
A CASE STUDY OF DISTRIBUTED MUSICAL AUDIO ANALYSIS USING
THE GEDDEI PROCESSING FRAMEWORK

Gavin Wood
Department of Computer Science

Simon O’Keefe
University of York, York YO10 5DD, UK

ABSTRACT

Audio signal processing and refinement is an impor-
tant part of a content-based music information retrieval
system. As the our repertoire of techniques becomes more
varied, there are greater requirements of computation power.
Distributed storage techniques have become widespread
and almost invisible with the advent of file-sharing sys-
tems, on-line digital music stores and on line storage ser-
vices. Even discounting data with potential copyright en-
tanglements, there is a vast amount that is ripe for analy-
sis, and thus parallelised and distributed processing tech-
niques seem increasingly appropriate.

Existing frameworks are already capable of a signifi-
cant amount of audio analysis for music information re-
trieval. However they are by and large ignorant of distri-
bution and parallelisation. There are middleware libraries
to help with aspects of distributed computing, but combin-
ing the two can be cumbersome and inefficient.

This paper provides a brief description of a software
framework that can process audio in a scalable and dis-
tributed manner: Geddei. The paper then takes an in-
teresting and relevant signal analysis task often used for
music information retrieval and implements it under the
Geddei framework. The ease of use is discussed and vari-
ous measurements taken of Geddei, both in comparison to
itself under different circumstances, and ‘reference code’
that was used in a previous study. We discuss the prob-
lems with the distribution of the task with Geddei and of-
fer some possible solutions.

1. INTRODUCTION

Almost all methods of content-based analysis of musical
audio for information retrieval (IR) rely to some degree
upon a signal (pre-)processing technique, and this tech-
nique can often be at the heart of the method itself. There
exist several (open) systems for audio signal processing
with respect to music IR, not least Tzanetakis’s Marsyas
library framework [1, 2].

With music IR and audio signal processing in general,
we find that the amount of data to be processed is large.
There is significant impetus to define our problems in more
independent, declarative terms as distribution becomes more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

common in both software (e.g. threading) and hardware
(e.g. grid technology). Distributive processing allows us
to combine multiple individual CPUs (processing chips)
to perform one task as a whole.

The problem of distribution may be phrased as one of
organisation—we have a large task at hand, and we must
break it down into smaller tasks that can be doneconcur-
rently and independently. With a large amount of data,
the overhead of transport, and thus distribution, is large—
most notably when compared to the processing tasks. This
can be a problem when trying to find an optimal distribu-
tion method, since transporting data to another processing
host makes little sense if the overhead of transport is com-
parable to the cost of processing. Thus the smaller tasks
must be organised in such a way that maximises use of the
resources available and minimises unnecessary transport.

1.1. Applications

As techniques become more complex, more varied and
more adaptive, music IR methods require more comput-
ing power to (pre-)process audio signal data into forms
that are useful for analysis techniques. We see ongoing ef-
forts [3] to create a large and protected music database for
benchmarking music IR techniques. A distributed gener-
alised system could help in providing a common platform
on which large scale processing benchmarks can be exe-
cuted. As we see more large computing grids emerging,
the music IR community needs to be able to use such tech-
nology effectively and easily. A simple and efficient dis-
tribution framework designed for music signal processing
goes some way to solving this problem.

1.2. Related Work

Several toolkits already exist for the processing and anal-
ysis of audio signals. Libraries such as the Simple Util-
ity Classes (SUCs)[4] provide basic programming com-
ponents for signal-analysis, though distribution and par-
allelism in general is not addressed. Marsyas provides
a broad programming interface for implementing many
ideas found in music information retrieval, and addresses
both traditional ‘bottom-up’ designs, as well as prediction-
driven architectures. Its dataflow mechanisms are robust
but potentially restrictive1 . Again, no implicit parallelism
is available natively.

1 Marsyas supports processing atoms that are able to be given only
a fixed-amount of data from one atom and provide some other fixed-
amount of data to another atom



Figure 1. An activity flow chart of the beat spectrum anal-
ysis technique.

