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ABSTRACT

This paper presents a method for the extraction of music
meter and tempo from raw polyphonic audio recordings,
assuming that music meter remains constant throughout
the recoding. Although this assumption can be restrictive
for certain musical genres, it is acceptable for alarge cor-
pus of folklore eastern music styles, including Greek tra-
ditional dance music. Our approach is based on the self-
similarity analysis of the audio recording and does not as-
sume the presence of percussive instruments. Its novelty
liesin the fact that music meter and tempo are jointly de-
termined. The method has been applied to a variety of
musical genres, in the context of Greek traditional music
where music meter canbe 2, 3,4 2 T 9 12 gnd tempo
ranges from 40bpm to 330bpm. Experiments have, so far,
demonstrated the efficiency of our method (music meter
and tempo were successfully extracted for over 95% of
the recordings).

Keywor ds: music meter tracking, beat tracking, content-
based music retrieval

1. INTRODUCTION

Contemporary content-based music retrieval applications
have highlighted the need to extract rhythmic featuresfrom
raw polyphonic audio recordings, in order to increase the
efficiency of tools that perform a diversity of tasks, in-
cluding musical genre classification, query-by-humming
and query-by-rhythm, to name but afew, e.g, [1, 22]. To-
ward this end, several attempts have been made to create
an algorithmic perception of rhythm. Most research has
focused on tempo tracking, whereas, on the other hand,
music meter extraction has attracted significantly less at-
tention.

The first attempts, dating back to the early 90's, in-
volved MIDI signas[2], [3], [4], [5], [6], [7]. However,
the need to circumvent the limitations imposed by MIDI
signals, led to the development of several tempo-tracking
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methodologies that were applied on raw polyphonic au-
dio. Goto & Muraoko [10, 11] focused on real-time beat
tracking of popular music, assuming a tempo range of
61-120 bpm and music meter 4/4. Shceirer [12] intro-
duced a tempo tracking approach that is independent of
musical genre and does not demand a constant beat track.
Foote ([13, 14, 15, 16]), investigated the properties of the
“self-similarity matrix” and proposed the generation of
the “beat spectrum” from audio recordings. A compar-
ative study of tempo trackers was given by Dixon in [§],
who aso presented a real-time tempo tracker capable of
displaying tempo variationsin an animated display [9].
This paper* presents a method for the extraction of
music meter and tempo from raw polyphonic audio reco-
rdings, assuming that music meter remains constant throu-
ghout the recoding. This assumption is acceptable for a
large corpus of Greek traditional dance music, which has
been in the center of our study. Our approach is based on
the fact that the diagonals of the self-similarity matrix of
the audio recording reveal periodicities corresponding to
music meter and beat. By examining such periodicities it
is possible to jointly estimate the music meter and tempo
of the recording, as described in section 2. The method
has been applied to musical genresin the context of Greek
traditional music whose music meter canbe 2, 3, 2, 2, Z,
2, L2 and whose tempo ranges from 40bpm to 330bpm.
Section 2 describes the algorithmic aspects of our me-
thod. Section 3 provides implementation details and re-
sults of the experiments that have been carried out and
finally, section 4 highlights our future research priorities.

2. MUSIC METER AND TEMPO EXTRACTION

At afirst step, each raw audio recording is divided into
non-overlapping long-term segments, each of which hasa
duration equal to 10 seconds. The choice for the length
of the long-term segments is justified in section 3. Mu-
sic meter and tempo are then extracted on a segment by
segment basis. More specifically, for each long-term seg-
ment, a short-term moving window generates a sequence
of feature vectors. Approximate values for the length of
the short term window and overlap between successive
windows are 100 ms and 97 ms respectively, suggesting
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a 3 ms moving window step. Having experimented with
avariety of feature candidates and their combinations, we
choseto focus on two variations of the mel-frequency cep-
strum coefficients (details are given in section 3.1).

Let usdenoteby F = {f1, fo,... fn}, the feature se-
quence of length NV that is extracted from along-term seg-
ment. Sequence F serves as the basis to calcul ate the Self
Similarity Matrix (SSM) of the segment [13, 14, 15, 16],
using the Euclidean function as a distance metric (Figure
1). Sincethe SSM is symmetric around the main diagonal,
in the sequel it suffices to focus on its lower triangle. At
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Figure 2. Plot of By, versus k focusing on the beat range.

