresponds to the upper rhythmic pattern in
Figure 1.

Viewing the representative patterns for each song pro-
vides some feedback as to the success of the pattern ex-
traction algorithm. If the measure finding algorithm fails,
the chance of finding a coherent pattern is reduced, al-
though the clustering algorithm might be able to separate
the pre-error bars from the post-error bars. The remainder
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Figure 2. The amplitude envelope of the fifteen bars of
excerpt 19 are shown, with the colours representing the
four clusters. The thick black line is the centre of the
largest cluster, that is, the rhythmic pattern which is ex-
tracted for this excerpt. This pattern is somewhat typical
of the Cha Cha. The labels on the x-axis (showing musical
units) were added for illustrative purposes, and were not
known to the system.

of this section gives examples of extracted rhythmic pat-
terns which have features typical of the genres they repre-
sent.

Figure 3 shows another Cha Cha piece which has a
rhythmic pattern very similar to the one shown in Fig-
ure 2. By thresholding below the level of the highest 5
peaks, we again obtain the prototypical Cha Cha rhythmic
pattern shown in the upper part of Figure 1.

Music for Jive and Quickstep is usually characterised
by swing eighth notes. That is, each quarter note is broken
into an unequal pair of “eighth” notes, where the first is
longer than the second. The ratio of the lengths of the
two notes is known as theswing ratio, which is typically
around 2:1. Figure 4 shows an extracted pattern where a
swing ratio around 2:1 is clearly visible.

One of the characteristics of Rumba is the use of syn-
copation in the percussion instruments. Accents on the 4th
and 6th eighth notes are typical, and this is seen in many
of the extracted patterns, such as in Figure 5. This pattern
is similar (but not identical) to the rhythm shown in the
lower part of Figure 1.

Finally, the two Waltz patterns in Figure 6 clearly show
a triple metre, distinguishing these pieces from the other
patterns which have a quadruple or duple meter. However,
we also note that these two patterns are quite dissimilar, in
that the upper one has peaks for each quarter note, whereas
the lower pattern has peaks for each eighth note. It is also
noticeable in Figure 6 that there is much greater variability
between the bars of each piece. The lack of prominent per-
cussion instruments makes the amplitude peaks less pro-
nounced, making bar finding and pattern extraction less
reliable. As a result, a number of the Waltz patterns failed
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Figure 3. Another Cha Cha piece, which has a pattern
very similar to the piece in Figure 2.
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Figure 4. A Jive pattern showing a swing eighth note
rhythm.

to show any regularity at all.

4. GENRE CLASSIFICATION EXPERIMENTS

The relevance of the discovered patterns was evaluated
in several genre (dance style) classification experiments.
Various supervised learning algorithms and data represen-
tations (see below) were compared empirically. Classifi-
cation accuracy was estimated via a standard 10-fold cross-
validation procedure: in each experiment, the training ex-
amples were randomly split into 10 disjoint subsets (folds),
9 of these folds were combined into a training set from
which a classifier was induced, and the classifier was then
tested on the remaining tenth fold; this was repeated 10
times, with each fold serving as test set exactly once.

Classification was performed with the software Weka
(www.cs.waikato.ac.nz/ml/weka ) [25], using the
following classification algorithms. The simplest method
used was the k-Nearest Neighbours (k-NN) algorithm. For
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Figure 5. A Rumba pattern showing a strong emphasis
on the 4th and 6th eighth notes. (Note that the first eighth
note is at 0.)
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Figure 6. Two Waltz patterns: one in quarter notes
(above), and one in eighth notes (below).

Resolution
Representation 72 96 120 144
RMS (k = 1) 46.4% 45.7% 48.1% 45.1%
RMS (k = 2) 47.4% 46.0% 47.1% 46.1%
ABS 43.8% 46.1% 45.8% 46.8%
SQR 44.7% 44.7% 50.1% 45.1%

Table 2. Genre classification results using the rhythmic
patterns alone as feature vectors. The rows are different
pattern representations, and the columns are the number
of points used to represent the patterns.

k = 1 this amounts to assigning each test set instance to
the class of the nearest element in the training set. For
k > 1, thek nearest instances in the training set are found,
and the greatest number of these neighbours which be-
long to the same class determines the class of the test in-
stance. Various values ofk were used in the experiments.
The standard decision tree learning algorithm, J48, was
also used, as well as two meta-learning algorithms, Ada-
Boost and Classification via Regression. AdaBoost [9]
runs a given weak learner (in this case J48) several times
on slightly altered (reweighted) training data and com-
bines their predictions when classifying new cases. Clas-
sification via regression (using M5P and linear regression
as base classifiers) builds a regression model for each class
and combines the models via voting.

4.1. Classification by Rhythmic Pattern Alone

The first set of classification experiments was performed
with p(n) as the feature vector for each excerpt, that is, us-
ing the rhythmic pattern alone for classification. Note that
this representation is totally independent of tempo. The
classification rates for various pattern representations de-
scribed in subsection 3.2 are shown in Table 2. The best
classification rate, 50%, was achieved using the AdaBoost
classifier, with the decimated squared signal representa-
tion with b = 120. This is well above the baseline for
classification of this data, which is 16%.