2. ANALYSIS TECHNIQUE

For the case study, an analysis technique had to be chosen
that provided a useful datagram for music feature extrac-
tion, yet provided some method of testing against a real-
world legacy version.

There exist several similar mechanisms for finding rhyth-
mic information from musical data, be it either in sym-
bolic form or as an audio signal. Tzanetakis, Essl and
Cook [7] introduce the beat histogram, formed by autocor-
relation of wavelet transforms. There is also the technique
used by Rauber and Fruhwirth [8] which is essentially a
FFT on selected Lagrange transform spectral bands. Each
of these present data refined to describe the rhythmic prop-
erties of the incoming music. Tzanetakis et al. especially
shows that the rhythm metric is an important tool for genre
classification problems.

The beat spectrum reports a spectrum of frequencies
indicating rhythmic similarity; peaks at a frequency sug-
gest a strong rhythm at that frequency in the incoming au-
dio. The discussed technique was used in Foote, Cooper
and Nam [5] for measuring musical recognition though
similarity. The technique is also used in Wood & O’Keefe
[6] for measuring music similarity. Both papers show that
the beat spectrum can provide a useful datagram for music
similarity and analysis in general.

The beat spectrum was chosen as it fulfils both require-
ments well. As it was implemented for a previous study it
gives a useful reference point for comparison.

2.1. Method

We take 30-second windows of the incoming audio data,
each overlapped by 15 seconds. An array of short-time
Fourier transforms is then calculated over this 30-second
window using a window size of 2048-samples and a 50%
overlap.

The standard beat-spectrum method was altered slightly
to use a psychoacoustic transformation in the form of Bark
critical banding [9]. This reduces a potentially large spec-
trum into a compact 24 ‘critical’ band representation, based
upon empirical studies of the ear and how we perceive
pitch. Experiments from Wood & O’Keefe [6] suggest
that this decreases computation time significantly with lit-

tle or no effect on the fidelity of the results (from a music
recognition point of view, at least).

The beat spectrum is formed from the summation of
super-diagonals on a self-similarity matrix. The self-similarity
matrix is formed by measuring the ‘similarity’ between
two points in time of some incoming music. For an in-
coming audio signal, a useful similarity measure can be
computed from the cosine distance between the two spec-
tra which represent the frequency components of the mu-
sic audio at those points in time; we use this measurement
here.

3. GEDDEI’S ARCHITECTURE

Geddei is an acronym for General Environment for Dis-
tributed Dataflow Experimentation and Investigation. It
provides a simple, transparent, declarative style interface
for tasks that can be arranged as a data flow-orientated
problem. It is highly scalable, equally suited for small-
scale investigation and batch processing. It is highly ef-
ficient, using mechanisms such as cyclic shared buffers
to maximise signal-data throughput. A plugin design al-
lows simple addition of third-party processing modules. It
is useful to consider the two primitives that are used when
constructing data flow networks for audio analysis in Ged-
dei:

Processor: Processor objects are the fundamental com-
ponent of all Geddei processing modules. They represent
an atomic and independent task of the whole problem, and
as such represent the granularity of the distribution. Al-
most any single thing in a typical dataflow network can be
likened to a processor object. This might include the FFT,
the similarity matrification or a downsampler. Even au-
dio file players are modelled as processors. This level of
generalisation provides the basis for automation and dis-
tributability.

Connection: Connection objects provide a mechanism
of data transfer between two Processor objects. Connec-
tion objects take care of getting signal data between pro-
cessors regardless of their actual ‘positions’ in the system.
A connection linking processors residing on different ma-
chines will be different to (and slower than) one linking
processors residing in the same area of computer memory.
However the level of abstraction means that the processors
are unaware of this.

4. EVALUATION

With Geddei, distribution over two hosts was as simple as
having all processing objects reside on one host. No spe-
cific optimisations needed to be added nor did the code
need to be changed in any way for use on different archi-
tectures, leading to a very low prototyping time.

