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ABSTRACT

This paper describes a method that recognizes musical
chords from real-world audio signals in compact-disc
recordings. The automatic recognition of musical chords
is necessary for music information retrieval (MIR) sys-
tems, since the chord sequences of musical pieces cap-
ture the characteristics of their accompaniments. None
of the previous methods can accurately recognize musi-
cal chords from complex audio signals that contain vocal
and drum sounds. The main problem is that the chord-
boundary-detection and chord-symbol-identification pro-
cesses are inseparable because of their mutual depen-
dency. In order to solve this mutual dependency problem,
our method generates hypotheses about tuples of chord
symbols and chord boundaries, and outputs the most plau-
sible one as the recognition result. The certainty of a hy-
pothesis is evaluated based on three cues: acoustic fea-
tures, chord progression patterns, and bass sounds. Ex-
perimental results show that our method successfully rec-
ognized chords in seven popular music songs; the average
accuracy of the results was around 77%.
Keywords: audio signal, musical key, musical chord, hy-
pothesis search

1. INTRODUCTION

The recent rapid spread of online music distribution ser-
vices demands efficient music information retrieval (MIR)
technologies. Annotating musical contents in a universal
format is one of the most effective ways to fulfill this de-
mand. Although the new ISO standard MPEG-7 [8] pro-
vides a framework for designing such formats, it does not
define the methods to obtain musical elements from audio
signals. Manual annotation requires a tremendous amount
of human work, which makes it difficult to maintain a con-
sistent annotation quality among human annotators. Au-
tomatic transcription technologies for musical elements
are hence needed to avoid these problems. However, they
have not been realized yet.
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We focus on musical chord sequences as one of the
descriptors of musical elements. A chord sequence is a
series of chord symbols with boundaries that are defined
as the times when chords change. Descriptors of musi-
cal chords will play an important role in realizing effec-
tive MIR, since the chord sequences of musical pieces are
simple but powerful descriptions that capture the charac-
teristics of their accompaniments. They are also the main
factors of determining moods of the pieces, especially in
popular music. Therefore, we address the issue of auto-
matic chord transcription.

The main problem in automatic chord transcription is
the mutual dependency of chord-boundary detection and
chord-symbol identification. It is difficult to detect the
chord boundaries correctly prior to chord-symbol iden-
tification. If the chord boundaries could be determined
before chord-symbol identification, automatic chord tran-
scription could be achieved by identifying the chord sym-
bols in each chord span, which is defined as the time pe-
riod between the adjacent boundaries. Although chord-
boundary-detection methods based on the magnitude of
local spectral changes are reported [2, 4], they are not ac-
ceptable solutions, because they often mistakenly detect
the onset times of non-chord tones or drum sounds when
these sounds cause prominent spectral changes.

None of the previous methods [1, 2, 7, 9, 11, 12] has ad-
dressed this mutual dependency problem. Aonoet al. [1]
and Nawabet al. [9] treated not audio signals from ac-
tual musical pieces but chord sounds from a single mu-
sical instrument. Kashinoet al. [7] and Suet al. [12]
assumed that the chord boundaries were given before-
hand. Fujishima [2] developed a method of detecting the
chord boundaries based on the magnitude of the spectral
changes. However, he treated only musical audio sig-
nals that do not contain vocal and drum sounds. Sheh
et al. [11] developed a method that identifies chord sym-
bols in each 100-ms span without detecting chord bound-
aries. However, this method cannot correctly identify
chord symbols, because the acoustic features in such short
spans are liable to be affected by arpeggio sounds and non-
chord tones.

To solve this mutual dependency problem, we pro-
pose a method that recognizes chord boundaries and chord
symbols concurrently. Our method generates hypotheses
about tuples of chord boundaries and chord symbols, and
evaluates their certainties. It finally selects the most plau-



sible one as the recognition result. As cues for evaluating
the certainties of hypotheses, our method uses chord pro-
gression patterns (i.e. concatenations of chord symbols
that are frequently used in actual musical pieces) and bass
sounds as well as acoustic features. To use the chord pro-
gression patterns appropriately, musical keys are needed.
Our method hence also identifies the keys from input au-
dio signals.