The confusion matrix for this classifier is shown in Ta-
ble 3. Viennese Waltzes were the most poorly classified,
while classification of Cha Cha pieces was the most ac-
curate. The greatest mutual confusion was between the
Waltz and Viennese Waltz, which is to be expected, since
they have the same metre and often use the same rhyth-
mic patterns and instruments, and the clearly distinguish-
ing feature, the tempo, is not encoded in the rhythmic pat-
tern.

4.2. Calculation of Derived Features

The rhythmic patterns themselves do not contain informa-
tion about their time span, that is, they are independent
of the tempo. Since the tempo is one the most impor-
tant features in determining dance genre [7, 12], we tested
classification with a combination of the rhythmic patterns,



C J Q R S T V W Rec%
C 74 6 0 14 7 7 0 3 67
J 10 23 11 1 1 10 1 3 38
Q 0 11 35 2 6 9 5 14 43
R 20 0 3 53 1 3 2 16 54
S 8 0 9 11 43 5 3 7 50
T 15 8 7 6 5 35 0 10 41
V 0 2 6 3 0 1 23 30 35
W 1 0 9 6 4 7 19 64 58

Prec% 58 46 44 55 64 46 43 44

Table 3. Confusion matrix for classification based on
rhythmic patterns alone. The rows refer to the actual style,
and the columns the predicted style. The rightmost col-
umn shows the percentage recall for each class and the
bottom row shows the percentage precision. The abbre-
viations for the dance styles are: Cha Cha (C), Jive (J),
Quickstep (Q), Rumba (R), Samba (S), Tango (T), Vien-
nese Waltz (V), Waltz (W).

features derived from the rhythmic patterns, features de-
rived from the audio data directly, and the tempo.

The features derived from the rhythmic patterns were:
the mean amplitude of the pattern, the maximum ampli-
tude of the pattern, the relative maximum amplitude of
the pattern (maximum divided by mean), the standard de-
viation of the pattern amplitudes, an estimate of the metre,
a syncopation factor, and the swing factor. The metre was
estimated by calculating two weighted sums of the pattern,
the first with higher weights around the positions of a di-
vision of the bar into 4 quarter notes (8 eighth notes), the
second with the weights set for a division of the bar into
3 quarter notes (6 eighth notes). The greater of the two
sums determined the metre as a binary attribute, indicat-
ing either a quadruple or ternary metre. The syncopation
factor was calculated as the relative weights of the offbeat
eighth notes (i.e. the 2nd, 4th, etc.) to the on-beat eighth
notes. The swing factor was calculated using a pulse train
of Gaussian curves spaced at quarter note intervals, cor-
relating with the signal and finding the highest 2 peaks,
which usually correspond to the positions of the quarter
note and eighth note respectively. If the duration of the
quarter note isq and the interval between the two peaks is
r, then the swing factors is given by:

s = max
(

r

q − r
,
q − r

r

)
(9)

If only one peak in the correlation was found, the swing
factor was set to 0.

An additional feature set, containing three groups of
descriptors (as described by Gouyon et al. [12]) was also
used. The first group of descriptors was tempo-related fea-
tures, including the measured tempo calculated from the
bar length. The second group consisted of features de-
rived from the periodicity histogram representation, and
the third group of features were derived from inter-onset
interval histograms. Apart from the measured tempo, all

C J Q R S T V W Rec%
C 102 1 0 5 0 3 0 0 92
J 0 58 0 0 0 2 0 0 97
Q 0 0 80 0 0 0 2 0 98
R 1 1 0 92 0 4 0 0 94
S 0 0 2 0 82 0 1 1 95
T 1 0 0 2 0 83 0 0 97
V 0 0 0 0 0 0 65 0 100
W 0 0 0 1 1 0 0 108 98

Prec% 98 97 98 92 99 90 96 99

Table 4. Confusion matrix for classification using rhyth-
mic patterns and other features. Compare with Table 3.

of these values were calculated automatically (see Table 5
and [12] for more details).

4.3. Classification Using All Features

In the following classification experiments using all fea-
tures, a classification rate of 96% was achieved with the
AdaBoost classifier, using the RMS signal withk = 2 and
b = 72. This is remarkable, considering that spectral fea-
tures are not represented at all in the data, and there is cer-
tainly some ambiguity in the relationship between music
pieces and dance styles. The confusion matrix is shown
in Table 4. More than half (16 out of 28) of the errors are
caused by confusion of Cha Cha, Tango and Rumba. From
Table 1, we see that these styles have strongly overlapping
tempo ranges and the same metre, so other features must
be used to distinguish these classes.

Comparisons of classification rates with various sub-
sets of features were performed to determine the relative
contribution of each subset (see Table 5). The left hand
column shows the results from Gouyon et al. [12]; classi-
fication using tempo alone achieved up to 82%, classifica-
tion using other features not including tempo also reached
82%, and by combining these features, a classification rate
of 93% was obtained. The right hand column shows the
results of adding rhythmic patterns and their derived fea-
tures to the feature vectors: in each case an improvement
was made, with overall classification rates improving to
84% (compared with 82%) without the tempo and 96%
(compared with 93%) including the tempo. For all of
these results, the rhythmic patterns were generated with
the RMS filter withk = 2 andb = 72, and the AdaBoost
learning algorithm was used (hence the difference from
published results in [12]).