The reference code used was that developed for an ear-
lier study [6]2 . It uses the Simple Utility Class library;
no special optimisations were made at the time, however
the simplicity allows the code to run with some degree of

2 The code can be found atwww-users.cs.york.ac.uk/
˜gav/ref.tar.gz



Figure 2. Geddei Nite, the Geddei network editor, with
the beat spectrum analysis network, watching the output
of the self-similarity matrix.

Figure 3. As figure 2, but changing the focus to the beat
spectrum’s output.

efficiency. Depending on the programmer’s ability and the
framework used, it may be likened to an average, sequentially-
based implementation of some audio preprocessing.

4.1. User Interface

Networks are created and edited with Geddei-Nite. It is
simple to inspect the data travelling through any channel
in realtime without disrupting the actual data, much in the
same way a wiretapper would evesdrop on a phone call
unnoticed. This can be used to investigate some (hypo-
thetical) unexpected or otherwise interesting result.

Geddei’s strict and extensive signal-typing mechanism
allows Geddei-Nite to probe the signal type and attach
the relevant viewer, allowing an informative graph to be
drawn. Figures 2 and 3 show the same network with dif-
fering views.

4.2. Performance

The performance evaluation of Geddei is split into 3 parts:
We compare the Geddei and reference implementation on
a single CPU workstation. We then test Geddei’s distribu-
tion capacity by comparing non-distributed times to dis-
tributed. Finally we compare the effects of changing the
amount of data to be processed between the Geddei and
reference implementation. In all experiments, the length
of the music track to be analysed was 279 seconds.

The FFT stage was given three variants: It was ei-
ther left untouched, a low-pass filter was applied at 8KHz,

Figure 4. Comparison of the two systems’ performances
on an undistributed single CPU system. Specification:
Athlon XP 2100; Linux 2.6.3; gcc 3.3.2.

or Bark-critical banding was applied. A further analysis
was made that attainedboththe low-pass filter results and
the Bark-based results. These change the dimensionality
of the spectra significantly (between 1024, 186 and 24),
moving the potential bottlenecks of the system to and from
the self-similarity matrix.

Comparisons between the two implementations are rel-
atively easy; Geddei has a built-in monitor processor that
collects the output data and measures the time taken for
processing. For the reference software, the GNU ‘time’
command was used to report the total time the CPU spent
executing the program3 . This could potentially be favourable
to the reference software as the Geddei timing method
measures real time taken rather than CPU time taken, how-
ever on an otherwise unused system they are similar enough
for the purpose of this report.

This first test results are shown in figure 4. Geddei
takes on average 38% less time on each task, a significant
improvement. As would be expected, both Geddei- and
reference-based implementations take less time to calcu-
lated both types of beat spectrum in one run than in two.

The scalability of Geddei was tested by comparing it to
itself under while running under differing situations. Two
hosts were used for this, as is described in figure 5. A re-
striction was placed on the analysis network that the music
must start, and the analysed output end, on the workstation
machine (host 1). Figure 5 shows the results. A theoreti-
cal maximum was calculated using the ideal parallelised-
linear-resistance formula:

Pcombination = (P−1
host1 + P−1

host2)
−1 (1)

This formula is simplistic and gives only a basic ide-
alistic marker. Problems such as different CPU architec-
tures giving different performances depending on task and
the software’s running time only vaguely approximating
as linear make this a rough guide at best; its inclusion
here is to help visualise a potential limit of computation
time, given that the two hosts are of differing speeds it is
otherwise difficult to do.

Several distribution configurations were tried and the
optimum selected. Those configurations are detailed be-
low. Note that the superscript gives the host number they
were distributed onto. They appear in the same order as
they are shown in figure 5. The audio source and data
reception processors were both on host 1, the designated
workstation.

3 this does not include any time the system spent executing OS tasks



Figure 5. Comparison of Geddei’s performance when dis-
tributed over two single CPU hosts. Specifications: Host
1: Athlon XP 2100; Linux 2.6.3; gcc 3.3.2. Host 2: Pen-
tium 4 2.66GHz; Linux 2.4.19; gcc 2.2.4.

