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ABSTRACT 
In this paper, an application of feature extraction from music data is 
first introduced to motivate our research of finding approximate 
repeating patterns from sequence data. An approximate repeating 
pattern is defined as a sequence of symbols which appears more than 
once under certain approximation types in a data sequence. By using 
the ‘cut’ and ‘pattern_join’ operators, we develop a level-wise 
approach to solve the problem of finding approximate repeating 
patterns.  

1. INTRODUCTION 
Compared to transactional data, less attention on data mining has 
been drawn to the issues of mining sequence data such as traces of 
web browsing activities and sequences of multimedia data. Although 
tasks of data mining are usually application-dependent, to discover 
some universal properties, such as repetitions and trends, from data 
sequences is still promising.  

1.1 Application: Feature Extraction from Music Data  
For content-based music data retrieval, one of fundamental 
techniques is to extract music features from the raw data of music 
objects and organize them as a music index for further processing. 
Taking into account of the music characteristics, the music features 
can be classified into four categories: static music information, 
acoustical feature, thematic feature and structural feature [Hsu01]. 
As for the structural feature, classic music objects are composed 
according to a special structure called musical form in which there 
are two basic rules: hierarchical rule and repetition rule 
[Jone74][Krum90][Narm90]. The hierarchical rule says music 
objects are formed hierarchically. The repetition rule says that some 
sequences of notes, known as motives, repeatedly appear in a 
movement. Repetition rule is also meaningful for other music 
categories. For example, the repetition in pop music is called the 
refrain.  
Based on the repetition rule, we derive the sequences of notes 
appearing more than once in the music object as its structural feature. 
The sequences are called repeating patterns [Hsu01][Hsu98]. 
Researchers in the musicology field also agree that repetition is a 
universal characteristic in music structure modeling 
[Krum90][Narm90]. Meanwhile, the length of repeating patterns is 
much shorter than that of a music object. Choosing repeating patterns 
as the features to represent the music objects meets both efficiency 
and semantic-richness requirements for content-based music data 
retrieval. Therefore, techniques for finding the repeating patterns 
from the sequence of notes of a music object need are to be 
developed. 
However, patterns may repeat in the music object with some variance. 

One of the concepts to deal with this variance is the prototypical 
melody. “The prototypical melody is a kind of generalization to 
which elements of information represented in the actual melody may 
seem relevant” [Self98]. The prototypical melody suggests the 
greatest influence on the way the actual melody is remembered and 
retrieved. For example, consider the five extracts from Mozart’s 
Piano Sonata K.311, shown in Figure 1(a)-(e). A prototypical melody, 
which approximates the five extracts, is identified in Figure 1(f). 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Five extracts from Mozart’s Piano Sonata K. 311 and 
a prototypical melody (excerpted from [Self98]). 

For the purpose of searching, it is easier to handle the compositions 
which are managed in a consistent way to extract features. An 
algorithmic approach to the problem of identifying prototypical 
melody is required for music information retrieval. 

1.2 Related Works 
Considering the previous application on music data, Shih, et al. 
[Shih01] propose a modified Lempel-Ziv algorithm for automatic 
extraction of exact repeating patterns in music databases. The music 
objects are first segmented into bars and the bar index table is then 
constructed. An adaptive dictionary-based compression algorithm 
(LZ-78) is then applied to the bar-represented music scores to extract 
repetitive patterns. Rolland [Roll98][Roll99] also focus on the 
pattern extraction problem and propose a more flexible similarity 
metrics between music sequences. A dynamic programming-based 
approach, called FlExPat, is also introduced. By pair comparison and 
then categorization, the melodic patterns can be found. 
In [Meek01], the authors introduce an algorithm, Melodic Motive 
Extractor (MME), to “extract themes from a piece of music.” Based 
on the hashing function techniques and lattice structure, the MME is 
devised to identify frequent patterns from a sequence of music 
contour. In [Dann02], the authors apply the dynamic programming 
technique on music audio data, which is represented as sequences, to 
recognize the repetition structure. First, possible pairs of segment 
(i.e., subsequence) will be identified and considered as candidates. 
Similar candidates will be clustered, and the analysis of musical 
structure will also be produced according. However, the time 
complexity of proposed method would be as higher as O(n4), where n 
is the length of sequence. In [Pien02], a text-based method is applied 
to extract maximal frequent phrase from music data. The proposed 
approach is a variant of n-gram method by combining bottom-up and 
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greedy methods, and first introduced in [Ahon99] for text mining 
task from documents.  
We propose two approaches in discovering repeating patterns in 
music data [Hsu01][Hsu98]. For the first approach, the repeating 
patterns are found based on a data structure called correlative matrix. 
For a music object of n notes, an (n x n) correlative matrix is 
constructed to keep the intermediate results during the finding 
process. In the other approach, the longer repeating pattern of a 
music object is discovered by repeatedly combining shorter repeating 
patterns by a string-join operation. The storage space and execution 
time can therefore be reduced. In this paper, we extend the problem 
of finding exact repeating patterns to finding approximate repeating 
patterns. 