The rest of this paper is organized as follows: Section 2
describes the problems in realizing automatic chord tran-
scription and our approach to solve them. Section 3 ex-
plains our method in detail. Section 4 reports the experi-
mental results that show the effectiveness of our method.
Section 5 concludes this paper.

2. AUTOMATIC CHORD TRANSCRIPTION

2.1. Specification of Automatic Chord Transcription

In this paper, we define automatic chord transcription as
the process of obtaining chord sequencec1c2 · · · cn and
keyk from musical audio signals. We treat musical pieces
that satisfy the following assumptions:

(A1) The key does not modulate.

(A2) The key is a major key.

Chordci is defined as follows:

ci = (cs, b, e), (1)

wherecs denotes the chord symbol, andb ande denotes
the beginning and end times of chordci respectively. We
call duration[b, e] as the chord span ofci. Chord symbol
cs is defined as follows:

cs = (root, style) (2)

root ∈ {C, C#, · · · , B} (3)

style ∈ {major, minor, augmented, diminished}, (4)

whereroot denotes the root tone andstyle denotes the
chord style. This definition of chord styles, for example,
categorizes both the major triad and major 7th chords as
major. We think chord styles in such level of detail will
be useful in many MIR methods because they capture the
moods of musical pieces adequately. Keyk is defined as
the tuple of its tonic tone (tonic) and mode (mode):

k = (tonic,mode) (5)

tonic ∈ {C, C#, · · · , B} (6)

mode = major (7)

2.2. Problems: Mutual Dependency in Automatic
Chord Transcription

The main difficulty in automatic chord transcription lies in
the following mutual dependency of three processes that
constitute automatic chord transcription: chord-boundary
detection, chord-symbol identification, and key identifica-
tion. Because of the mutual dependency, these processes
are inseparable.
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Figure 1. Concurrent recognition of chord boundaries,
chord symbols, and keys

1. The mutual dependency of chord-symbol identifica-
tion and chord-boundary detection
Chord-symbol identification requires a target span
for the identification in advance. However, it is dif-
ficult to determine the chord spans correctly prior
to chord-symbol identification. In order to realize
highly accurate chord-boundary detection, the cer-
tainties of chord boundaries should be evaluated,
based on the results of chord-symbol identification.
Chord-symbol identification is therefore indispens-
able for chord-boundary detection.

2. The mutual dependency of chord-symbol identifica-
tion and key identification
Chord progression patterns are important cues for
identifying chord symbols. Applying the chord pro-
gression patterns requires musical keys, because
which patterns to apply is dependent on keys. On
the other hand, key identification usually requires
chord symbols.

2.3. Our Solution: Concurrent Recognition of Chord
Boundaries, Chord Symbols, and Keys

In order to cope with the mutual dependency, we devel-
oped a method that concurrently recognizes chord bound-
aries, chord symbols, and keys. Our method generates hy-
potheses about tuples of a chord sequence and a key with
their evaluation values that represent the certainties of the
hypotheses, and selects the hypothesis with the largest
evaluation value as the recognition result (Figure 1).

The following three kinds of musical elements are used
as cues for calculating the evaluation values of hypothe-
ses:

1. Acoustic features
For acoustic features, we use 12-dimensional
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Figure 2. Overview of the automatic chord transcription
system

Diatonic chord progression
G→ C Dm→ G G→ Am C→ F

Non-diatonic chord progression
Am → D → G G→ A[dim→ Am

Table 1. Examples of the chord progression patterns in
the key of C major

chroma vectors[3], which roughly represent the in-
tensities of the 12 semitone pitch classes. Each ele-
ment of a chroma vector corresponds to one of the
12 pitch classes, and it is the sum of power at fre-
quencies of its pitches over six octaves. The acous-
tic features are essential cues because chord sym-
bols are defined as collections of the 12 semitone
pitch classes.

2. Chord progression patterns
Chord progression patterns are concatenations of
chord symbols that are frequently used in musical
pieces (Table 1) . Using chord progression pat-
terns facilitates reducing the ambiguities of chord-
symbol-identification results, which are caused by
the absence of chord tones and the presence of non-
chord tones.