Figurel. Self Similarity Matrix

a next step, the mean value of each diagona of the SSM
is calculated. If Bj, stands for the mean value of the kth
diagonal, then:

X
Bk:N—_k;Hflvflfk I 1)

where N — k isthelength of the £tk diagonal and || . || is
the Euclidean distance function.
AscanbeseeninFigure 2, if B istreated asafunction
of k, then its plot against k& exhibits certain local minima
(valleys) for a number of k's. Each valley can be inter-
preted as corresponding to a periodicity, that isinherent in
the long-term segment being examined. In Figure 2, the
beat of the segment appears as a valley around the 70-th
diagonal. This segment has been extracted from a Greek
traditional dance of music meter % InFigure 3, an overall
view of the segment periodicities can be seen, where mul-
tiples of the beat, including the music meter itself also,
appear as valleys. In the genera case, submultiples of the
beat are also likely to appear as local minima. It is worth
noticing that
a) the global minimum of B does not always coincide with
the beat or the music meter
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Figure3. Plot of By, versus k focusing on the meter range.

b) the indices of the diagonalscorrespondingto local min-
ima are in most cases approximate multiples or submulti-
ples of the beat index

¢) function B decreases (increases) more rapidly around
certain local minima and this appears as sharper valleys
inthe Figures2 and 3.

Obvioudly, if diagonal & corresponds to a local mini-
mum, then the time equivalent of the respective periodi-
city Ty isTy = k * step, where step isthe short-term step
of the moving window (100 — 97 = 3 ms for our study).
Therefore, small short term steps (i.e., large overlap) in-
crease the accuracy of the periodicity estimates, whilea so
increasing the computational cost (due to an increase in
the length of the feature sequence F).

The aforementioned analysis suggests that, although
periodicities corresponding to the music meter and besat
are likely to appear as local minima (valleys) of B, fur-
ther processing of B isrequired, in order to identify which
valleys actualy refer to music meter and beat. In order to
proceed, we assume that the tempo of the recording, mea-
sured in beats per minute (bpm) can vary from 40bpm to




330 bpm. This beat range is applicable to the corpus of
Greek traditional music of our study but may require tu-
ning for other musical genres. It also suggests a range of
diagonals, i.e., k-values, say [k, ki], in which the beat of
the segment is expected to appear as a local minimum of
B. Outside thisrange, i.e., for k > k;, multiples of the
beat lag including music meter, are aso expected to ap-
pear as valey. If k,,q. isthe last (downmost) diagonal
of interest, music meter is likely to appear as avalley in
therange of (ki, kmaz)- kmaz Must belarge enough to ac-
count for all music meters and tempo ranges in question.
For our music corpus, the time equivalent of k., Was set
to 3 secs (see section 3.2).

In the sequel, beat candidatesin the range [k, ;] are
examined in pairs with meter candidatesin the range
(k1, kmaz]. For each pair of such candidates, let us denote
by k; thelag in (ks, k;] and by k5 the meter candidate in
(ki, kmaz]. 1f Cy and C,,, are the numbers of beat and me-
ter candidates respectively, then there exist C, * C,,, such
pairs. In order to proceed, two different decision criteria
are applied on this set of pairs. Each criterion generates
independently a meter and beat decision by exploiting a
subset of pairs, asis explained below.

2.1. Meter decision criteria

Criterion A

At first, thelocal minimaintherange (k;, ka2, fOr which
the two neighboring local minima possess larger values,
are selected. For example, such is the case with meter
candidate marked as k- in Figure 3, that correspondsto a
periodicity indicating music meter % In this example, the
local minimapointed by the dotted arrows, corresponding
tos, S, 8, L2 arefiltered out. Thisinitial filtering proce-
dure can be useful for audio recordings of music meter Z,
2 and L2 stemming from Greek Traditional music.

At a second step, each beat candidate is examined in
pair with the remaining meter candidates. For each such
pair, the fraction ’;—f should coincide, within an error mar-
gin e, with one of the fractions related to the music meters
of our study, i.e, 2, 3, 3, 2, L, 2, 22, All pairs falling
outside the error margin are discarded (e is assumed con-
stant for all alowable music meters) and was set equal to
0.3 for our experiments. In other words, each music me-
ter is considered to lie in the center of a bin, whose width
is equal to 2e. If apair of valleys {k1, k2 } isassigned to
abin, k; is considered to be the beat lag. Furthermore,
for each pair assigned to a bin, the quantity C'(y, x,} is
calculated:

C{kl,kz} = By, + By, (2)

If more than one pair is assigned to the same bin, the pair
generating thelowest C';, 1, iSconsidered to bethewin-
ning pair for the bin. After all pairs have been processed,
the music meter of the segment is determined according
to the bin with the lowest C'yy,, 1, vaue.

