
Finding Approximate Repeating Patterns from Sequence Data
Jia-Lien Hsu

Department of Computer Science and
Information Engineering, Fu Jen

Catholic University, Taiwan, R.O.C.

E-mail: alien@csie.fju.edu.tw

Arbee L.P. Chen
Department of Computer Science

National Chengchi University
Taipei, Taiwan, R.O.C.

E-mail: alpchen@cs.nccu.edu.tw

Hung-Chen Chen
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan, R.O.C.

E-mail: jesse@cs.nthu.edu.tw

ABSTRACT
In this paper, an application of feature extraction from music data is
first introduced to motivate our research of finding approximate
repeating patterns from sequence data. An approximate repeating
pattern is defined as a sequence of symbols which appears more than
once under certain approximation types in a data sequence. By using
the ‘cut’ and ‘pattern_join’ operators, we develop a level-wise
approach to solve the problem of finding approximate repeating
patterns.

1. INTRODUCTION
Compared to transactional data, less attention on data mining has
been drawn to the issues of mining sequence data such as traces of
web browsing activities and sequences of multimedia data. Although
tasks of data mining are usually application-dependent, to discover
some universal properties, such as repetitions and trends, from data
sequences is still promising.

1.1 Application: Feature Extraction from Music Data
For content-based music data retrieval, one of fundamental
techniques is to extract music features from the raw data of music
objects and organize them as a music index for further processing.
Taking into account of the music characteristics, the music features
can be classified into four categories: static music information,
acoustical feature, thematic feature and structural feature [Hsu01].
As for the structural feature, classic music objects are composed
according to a special structure called musical form in which there
are two basic rules: hierarchical rule and repetition rule
[Jone74][Krum90][Narm90]. The hierarchical rule says music
objects are formed hierarchically. The repetition rule says that some
sequences of notes, known as motives, repeatedly appear in a
movement. Repetition rule is also meaningful for other music
categories. For example, the repetition in pop music is called the
refrain.
Based on the repetition rule, we derive the sequences of notes
appearing more than once in the music object as its structural feature.
The sequences are called repeating patterns [Hsu01][Hsu98].
Researchers in the musicology field also agree that repetition is a
universal characteristic in music structure modeling
[Krum90][Narm90]. Meanwhile, the length of repeating patterns is
much shorter than that of a music object. Choosing repeating patterns
as the features to represent the music objects meets both efficiency
and semantic-richness requirements for content-based music data
retrieval. Therefore, techniques for finding the repeating patterns
from the sequence of notes of a music object need are to be
developed.
However, patterns may repeat in the music object with some variance.

One of the concepts to deal with this variance is the prototypical
melody. “The prototypical melody is a kind of generalization to
which elements of information represented in the actual melody may
seem relevant” [Self98]. The prototypical melody suggests the
greatest influence on the way the actual melody is remembered and
retrieved. For example, consider the five extracts from Mozart’s
Piano Sonata K.311, shown in Figure 1(a)-(e). A prototypical melody,
which approximates the five extracts, is identified in Figure 1(f).

Figure 1: Five extracts from Mozart’s Piano Sonata K. 311 and
a prototypical melody (excerpted from [Self98]).

For the purpose of searching, it is easier to handle the compositions
which are managed in a consistent way to extract features. An
algorithmic approach to the problem of identifying prototypical
melody is required for music information retrieval.

1.2 Related Works
Considering the previous application on music data, Shih, et al.
[Shih01] propose a modified Lempel-Ziv algorithm for automatic
extraction of exact repeating patterns in music databases. The music
objects are first segmented into bars and the bar index table is then
constructed. An adaptive dictionary-based compression algorithm
(LZ-78) is then applied to the bar-represented music scores to extract
repetitive patterns. Rolland [Roll98][Roll99] also focus on the
pattern extraction problem and propose a more flexible similarity
metrics between music sequences. A dynamic programming-based
approach, called FlExPat, is also introduced. By pair comparison and
then categorization, the melodic patterns can be found.
In [Meek01], the authors introduce an algorithm, Melodic Motive
Extractor (MME), to “extract themes from a piece of music.” Based
on the hashing function techniques and lattice structure, the MME is
devised to identify frequent patterns from a sequence of music
contour. In [Dann02], the authors apply the dynamic programming
technique on music audio data, which is represented as sequences, to
recognize the repetition structure. First, possible pairs of segment
(i.e., subsequence) will be identified and considered as candidates.
Similar candidates will be clustered, and the analysis of musical
structure will also be produced according. However, the time
complexity of proposed method would be as higher as O(n4), where n
is the length of sequence. In [Pien02], a text-based method is applied
to extract maximal frequent phrase from music data. The proposed
approach is a variant of n-gram method by combining bottom-up and