2. PROBLEM FORMULATION 
The application in Section 1 motivate the problem of finding 
approximate repeating patterns from sequence data. In this section, 
we formulate the problem and introduce three types of 
approximations, i.e., longer_length, shorter_length, and equal_length. 
Due to the space limitation, we only discuss the case of  
longer_length approximation in the rest of this paper. 

2.1 The Definitions 
We first define the match operator, i.e., longer_length_match, as 
follows.  

DEFINITION 2.1: longer_length_match (P, LL) 

Given P = (p1, p2, … , pm) which is a pattern sequence of length m, 
and LL = (s1, s2, … , sn), a data sequence of length n, where n > m.  
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Define r = n − m to indicate the approximation degree of 
longer_length_match (P, LL). longer_length_match (P, LL) = 1 
when there exist m symbols in LL, which match the m symbols in P 
in sequence, and s1 = p1, sn = pm. The approximation degree denotes 
the number of symbols which will not be matched when applying a 
match operator. 

For example, let P be a four-symbol pattern, P = (p1, p2, p3, p4) = (A, 
B, C, D). Let LL be a six-symbol pattern, LL = (s1, s2, … , s6) = (A, 
B, K, C, M, D). In this case, we can find (b1, b2, b3, b4) = (1, 2, 4, 6), 
which means that p1 matches s1, p2 matches s2, p3 matches s4, and p4 
matches s6. Therefore, longer_length_match (P, LL) = 1, and the 
approximation degree is two. 
The match operator is used to compute the repeating frequency of a 
pattern sequence P in a data sequence S. The repeating frequency of 
P is the number of appearance of P in data sequence S. Each 
appearance is identified by a substring of S which makes the match 
operator satisfied. We discuss the computation of the repeating 
frequency of P in S with approximation degree r as follows. 
Denote freq (P, S, r, AT) as the repeating frequency of pattern 
sequence P in a data sequence S with the approximation type AT (i.e., 
AT = longer_length) and approximation degree r.  
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Each appearance is identified by a substring of S which satisfies the 
longer_length_match operator. Moreover, there is no overlap among 
these appearances as specified in (3).  
As discussed in Section 1, the found patterns can be refrains and 
motives of music objects. The refrains and motives are recognizable 
patterns which repeat several times. Therefore, the overlapped 
appearances cannot be considered as recognizable patterns. 

Example 1  
Let P be “ABC”, and S be “AKBCDEABLCF”. Consider the 
longer_length approximation with degree one. Among all substrings 
of length four, we have two substrings, LL1 and LL2, which set 
longer_length_match (P, LLi) to 1, i.e., “AKBC” and “ABLC”. 
Therefore, freq (“ABC”, “AKBCDEABLCF”, 1, longer_length) = 2. 

2.2 The Problem 
The problem of finding approximate repeating patterns is formulated 
as follows. Given a data sequence S, and the parameters of pattern 
length, approximation degree, minimal repeating frequency, and 
approximation type (denoted pa_i, pa_r, pa_f, and AT respectively), 
find all approximate repeating patterns. The pa_i specifies the range 
of pattern length to be found. The pa_r specifies the range of 
approximation degree, specifically, pa_r = {0, 1, …, max_pa_r} . 
The pa_f specifies the minimal number of pattern appearances to 
form a repeating pattern.  
With respect to the longer_length approximation type, the problem is 
to find those patterns that repeatedly appear in S, in which the 
appearances are identified by the longer_length_match operator and 
the repeating frequencies are computed by freq (P, S, r, 
longer_length). Therefore, the problem of extracting prototypical 
melody from music data, as shown in Figure 1, can be formulated as 
the one of find approximate repeating pattern with AT = 
longer_length. Note that the patterns found are not necessarily 
substrings of the data sequence. Otherwise, the prototypical melody 
will not be discovered in any way. 

Example 2  
The data sequence S is “ABFCDLBMABPFCFD”, and the 
parameters are pa_i = {1, 2, 3, 4}, pa_r = {0, 1}, pa_f = 2, and AT = 
longer_length. The setting of parameters means that we are interested 
in those patterns of length one to four with the approximation type of 
longer_length. For each appearance of a pattern, at most one symbol 
of the appearance is not matched when applying 
longer_length_match operator. Each of the found patterns has to 
appear at least twice in the data sequence. The found patterns are as 
follows. 