3. Bass sounds
Bass sounds are the most predominant tones in a
low frequency region. Using bass sounds improves
the performance of automatic chord transcription,
because bass sounds are closely related to musical
chords, especially in popular music.

Initialization:
for eachs ∈ S do

calculatef(s)
T ← T ∪ {s}

end
the front time← 0

Hypothesis search:
while the next time existsdo

the front time← the next time
for eachh ∈ T do

Expansion block:
for each h́ ∈ V (h, the front time) do

calculatef(h́)
T́ ← T́ ∪ {h́}

end
if h is not completely expandeddo

Ú ← Ú ∪ {h}
end

end
for eachh ∈ U do

do Expansion block
end
T ← the best BS hypotheses inT́
U ← Ú

end

return arg maxh∈T f(h)

Figure 3. Hypothesis-search algorithm.S is a set of ini-
tial hypotheses.T is a set of hypotheses whose chord
sequences reach the front time.U is a set of hypothe-
ses whose chord sequences do not reach the front time.
V (h, t) is a set of child hypotheses of hypothesesh at time
t. f(h) is an evaluation function that gives the evaluation
value of hypothesish.

3. HYPOTHESIS-SEARCH-BASED AUTOMATIC
CHORD TRANSCRIPTION

Our method is based on hypothesis search, which obtains
the most plausible hypothesis of all the possible hypothe-
ses that satisfy a given goal statement. In automatic chord
transcription, the goal statement is that the chord sequence
of a hypothesis ranges from the beginning to the end of an
input.

Figure 2 shows an overview of our automatic chord
transcription system. First, the beat tracking system de-
tects the eighth-note level beat times of an input musical
piece using the method developed by Goto [4]. Then, the
hypothesis searcher searches the most plausible hypoth-
esis about a chord sequence and a key. The search pro-
gresses every eighth-note level beat time from the begin-
ning of the input. Finally, the searcher outputs the ob-
tained most plausible hypothesis.

The overall process of the hypothesis search is briefly
described as follows. At the beginning, initial hypotheses
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Figure 4. Two sets of hypotheses for reasonable pruning

are given to the hypothesis searcher. Whenever the front
time (i.e. the time to which the search has progressed) pro-
ceeds to the next eighth-note level beat time, the hypothe-
sis searcher expands all hypotheses at that time into ones
whose chord sequences range to the front time, and the hy-
pothesis evaluator then calculates the evaluation value of
them. When the front time finally reaches the end of the
input, the hypothesis that has the largest evaluation value
is adopted.

3.1. Hypothesis-search Algorithm

In order to avoid a combinatorial explosion of the num-
ber of hypotheses, a search algorithm must contain oper-
ations for pruning, which prohibits the expansion of hy-
potheses with small evaluation values. The pruning must
be performed from hypotheses whose chord sequences
end at the same time, because pruning from hypotheses
whose chord sequences end at different times can incor-
rectly delete hopeful hypotheses.

Our hypothesis-search algorithm is shown in Figure 3.
The key idea of our pruning method is to manage two sets
of hypotheses: one is a set of hypotheses with end times
that are equal to the front time. The other is a set of hy-
potheses with end times that are not equal to it. The prun-
ing is performed from the hypotheses in the former set
(Figure 4). Therefore, this algorithm reduces the risks of
wrong pruning.

The progress of this algorithm is straightforward. It al-
ways needs audio signals only around the front time. The
time complexity of this algorithm for an n-length input
is O(n) when the hypothesis-expansion algorithm takes
time O(1). Since our hypothesis-expansion algorithm is
of orderO(1), our method is able to operate in real time
with a large amount of computational power.

Implementing this algorithm requires definition of the
following six elements:

1. Input-scanning times
Input scanning times are time points at which hy-
potheses are expanded. The input-scanning times
in our system are defined as the eighth-note-level
beat times of an input musical piece.

2. Data structure of a hypothesis
We define hypothesish of our system as a tuple of
chord sequencec1c2 · · · cn and keyk:

h = (c1c2 · · · cn, k). (8)

3. Set of initial hypotheses
Our system’s set (S) of initial hypotheses is defined
as follows:

S = {(ε, ki)}NK
i=0, (9)

whereε denotes the empty chord sequence, andki

denotes a key. In our system, NK= 11 based on
assumptionA2; k0 denotes the key of C major,k1

denotes the key of D[ major, · · · , andk11 denotes
the key of B major.