f

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

© 2004 Universitat Pompeu Fabra.

greedy methods, and first introduced in [Ahon99] for text mining
task from documents.
We propose two approaches in discovering repeating patterns in
music data [Hsu01][Hsu98]. For the first approach, the repeating
patterns are found based on a data structure called correlative matrix.
For a music object of n notes, an (n x n) correlative matrix is
constructed to keep the intermediate results during the finding
process. In the other approach, the longer repeating pattern of a
music object is discovered by repeatedly combining shorter repeating
patterns by a string-join operation. The storage space and execution
time can therefore be reduced. In this paper, we extend the problem
of finding exact repeating patterns to finding approximate repeating
patterns.

2. PROBLEM FORMULATION
The application in Section 1 motivate the problem of finding
approximate repeating patterns from sequence data. In this section,
we formulate the problem and introduce three types of
approximations, i.e., longer_length, shorter_length, and equal_length.
Due to the space limitation, we only discuss the case of
longer_length approximation in the rest of this paper.

2.1 The Definitions
We first define the match operator, i.e., longer_length_match, as
follows.

DEFINITION 2.1: longer_length_match (P, LL)

Given P = (p1, p2, … , pm) which is a pattern sequence of length m,
and LL = (s1, s2, … , sn), a data sequence of length n, where n > m.









=<<<=

==

=

otherwise.,0

 1 where

 ,,,2,1for , if,1
)LL,P(__

21 nbbb

misp
 matchlengthlonger

m

bi i

L

L

Define r = n − m to indicate the approximation degree of
longer_length_match (P, LL). longer_length_match (P, LL) = 1
when there exist m symbols in LL, which match the m symbols in P
in sequence, and s1 = p1, sn = pm. The approximation degree denotes
the number of symbols which will not be matched when applying a
match operator.

For example, let P be a four-symbol pattern, P = (p1, p2, p3, p4) = (A,
B, C, D). Let LL be a six-symbol pattern, LL = (s1, s2, … , s6) = (A,
B, K, C, M, D). In this case, we can find (b1, b2, b3, b4) = (1, 2, 4, 6),
which means that p1 matches s1, p2 matches s2, p3 matches s4, and p4
matches s6. Therefore, longer_length_match (P, LL) = 1, and the
approximation degree is two.
The match operator is used to compute the repeating frequency of a
pattern sequence P in a data sequence S. The repeating frequency of
P is the number of appearance of P in data sequence S. Each
appearance is identified by a substring of S which makes the match
operator satisfied. We discuss the computation of the repeating
frequency of P in S with approximation degree r as follows.
Denote freq (P, S, r, AT) as the repeating frequency of pattern
sequence P in a data sequence S with the approximation type AT (i.e.,
AT = longer_length) and approximation degree r.

()

()∑= imatchlengthlonger
rfreq

LL,P __
gthlonger_len,,S,P

hold.must or either then
 1,) LL(P, _

 1and) LL(P, _ if
 ,],..S[LLand]..S[any LLfor)3(

PLL)2(
S of substringa is LL(1)

where

adcb
chlength_matlonger

chlength_matlonger
jidcba

r

j

i

ji

i

i

<<

=
=

≠==
+=

Each appearance is identified by a substring of S which satisfies the
longer_length_match operator. Moreover, there is no overlap among
these appearances as specified in (3).
As discussed in Section 1, the found patterns can be refrains and
motives of music objects. The refrains and motives are recognizable
patterns which repeat several times. Therefore, the overlapped
appearances cannot be considered as recognizable patterns.