P1 = {”A”, ”B”, “C”, “D”, “F”},  
P2 = {”AB”,”BF”,”CD”,”FC”,”FD”},  
P3 = {”ABF”,”BFC”,”FCD”}, and P4 = {”ABFC”} 

 



As an example of the pattern “ABF”, since the parameter pa_r is set 
to {0, 1}, we have freq (“ABF”, S, 0, longer_length) = 1 and freq 
(“ABF”, S, 1, longer_length) = 1. In total, there are two appearances 
of the pattern “ABF”, which satisfies the parameter pa_f.  

3. OUR APPROACH 
In this section, we propose our solutions to the problem of finding 
approximate repeating patterns, as well as the concept of cut and 
pattern_join operator, denoted by PJ.  

3.1 The Level-wise Approach 
To find all approximate repeating patterns, intuitively, we can apply 
sliding windows of all possible lengths, ranging from one to 
(max_pa_i + max_pa_r), over the data sequence S to have a set of 
substrings. For these substrings, we check whether an approximate 
repeating pattern can be formed by the longer_length_match operator. 
As in Example 2, we need sliding windows of lengths one to six. 
Such brute-force process has too many substrings for the checking. 
In the following, we introduce the concept of cut. By carefully 
dividing S, we can have fewer substrings for the checking.  
Denote max_pa_i and max_pa_r as the maximal values in the range 
of pa_i and pa_r, respectively, and strlen (S) as the length of S.  
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Example 3  
As in Example 2, the data sequence S = “ABFCDLBMABPFCFD”, 
max_pa_i = 4, and max_pa_r = 1. Accordingly, cw = max_pa_i + 
max_pa_r = 5, we have three cuts as follows. 

cut1 = “ABFCDLBMA” 
cut2 = “LBMABPFCF” 
cut3 = “PFCFD”  

Since the length of patterns to be found is bounded by the parameters 
pa_i and pa_r, we first partition the sequence S into substrings of 
length cw, the summation of the maximal values of pa_i and pa_r. 
However, some patterns may span over two adjacent substrings, 
therefore we add a padding of length (cw−1) for each substring. Note 
that in (2), the min function is used for a boundary condition, in case 
the last cut has fewer than (2×cw−1) symbols.  
Before providing the definition of pattern_join operator, we 
introduce a data structure to represent the found patterns and to keep 
the information needed for processing. The pattern set of length i, 
denoted by Pi = {<pati

(1), plisti
(1)>, <pati

(2), plisti
(2)>, …, <pati

(j), 
plisti

(j)>}, where pati
(j) denotes the j-th pattern in Pi, and plisti

(j) is a 
list of triplets (cut_id: start, end). Each triplet indicates an appearance 
of pati

(j) in S. The ‘cut_id’ indicates a cut, and the ‘start and ‘end’ 
indicate where the pattern pati

(j) is located in the cut. For example, P2 
= {<”BF”, (1: 2, 3), (2: 5, 7)>, <”FD”, (1: 3, 5), (3: 4, 5)>}. The P2 
means that we have two patterns, “BF” and “FD”. For the triplet 
associated to “BF”, (2: 5, 7) means that “BF” is located in the cut2 
ranging from the fifth to the seventh position.  
The triplet whose ‘start’ value is larger than cw is called a dummy 
triplet. The dummy triplets are used for concatenating in succeeding 
processing. An appearance of a pattern specified by a dummy triplet 
will also be specified by a non-dummy triplet. Therefore, the 
repeating frequency of pati

(j) is the number of triplets, excluding 

dummy triplets, in plisti
(j). For example, P2 = {<”FC”, (1: 3, 4), (2: 7, 

8), (3: 2, 3)>}, and the repeating frequency of “FC” is 2. 
In the following, we introduce the pattern_join operator. The 
pattern_join operator is used for concatenating the found patterns of 
length i to derive the candidate patterns of length i+1. By applying 
the pattern_join operator in a level-wise manner, all the patterns will 
be found. 
For two patterns of length i, pat i

(a) and pat i
(b), we define the 

pattern_join operator as follows. 

DEFINITION 3.1: pattern_join operator 
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where 
(1) pati+1

(c) = pat i
(a)[1..i] + pat i

(b)[i..i], where the ‘+’ denotes the 
string concatenation  

(2) for (cut_id(a): start(a), end(a)) and (cut_id(b): start(b), end(b)) from 
plisti

(a) and plisti
(b), respectively, if  

i. cut_id(a) = cut_id(b) and start(a) < start(b) 
ii. 0 ≤ (end(b) − start(a) + 1) − |pati+1

(c)| ≤ max_pa_r 
add (cut_id(a): start(a), end(b)) into plisti+1

(c) 
 
For two patterns of length i, pat i

(a) and pat i
(b), if the two patterns 

have an overlapping of (i−1) symbols, we concatenate the two 
patterns as the pattern pati+1

(c). Then, we check the corresponding 
triplet lists to derive the triplet list of pati+1

(c). The triplet list of 
pati+1

(c) is constructed as follows. The conditions of (2) are used to 
make sure that the pattern pati+1

(c) and the substring, indicated by the 
triplet (cut_id(a): start(a), end(b)), satisfy the longer_length_match 
operator.  