5. DISCUSSION AND FURTHER WORK

It is not to be expected that a single rhythmic pattern could
uniquely determine the genre of a piece of dance mu-
sic. Many other features which are not represented in this
work are also relevant to genre, such as the choice of musi-
cal instruments, which could perhaps be represented with
standard timbral features such as MFCCs. Examination



Feature sets from [12] Without RP With RP
None (0) 15.9% 50.1%
Periodicity histograms (11) 59.9% 68.1%
IOI histograms (64) 80.8% 83.4%
Periodicity & IOI hist. (75) 82.2% 85.7%
Tempo attributes (3) 84.4% 87.1%
All (plus bar length) (79) 95.1% 96.0%

Table 5. Comparison of classification rates using various
sets of features. The columns show rates without and with
the rhythmic patterns (RP) and their derived features; the
rows show the different feature subsets from Gouyon et al.
[12], with the number of features shown in parentheses.

of the extracted patterns shows that some of the patterns
are quite trivial, such as those which show sharp peaks on
each of the quarter note beats, thus only serving to dis-
tinguish triple from quadruple metre. Nevertheless, even
with these limitations, the results demonstrate that rhyth-
mic patterns are a useful feature for classification.

The fact that only 30 seconds of each song was used
may have adversely influenced the results, as many songs
have an introduction which does not match the style of the
rest of the piece. Because of the shortness of the tracks, it
was considered better to extract only one rhythmic pattern.
With longer tracks it would be worthwhile to investigate
classification using multiple patterns per song. It is also
expected that the statistical reliability of pattern extraction
would increase with the length of the excerpt.

One restriction of the current work is that it relies on
an accurate estimate of the first bar. Automatic methods
of finding metrical boundaries have made great progress in
recent years, but they are still far from perfect, and man-
ual correction for very large music databases is not feasi-
ble. However the errors of such systems are not random;
they belong to a very small class of possibilities: tempo
errors of a factor of 2 or 3, and phase errors of half (or
occasionally a third or quarter) of the metrical unit. If we
allow these cases, no longer considering them as errors,
the classification algorithm could possibly succeed in im-
plicitly recognising these different cases.

Another limitation is that although we do not explic-
itly detect percussive onsets, the methodology assumes
peaks in energy (e.g. for correlation) for extracting the
patterns. This limitation is seen in the patterns extracted
from Waltz and Viennese Waltz excerpts. An explicit on-
set detection step which includes the detection of soft (i.e.
non-percussive) onsets [1] could be used to alleviate this
problem. Another approach would be to use features other
than amplitude or energy. Paulus and Klapuri [18] found
that the spectral centroid, normalised by the energy, pro-
vided the best feature vector for describing patterns.

The high dimensionality of the pattern vectors reduces
the ability of learning algorithms to build suitable clas-
sifiers. Dimensionality reduction either by PCA or by a
more explicit symbolic encoding (i.e. in musical symbols)
would be a step in the direction of solving this problem.

If the patterns were quantised and encoded into musical
units, they could be matched to explicit patterns such as
those found in instructional books. Even without such an
encoding, matching in the other direction, i.e. from ex-
plicit patterns to the audio data could be performed as a
method of generating further features.

A related issue that is yet to be explored is the choice
of distance metrics between patterns. The Euclidean dis-
tance is not necessarily ideal, as it treats all time points
independently, so that, for example, peaks which almost
match are penalised as heavily as peaks which are far from
being aligned.

Another avenue of further research would be to ex-
tract patterns in various frequency bands in order to detect
between-instrument patterns (e.g. bass drum, snare drum,
hi-hat). Alternatively, recent work on drum sound recog-
nition [13] could be used to determine multi-dimensional
rhythmic patterns. These ideas would necessitate the de-
velopment of more complex methods of encoding and com-
paring patterns.

There are numerous other directions of possible further
development. The current experiments are limited in the
genres of music on which they have been performed. As
other labelled data sets become available, it will be pos-
sible to test the generality of this method of pattern ex-
traction and comparison for classification of other genres.
The algorithms are general purpose; no domain specific
knowledge is encoded in them. The unknown issue is the
extent to which other genres are characterised by rhythmic
patterns.

6. CONCLUSION

We described a novel method of characterising musical
pieces by extracting prominent bar-length rhythmic pat-
terns. This representation is a step towards building higher
level, more musically relevant, parameters which can be
used for genre classification and music retrieval tasks. We
demonstrated the strength of the representation on a genre
recognition task, obtaining a classification rate of 50%
using the patterns alone, 84% when used in conjunction
with various automatically calculated features, and 96%
when the correct tempo was included in the feature set.
These classification rates represent a significant improve-
ment over previous work using the same data set [12],
and higher rates than have been published on other data
sets [22, 15, 7]. However, we acknowledge the prelimi-
nary nature of these investigations in the quest to extract
semantic information from audio recordings of music.
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