Example 1
Let P be “ABC”, and S be “AKBCDEABLCF”. Consider the
longer_length approximation with degree one. Among all substrings
of length four, we have two substrings, LL1 and LL2, which set
longer_length_match (P, LLi) to 1, i.e., “AKBC” and “ABLC”.
Therefore, freq (“ABC”, “AKBCDEABLCF”, 1, longer_length) = 2.

2.2 The Problem
The problem of finding approximate repeating patterns is formulated
as follows. Given a data sequence S, and the parameters of pattern
length, approximation degree, minimal repeating frequency, and
approximation type (denoted pa_i, pa_r, pa_f, and AT respectively),
find all approximate repeating patterns. The pa_i specifies the range
of pattern length to be found. The pa_r specifies the range of
approximation degree, specifically, pa_r = {0, 1, …, max_pa_r} .
The pa_f specifies the minimal number of pattern appearances to
form a repeating pattern.
With respect to the longer_length approximation type, the problem is
to find those patterns that repeatedly appear in S, in which the
appearances are identified by the longer_length_match operator and
the repeating frequencies are computed by freq (P, S, r,
longer_length). Therefore, the problem of extracting prototypical
melody from music data, as shown in Figure 1, can be formulated as
the one of find approximate repeating pattern with AT =
longer_length. Note that the patterns found are not necessarily
substrings of the data sequence. Otherwise, the prototypical melody
will not be discovered in any way.

Example 2
The data sequence S is “ABFCDLBMABPFCFD”, and the
parameters are pa_i = {1, 2, 3, 4}, pa_r = {0, 1}, pa_f = 2, and AT =
longer_length. The setting of parameters means that we are interested
in those patterns of length one to four with the approximation type of
longer_length. For each appearance of a pattern, at most one symbol
of the appearance is not matched when applying
longer_length_match operator. Each of the found patterns has to
appear at least twice in the data sequence. The found patterns are as
follows.

P1 = {”A”, ”B”, “C”, “D”, “F”},
P2 = {”AB”,”BF”,”CD”,”FC”,”FD”},
P3 = {”ABF”,”BFC”,”FCD”}, and P4 = {”ABFC”}

As an example of the pattern “ABF”, since the parameter pa_r is set
to {0, 1}, we have freq (“ABF”, S, 0, longer_length) = 1 and freq
(“ABF”, S, 1, longer_length) = 1. In total, there are two appearances
of the pattern “ABF”, which satisfies the parameter pa_f.

3. OUR APPROACH
In this section, we propose our solutions to the problem of finding
approximate repeating patterns, as well as the concept of cut and
pattern_join operator, denoted by PJ.

3.1 The Level-wise Approach
To find all approximate repeating patterns, intuitively, we can apply
sliding windows of all possible lengths, ranging from one to
(max_pa_i + max_pa_r), over the data sequence S to have a set of
substrings. For these substrings, we check whether an approximate
repeating pattern can be formed by the longer_length_match operator.
As in Example 2, we need sliding windows of lengths one to six.
Such brute-force process has too many substrings for the checking.
In the following, we introduce the concept of cut. By carefully
dividing S, we can have fewer substrings for the checking.
Denote max_pa_i and max_pa_r as the maximal values in the range
of pa_i and pa_r, respectively, and strlen (S) as the length of S.

()()
() ()() ()()

. is and
 ,S,112

____ ,11where
 ,3 ,2 ,1], . . S[

cut_idi
strlenicwcwminb

rpamaxipamaxcwicwa
ibacuti

−×+−×=
+=−×+=

== L

Example 3
As in Example 2, the data sequence S = “ABFCDLBMABPFCFD”,
max_pa_i = 4, and max_pa_r = 1. Accordingly, cw = max_pa_i +
max_pa_r = 5, we have three cuts as follows.

cut1 = “ABFCDLBMA”
cut2 = “LBMABPFCF”
cut3 = “PFCFD”