(cut_id(a), start(a), end(a))

(cut_id(b), start(b), end(b))
 

Figure 2:  An illustration of the pattern_join operator. 

Example 4  
PJ (<”BF”, (1: 2, 3), (2: 5, 7)>, <”FD”, (1: 3, 5), (3: 4, 5)>) = 
<”BFD”, (1: 2, 5)> 

Our method is a level-wise approach (procedure 
find_approxi_pattern). First, we determine cuts from the 
data sequence S. By concatenating the patterns of length i from Pi 
(procedure find_level), we derive the candidate patterns of 
length (i+1), denoted by Ci+1. After checking the repeating frequency 
of candidate patterns, the patterns of length (i+1), Pi+1, will be 
confirmed (procedure prune). As for the next level, similar 
processing is performed until all patterns are found. 
The main parts of our algorithm are shown as follows. Due to the 
space limitation, other supporting procedures of our approach are not 
included in this paper.  

Algorithm find_approxi_pattern (S, pa_i, pa_r, 
pa_f) 
//input: the data sequence S, pa_i, pa_r, pa_f 
//output: the approximate pattern set AP 



Begin 
1. W = cut_dataseq(S, max_pa_i + max_pa_r) 
2. C1 = find_level_1(W) 
3. P1 = prune(C1) 
4. for (i = 1 to (max_pa_i - 1)) 
5.  Ci+1 = find_level(Pi) 
6.  Pi+1 = prune(Ci+1) 
7. AP = P1 ∪ P2 ∪ … ∪ Pmax_pa_i 
8. return AP 
End 

 

Algorithm find_level (Pi) 
//input: the pattern set, Pi 
//output: the pattern set, Pi+1 
Begin 
1. Pi+1 = ∅ 
2. for each (A, B) in Pi  
3.  TP = pattern_join(A, B) 
4.  Pi+1 = Pi+1 ∪ TP  // add TP into Pi+1 
5. return Pi+1 
End 

Example 5  
Given the same S, pa_i, pa_r, and pa_f, as in Example 2, to find all 
approximate repeating patterns by applying our approach 
find_approxi_pattern.  

First, we determine three cuts as in Example 3. The following 
processes are preceded by a level-wise manner, as shown in Figure 3. 
Through scanning the data sequence S once, we have the candidate 
set C1. By checking their repeating frequencies, the patterns of length 
one are derived. As for the next level, we first derive the candidate 
set C2, followed by the minimal repeating frequency checking. For 
each pair of patterns from P1, we apply the PJ operators to derive C2. 
For each pattern in C2, we check its repeating frequency to determine 
the patterns of length two, P2. Similar processes are repeated until all 
the patterns whose length is specified in pa_i are obtained.  

A B C D F L M P

AB BA BF CD FC FD CF

ABF BFC BFD FCD

ABFC BFCD

A B C D F L M P

AB BA BF CD FC FD CF

ABF BFC BFD FCD

ABFC BFCD

 
Figure 3:  The illustration of processing steps in Example 5. 

4. CONCLUSION 
In this paper, the application of feature extraction is first presented to 
motivate our research on finding approximate repeating patterns from 
sequence data. In Section 2, followed by the definitions of match 
operator and approximation type, we consider the type of 
longer_length approximation as the fundamental problem. We 
develop a level-wise approach to the problem of finding approximate 
repeating patterns with respect to the longer_length approximation. 
In addition, we extend the basic approach for efficiently finding long 
patterns. We also complete the preliminary investigation of 

performance study, in which we explore the four factors having 
impact on the performance and show that our approach is efficient. 
Likewise, the refined methods and performance study are not 
covered in this paper because of space limitation. 
The future work includes the following. First, the extensive 
experiments of effectiveness study on real data are still carrying on. 
Given a corpus of music data, our approach will be applied to 
discover the prototypical melody of music data, as shown in Figure 1. 
In our experiment design, the discovered features will be compared 
with music catalogs, such as [Barl75], to show the effectiveness. 
Moreover, we define the problems of other two types of 
approximations, i.e., shorter_length and equal_length approximations. 
We are currently working on developing more efficient algorithms to 
solve the problems. Besides, our approach can be directly applied to 
monophonic music objects, but not polyphonic music objects. We are 
also working on exploring features for polyphonic music objects and 
developing corresponding methods. 
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