4. Hypothesis-expansion algorithm
Hypothesis-expansion algorithm, which is denoted
by V (h, t) in Figure 3, defines the child hypotheses
of hypothesish at front timet. Its definition in our
system is given in section 3.2.

5. Criterion for determining the end of expansion
Our system determines that a hypothesis has com-
pletely expanded when the interval between the
front time and the end time of the chord sequence
of the hypothesis exceeds the measure-level-beat in-
terval of an input musical pieces.

6. Evaluation function
Evaluation functionf(h) gives the evaluation value



of hypothesish. Its definition in our system is given
in section 3.3.

3.2. Hypothesis-Expansion Algorithm

Our system’s hypothesis-expansion algorithm expands
hypothesish = (c1c2 · · · cn, k) into NC hypotheses
h(i) = (c1c2 · · · cnc

(i)
n+1, k)(1 ≤ i ≤ NC), and calculates

scoresc
(i)
n+1, which indicates the certainty ofc(i)

n+1 based

on acoustic features.c(i)
n+1 is a chord that begins at the end

time of chordcn and ends at front timet. This algorithm
ignores the possibility of modulation based on assumption
A1.

The procedure for determiningc(i)
n+1 and their scores is

as follows:

1. Extract a chroma vector from the spectrum excerpt
from the span that begins at end time (e) of cn and
ends at front timet.

2. Calculate the Mahalanobis distance between the ex-
tracted chroma vector and the mean chroma vector
from the training audio signals for each chord.

3. Select NC chord symbolscs(i)
n+1(1 ≤ i ≤ NC),

whose distances are smaller than the others. Then,
c
(i)
n+1 is represented as(cs(i)

n+1, e, t), andsc
(i)
n+1 is

defined as the normalized value of the reciprocal of
the distance ofc(i)

n+1.

3.3. Evaluation Function

Given hypothesish = (c1c2 · · · cn, k), evaluation func-
tion f(h) calculates the evaluation value ofh. To cal-
culate the evaluation values of hypotheses, our method
evaluates the acoustic-feature-based, chord-progression-
pattern-based, and bass-sound-based certainties of the hy-
potheses. The acoustic-feature-based certainty of a hy-
pothesis indicates the degree of similarity between the
chroma vectors from its chord spans and training chroma
vectors for each chord. The chord-progression-pattern-
based certainty indicates the number of chord-symbol
concatenations of the hypothesis corresponding to one of
the chord progression patterns. The bass-sound-based cer-
tainty indicates the degree of predominance of its chord
tones in a low frequency region.

Evaluation functionf(h) in our system is defined as
follows:

f(h) = log ac(h) + WPR× log pr(h)
+ WBA × log ba(h), (10)

whereac(h) denotes the acoustic-feature-based certainty,
pr(h) denotes the chord-progression-pattern-based cer-
tainty, ba(h) denotes the bass-sound-based certainty,
WPR denotes the weight of the chord-progression-
pattern-based certainty, and WBA denotes the weight of
the bass-sound-based certainty.

3.3.1. Acoustic-feature-based certainty

Acoustic-feature-based certaintyac(h) is defined as fol-
lows:

ac(h) =
n∏

i=1

(sci × EPli−1), (11)

wheresci denotes the score of chordci, li denotes the
number of intervals of the eighth-note level beats con-
tained in the span ofci, and EP denotes the span-extending
penalty. Defining acoustic-feature-based certainty as the
product ofsci would cause many deletion errors, because
the numbers (n) of chords are not equal among different
hypotheses. Multiplying the span-extending penalty is an
effective way to avoid deletion errors.

3.3.2. Chord-progression-pattern-based certainty

Chord-progression-pattern-based certaintypr(h) is de-
fined as follows:

pr(h) = PPRm (12)

m = n− num(i; ∃p, q s.t. p ≤ i ≤ q, cp · · · cq ∈ P )
for 1 ≤ i ≤ n, (13)

whereP denotes the set of chord progression patterns for
key k, PPR denotes the penalty for mismatched progres-
sions, andnum(i; cond(i)) denotes the number of values
i that satisfy conditioncond(i). To obtain the set of chord
progression patterns for each key, we stored 71 concate-
nations of chord functions, according to the theory of har-
monics (e.g. V → I). Given a key, our method yields the
set of chord progression patterns for the key from the pre-
stored chord-function concatenations. For example, ap-
plying the key of C major to V→ I yields chord progres-
sion pattern G→ C.