Since the length of patterns to be found is bounded by the parameters
pa_i and pa_r, we first partition the sequence S into substrings of
length cw, the summation of the maximal values of pa_i and pa_r.
However, some patterns may span over two adjacent substrings,
therefore we add a padding of length (cw−1) for each substring. Note
that in (2), the min function is used for a boundary condition, in case
the last cut has fewer than (2×cw−1) symbols.
Before providing the definition of pattern_join operator, we
introduce a data structure to represent the found patterns and to keep
the information needed for processing. The pattern set of length i,
denoted by Pi = {<pati

(1), plisti
(1)>, <pati

(2), plisti
(2)>, …, <pati

(j),
plisti

(j)>}, where pati
(j) denotes the j-th pattern in Pi, and plisti

(j) is a
list of triplets (cut_id: start, end). Each triplet indicates an appearance
of pati

(j) in S. The ‘cut_id’ indicates a cut, and the ‘start and ‘end’
indicate where the pattern pati

(j) is located in the cut. For example, P2
= {<”BF”, (1: 2, 3), (2: 5, 7)>, <”FD”, (1: 3, 5), (3: 4, 5)>}. The P2
means that we have two patterns, “BF” and “FD”. For the triplet
associated to “BF”, (2: 5, 7) means that “BF” is located in the cut2
ranging from the fifth to the seventh position.
The triplet whose ‘start’ value is larger than cw is called a dummy
triplet. The dummy triplets are used for concatenating in succeeding
processing. An appearance of a pattern specified by a dummy triplet
will also be specified by a non-dummy triplet. Therefore, the
repeating frequency of pati

(j) is the number of triplets, excluding

dummy triplets, in plisti
(j). For example, P2 = {<”FC”, (1: 3, 4), (2: 7,

8), (3: 2, 3)>}, and the repeating frequency of “FC” is 2.
In the following, we introduce the pattern_join operator. The
pattern_join operator is used for concatenating the found patterns of
length i to derive the candidate patterns of length i+1. By applying
the pattern_join operator in a level-wise manner, all the patterns will
be found.
For two patterns of length i, pat i

(a) and pat i
(b), we define the

pattern_join operator as follows.

DEFINITION 3.1: pattern_join operator

()





∅
=〉〈

=

〉〈〉〈

++

otherwise ,
)]1([1..pat]..2[pat if,plist ,pat

plist ,pat ,plist ,pat
(b)(a)(c)

1
(c)

1

(b)(b)(a)(a)

i-i

PJ

iiii

iiii

where
(1) pati+1

(c) = pat i
(a)[1..i] + pat i

(b)[i..i], where the ‘+’ denotes the
string concatenation

(2) for (cut_id(a): start(a), end(a)) and (cut_id(b): start(b), end(b)) from
plisti

(a) and plisti
(b), respectively, if

i. cut_id(a) = cut_id(b) and start(a) < start(b)
ii. 0 ≤ (end(b) − start(a) + 1) − |pati+1

(c)| ≤ max_pa_r
add (cut_id(a): start(a), end(b)) into plisti+1

(c)

For two patterns of length i, pat i

(a) and pat i
(b), if the two patterns

have an overlapping of (i−1) symbols, we concatenate the two
patterns as the pattern pati+1

(c). Then, we check the corresponding
triplet lists to derive the triplet list of pati+1

(c). The triplet list of
pati+1

(c) is constructed as follows. The conditions of (2) are used to
make sure that the pattern pati+1

(c) and the substring, indicated by the
triplet (cut_id(a): start(a), end(b)), satisfy the longer_length_match
operator.

(cut_id(a), start(a), end(a))

(cut_id(b), start(b), end(b))

Figure 2: An illustration of the pattern_join operator.

Example 4
PJ (<”BF”, (1: 2, 3), (2: 5, 7)>, <”FD”, (1: 3, 5), (3: 4, 5)>) =
<”BFD”, (1: 2, 5)>

Our method is a level-wise approach (procedure
find_approxi_pattern). First, we determine cuts from the
data sequence S. By concatenating the patterns of length i from Pi
(procedure find_level), we derive the candidate patterns of
length (i+1), denoted by Ci+1. After checking the repeating frequency
of candidate patterns, the patterns of length (i+1), Pi+1, will be
confirmed (procedure prune). As for the next level, similar
processing is performed until all patterns are found.
The main parts of our algorithm are shown as follows. Due to the
space limitation, other supporting procedures of our approach are not
included in this paper.