Criterion B
The previous criterion can be modified by taking into ac-

count, for the calculation of the C'y, 1,) vaue, the slope
(sharpness) of the valleys of each pair being examined
(and not just their absolute values). This deals with the
fact that, a pair of sharp valleys corresponding to the ac-
tual music meter and beat does not always coincide with
the pair having the lowest sum of absolute values. There-
fore, C, 1,1 can be calculated as follows:

slope(By,)

slope( By,
pe(By, )
Bk‘a

By,

Clhy ke = ©)

where slope(.) is ameasure of the sharpness around each
valley of function B. Equation 3 suggeststhat, if both val-
leys are sharp and deep, then C'(4, 1,} has alarge value.
Having determined the music meter bin for al pairs, the
pair yielding the maximum value of C';, 1,y is consid-
ered to be the winner and the bin to which it has been
assigned stands for the music meter of the segment.

Althoughin general both criteriaresult in an acceptable
performance, there are cases where one succeeds and the
other fails. Thisis similar to two classifiers, where (from
pattern recognition theory [17]), a classifier with a bet-
ter overall error, can fail in cases where others succeed.
The remedy is to combine classifiers. To comply with
this philosophy, two music meter decisions are generated
from each long term segment. This has turned out to in-
crease the overall performance significantly. If S is the
number of long term segments, then 2 x S music meter
decisions are generated. The most frequently encountered
music meter is selected as the meter of the whole audio
recording and its frequency of appearance is returned as
the certainty of the overall decision.

2.2. Tempo Estimation

There now remains to determine the tempo of the audio
recording. For the music corpus of our study, it can be as-
sumed that tempo remains approximately constant throu-
ghout the audio recording, and is therefore possible to
return an average tempo value. Alternatively, a tempo
value per long term segment can be returned, so as to
highlight tempo fluctuations, or even, return additionally,
the time limits of the segments that produced wrong es-
timates, since this type of information might be useful to
algorithms that extract repeating patterns from audio re-
cordings.

At this point, it has to be noted that certain assump-
tions have to be adopted concerning the beat range, that
may need fine-tuning for musical genres outside the con-
text Greek traditional dance music. As afirst assumption,
the tempo associated with music meters 2, 2, 1 and £
cannot be greater than 180 bpm while the tempo of meters
Z, 2 and L2 must be over 180bpm and up to 330bpm (as
mentioned before). This implies that the range of beat
lags [ks, ki] is divided into two successive sub-regions,
i.e., [ks, kq] and [kq, k1], which correspond to ¢ and ; pe-
riodicities respectively and k;,k,, and k; are the lags of
330Ppm (fastest 1), 180bpm (fastest 1) and 40bpm (slow-
est 7).
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Figure 4. Plot of B, versus k for an audio meter of 3,
where the eighth note is the dominant beat lag.

As it was previously mentioned, each long term seg-
ment produces two music meter decisions, each of which
isassociated with apair of lags (k1, k2). Intheideal case,
for adecision that coincides with the overall music meter
estimate, ko should be the meter lag and &, the beat lag.
However in practice, for meters 2, 3, 4 and 2, k; often
liesintherange [k, k4] and refersto the eighth note perio-
dicity instead of the expected quarter note periodicity. For
example, in Figure 4, which refers to a segment from an
audio recording of music meter 2, for both decision cri-
teria, the dominant pair of lags (marked k1, k2 in Figure
4) corresponds to a beat lag of % and meter lag of £, be-
cause of aless dominant quarter note periodicity (marked
kq). Asaresult, meter S and 2 can be confused. How-
ever, in the context of the Greek traditional dance music
that we studied, these can be thought to be equivalent and
it therefore suffices to double the value of the beat 1ag.

3. IMPLEMENTATION DETAILSAND RESULTS
OF EXPERIMENTS

The length of the long term segments was set equal to
10 secs with zero overlap between successive segments.
This segment length is large enough to capture periodic-
ities of slow tempo values in the range of 40bpm. For
the short term analysis, the moving window size was ap-
proximately 93 ms (4096 samples for sampling frequency
44.1kHz) and the moving window step was set equal to
=~ 3 ms (128 samples for sampling frequency 44.1kHz).
It has to be noted that the moving window step reflects the
beat accuracy. Smaller values produce more accurate beat
estimates but increase computational complexity signifi-
cantly. For slow tempo recordings, we aso experimented
with longer short term windows up to 186 ms (8192 sam-
ples for sampling frequency 44.1kHz). However, for fast
tempo values (asisthe case with music meter g , €tc, inthe
context of Greek traditional music), large short term win-

dows result in poor valeys in the beat range. Although
in this case smaller short term windows would be desi-
rable, it would not be possibleto achievetoneresolutionin
the low frequency range as imposed by the chroma-based
MFCCS (see 3.1).