3.3.3. Bass-sound-based certainty

Let pi denote the most predominant pitch class in a low
frequency region of the span of chordci, andpredi denote
the degree of its predominance. Then, bass-sound-based
certaintyba(h) is defined as follows:

ba(h) =
n∏

i=1

htpi (14)

htpi =

{
predi (if pi is a chord tone ofci)

PBA (otherwise),
(15)

where PBA denotes the penalty for the absence of the
chord tones in the low frequency region. To obtain the
degrees of predominance of pitch classes in the low fre-
quency region, our method forms the pitch probabilistic
density function after applying the band pass filter for the
bass line using Sakuraba’s [10] automatic music transcrip-
tion system implementing Goto’s method [5]. Then, the
degree of predominance of each pitch class is defined as
the sum of the values of the function at its pitches.



Piece Short Acoust Our method
number span corr acc corr acc Key
No.14 42% 86% 74% 89% 84% ©
No.17 57% 90% 64% 91% 76% ©
No.40 38% 89% 76% 85% 80% ©
No.44 34% 90% 46% 88% 67% ©
No.45 53% 90% 68% 86% 74% ©
No.46 57% 95% 69% 93% 80% ©
No.74 45% 90% 71% 92% 80% ©

©: Correctly identified

Table 2. Experimental results

4. EXPERIMENTAL RESULTS

Our system was tested on one-minute excerpts from seven
songs ofRWC-MDB-P-2001 [6]: No.14, 17, 40, 44, 45, 46,
and 74. The current implementation uses the following
parameters: BS= 20, NC = 7, WPR= 1.0, WBA = 5.0,
EP= 0.25, PPR= 0.8, and PBA= 0.5. For the training
data of chroma vectors, we used 2592 excerpts of audio
signals of each chord played on a MIDI tone generator
and audio signals of the six songs except an input one.
To evaluate the effectiveness of concurrent recognition of
chord boundaries and chord symbols, we implemented a
system that identifies chord symbols in every short span
corresponding to the eighth-note level beat interval (called
a short span method). We also implemented a system that
calculates the evaluation values of hypotheses based on
only acoustic features (called an acoust-method).

For evaluating the outputs, we used two criteria: cor-
rectnesscorr and accuracyacc, which is defined as fol-
lows:

corr = 1− # (substitution and deletion errors)
# (output chords)

(16)

acc = 1− # (substitution, deletion, and insertion errors)
# (output chords)

(17)

The correct chord sequences are hand-labeled.
The results are listed in Table 2 (for short span method,

only accuracies are shown). Our system’s average accu-
racy was 77%. This result shows that our method can
correctly recognize chord sequences from complex mu-
sical audio signals that contain vocal and drum sounds.
The performance of the short span method was poor. This
is because the short span method often confused major
chords and their minor versions, since there were many
spans where the third tones of chords did not appear.
The accuracy of the acoust-method was very smaller than
that of our method in spite of the high correctness, since
the acoust-method made many insertion errors. This is
because the acoustic-feature-based certainties in correct
chord spans were liable to be smaller than those in shorter
spans due to the spectral changes caused by arpeggio
sounds. These results show that our concurrent recog-
nition method of chord boundaries and chord symbols

achieves high improvement of chord-recognition perfor-
mance, and that using chord progression patterns and bass
sounds also improves the performance.

5. CONCLUSION

We have described a method that recognizes musical
chords and keys from audio signals. To cope with the
mutual dependency of chord-boundary detection, chord-
symbol identification, and key identification, our method
runs these processes concurrently, which is achieved by
searching the most plausible hypothesis about a tuple of a
chord progression and a key. This method operates with-
out any prior information about the input songs. The ex-
perimental results show that our method is robust enough
to achieve 77% accuracy of chord recognition on seven
popular music songs that contain vocal and drum sounds.
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