FFT 1 → SSM2 → Diag.Sum.2

FFT 1 → BandPass1 → SSM2 → Diag.Sum.2

FFT 1 → Bark1 → SSM2 → Diag.Sum.2

FFT 1 → BandPass1↗
↘

Bark1 → SSM1 → Diag.Sum.1

SSM2 → Diag.Sum.2

From figure 5 we can see that host 1 is much slower
than host 2. This is a particularly difficult problem to dis-
tribute; there are relatively few processing atoms and only
the similarity matrix has a significant processing require-
ment, thus we can see Geddei’s distributive capabilities
being taxed.

The very-high-bandwidth dataflow restricts Geddei’s
ability to distribute the problem well between the two hosts,
and for the three basic tasks, it is only a little faster than
running on host 2 alone. The difficulties are overcome
well when both the Bark-based beat spectrum and the low-
pass-filter-based beat spectrum are calculated, attaining a
slightly better time than the idealistic marker.

Finally the completion times were recorded for dif-
fering sizes of beat spectrum and low-pass filter cutoffs.
Changing the low-pass filter cut-off alters the dimension-
ality of the vectors for calculating the cosine distances in
the self-similarity matrix. It has the effect of reducing data
(and thus computation time) at the cost of reducing the fi-
delity of the results (though most people agree that any-
thing over around 4-8KHz is probably useless for the task
of music IR).

Changing the matrix window size will change the scope
of the beat spectrum; we keep the window hop distance
fixed at 50%. Figure 6 shows the results of these tests.

Both graphs are linear confirming that Geddei is per-
forming akin to the reference design. The lines of best
fit suggest that Geddei is approximately twice as fast as
the reference design, presumably heralding its parallelised
layout, high-speed buffers and optimisation-friendly de-
sign.

5. CONCLUSION

We have introduced the Geddei framework and provided
an example of its use for music information retrieval. We
have shown that Geddei is well-suited to the design and
development of music signal processing tasks and that it

Figure 6. Comparison between the reference and Ged-
dei implementations performance when either the matrix
window size (left) or the low-pass filter cutoff (right) is
changed. Both are on the same host as figure 4.

runs at least as fast, and often significantly faster than an—
albeit simple—existing implementation. We have shown
that it has some potential for distribution of music IR pro-
cessing and can distribute well under good conditions, though
there is clearly room for improvement in the worst-case
scenario.

Immediate future work will involve increasing Ged-
dei’s repertoire of component techniques and extending
its distribution capacity to help with the problems of dis-
tribution granularity. We also want to extend it to pro-
vide better support for techniques such as band-pass fil-
ters that require very little processing for their data-flow
overheads. Investigation into an automatic mechanism for
distributing the workload would also be an interesting and
likely rewarding endeavour.

6. REFERENCES

[1] G. Tzanetakis and P. Cook. Audio information re-
trieval (air) tools. InProc. ISMIR, 2000.

[2] G. Tzanetakis and P. Cook. Marsyas: A framework
for audio analysis.Organised Sound, 4:30–??, 2000.

[3] J. Stephen Downie. The music information re-
trieval (mir) and music digital library (mdl) evaluation
project, http://music-ir.org/evaluation/.

[4] Simple Utility Classes. sucs.sf.net/, 2004.

[5] J. Foote, M. Cooper, and U. Nam. Audio retrieval by
rhythmic similarity. InIn Proc. ISMIR, 2002.

[6] G. Wood and S. E. O’Keefe. Quantitative compar-
isons into content-based music recognition with the
self-organising map. InIn Proc. ISMIR, 2003.

[7] G. Tzanetakis, G. Essl, and P. Cook. Automatic mu-
sical genre classification of audio signals. InIn Proc.
ISMIR, 2001.

[8] Andreas Rauber and Markus Frühwirth. Automati-
cally analyzing and organizing music archives.Lec-
ture Notes in Computer Science, 2163:402–??, 2001.

[9] ed. P. R. Cook.Music, Cognition And Computerized
Sound: An Introduction To Psychoacoustics. London,
etc.,MIT, 1999.