3.1. Featuresdection details

For the short term analysis of each long term audio seg-
ment, we considered both energy and mel frequency cep-
stral coefficients (MFCCs) [18, 19]. In addition to the
standard MFCCs, which assume equally spaced critical
band filters in the mel scale, we also experimented with a
critical band filter bank consisting of overlapping triangu-
lar filters, whose center frequenciesfollow the equation:

Cp = 110 % 272 4

That is, the filter bank is chosen to align with the chro-
matic scale of semitones (starting from 110 Hz and rea-
ching up to approximately 5KHz). If whole-tone spacing
is adopted, equation (4) becomes:

Cp = 110 % 26 (5)

Our variation of the mel frequency cepstrum bears certain
similarities with the “chromavector” [21].

Compared with energy, the two variants of the MFCCs,
although computationally expensive, yield significantly bet-
ter results, and thisis mainly because periodicities corre-
sponding to beat and meter are emphasized (Figure 5). It
has to be noted though, that energy gave good resultsfor a
significant number of recordings of music meter 2 and %
but failed for most of the recordings with music meter 7,
£, § and 2. Depending on the frequency content diistri-
bution of the recording, especially in the case of dominant
singing voices, our variant of the mel frequency cepstrum
led to an improved performance compared to the standard
approach. This was mainly observed in the cases of 2,
2 and 2. The standard MFCC's were computed using
Slaney’s auditory toolbox [20].

3.2. Sdf Similarity Analysisdetails

For the distance metric, we adopted the standard Euclidean
distance function (also used in [21]). The use of the co-
sine distance ([13, 14, 15, 16]) in our experiments tended
to lead to inferior performance.

Due to the assumptions adopted in section 2, we only
need to focus on a subset of the diagonals of the SSM. For
sampling frequency 44.1KHz and moving window step 3
ms, therange [k, k;] is mapped to diagonals [63, 517], k,
(fastest quarter note) corresponds to the 115-th diagonal
and k.. is mapped to the 1159-th diagonal. For our mu-
sic corpus, k..q. Was chosen large enough to account for
music meter periodicities of % and tempo values in the
range of 40bpm. In general, k., (aswell as k;, k, and
k;) needs fine tuning depending on the music genre. For
example, if % audio recordings of slow tempo also need to
be taken into consideration, the k... value should at least
be doubled.
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3.3. Resultsof experiments

The music corpus of our study consists of 300 raw audio
recordings of Greek dance folklore music and neighbo-
ring Eastern music traditions. Throughout each recording,
music meter remains constant. This corpus was assem-
bled under musicological advice and focuses on most fre-
quently encountered folk dances, exhibiting significant rhy-
thmic variety over beat and music meter (see Table 1).

music meter | tempo range (bpm) | # of recordings
% 200-280 45
2 250-330 45
2 260-330 10
i 40-160 90
3 80-170 60
2 70-140 90
> 90-120 10

Table 1. Description of music corpus.

Approximately one third of the audio corpus consists
of live performances and digitally remastered recordings.
For live performances, certain beat fluctuation was ob-
served and for these recordings it makes more sense to
return a beat value per long term segment, instead of an
average beat value.

For the mgjority of the recordings (over 95%), the rhy-

thmic featuresin question were successfully extracted. Most

mistaken results were produced by confusion of music
meter 2 with 4, 2 with 2 or 4 and I with 2 or 2. The
main reason for the above cases of confusion, is that the
dominant periodicitiesin the beat range, often deviate sig-
nificately from the desired values and as a result the pair
(beat lag, meter lag) is assigned to an incorrect (neighbo-
ring) meter bin. Especially in the case of meter 2, confu-

sion with 4 may also occur because avery strong periodi-

city at four quarter-notesis observed.

In addition, for certain long term segments, due to the
nature of the signal, the features that have been employed
fail to capture any periodicitiesat all. Asalast remark, in
certain cases, especially for meter cases of £, 2 and 12,
a dominant quarter note, appearsin the beat range instead
of the expected eighth note, thus leading to an incorrect
meter and beat estimate. As aremedy to this situation, it
is possibleto divide by two all valleysintherange [k, k]
and treat these new values as candidate beat |ags.

All experiments were carried out using the Matlab work-
bench.

4. CONCLUSIONSAND FUTURE WORK

We have presented a method for the extraction of music
meter and tempo from raw audio recordings, assuming
that music meter remains constant throughout the reco-
rding. The method was applied on a music corpus consi-
sting of recordings stemming from Greek Traditional Mu-
sic and neighboring music traditions. Inthe future, feature
selection will be expanded to cover more feature candi-
dates and their combinations. In addition, we will investi-
gate ways to pre-process the SSM prior to calculating the
mean of diagonals, in order to detect subsectionsof the di-
agonal s that emphasize the inherent periodicities. Toward
this end, Dynamic Time Warping techniques are expected
to be employed [22]. Finaly, it is our intention to inve-
stigate the effectiveness of the methodol ogy in the context
of other music genres.
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