Algorithm find_approxi_pattern (S, pa_i, pa_r,
pa_f)
//input: the data sequence S, pa_i, pa_r, pa_f
//output: the approximate pattern set AP

Begin
1. W = cut_dataseq(S, max_pa_i + max_pa_r)
2. C1 = find_level_1(W)
3. P1 = prune(C1)
4. for (i = 1 to (max_pa_i - 1))
5. Ci+1 = find_level(Pi)
6. Pi+1 = prune(Ci+1)
7. AP = P1 ∪ P2 ∪ … ∪ Pmax_pa_i
8. return AP
End

Algorithm find_level (Pi)
//input: the pattern set, Pi
//output: the pattern set, Pi+1
Begin
1. Pi+1 = ∅
2. for each (A, B) in Pi
3. TP = pattern_join(A, B)
4. Pi+1 = Pi+1 ∪ TP // add TP into Pi+1
5. return Pi+1
End

Example 5
Given the same S, pa_i, pa_r, and pa_f, as in Example 2, to find all
approximate repeating patterns by applying our approach
find_approxi_pattern.

First, we determine three cuts as in Example 3. The following
processes are preceded by a level-wise manner, as shown in Figure 3.
Through scanning the data sequence S once, we have the candidate
set C1. By checking their repeating frequencies, the patterns of length
one are derived. As for the next level, we first derive the candidate
set C2, followed by the minimal repeating frequency checking. For
each pair of patterns from P1, we apply the PJ operators to derive C2.
For each pattern in C2, we check its repeating frequency to determine
the patterns of length two, P2. Similar processes are repeated until all
the patterns whose length is specified in pa_i are obtained.

A B C D F L M P

AB BA BF CD FC FD CF

ABF BFC BFD FCD

ABFC BFCD

A B C D F L M P

AB BA BF CD FC FD CF

ABF BFC BFD FCD

ABFC BFCD

Figure 3: The illustration of processing steps in Example 5.

4. CONCLUSION
In this paper, the application of feature extraction is first presented to
motivate our research on finding approximate repeating patterns from
sequence data. In Section 2, followed by the definitions of match
operator and approximation type, we consider the type of
longer_length approximation as the fundamental problem. We
develop a level-wise approach to the problem of finding approximate
repeating patterns with respect to the longer_length approximation.
In addition, we extend the basic approach for efficiently finding long
patterns. We also complete the preliminary investigation of

performance study, in which we explore the four factors having
impact on the performance and show that our approach is efficient.
Likewise, the refined methods and performance study are not
covered in this paper because of space limitation.
The future work includes the following. First, the extensive
experiments of effectiveness study on real data are still carrying on.
Given a corpus of music data, our approach will be applied to
discover the prototypical melody of music data, as shown in Figure 1.
In our experiment design, the discovered features will be compared
with music catalogs, such as [Barl75], to show the effectiveness.
Moreover, we define the problems of other two types of
approximations, i.e., shorter_length and equal_length approximations.
We are currently working on developing more efficient algorithms to
solve the problems. Besides, our approach can be directly applied to
monophonic music objects, but not polyphonic music objects. We are
also working on exploring features for polyphonic music objects and
developing corresponding methods.

REFERENCE:
[Ahon99] Ahonen-Myka, H., “Finding All Maximal Frequent
Sequences in Text,” in Proc. of Intl. Conf. on Machine Learning,
1999.
[Barl75] Barlow, H. and S. Morgenstern, A Dictionary of Musical
Themes, Crown Publishers, Inc., New York, 1975
[Dann02] Dannerberg, R. B. and N. Hu, “Pattern Discovery
Techniques for Music Audio,” in Proc. of ISMIR, 2002.
[Hsu98] Hsu, J. L., C. C. Liu, and A. L. P. Chen, “Efficient
Repeating Pattern Finding in Music Databases,” in Proc. of Intl. Conf.
on Information and Knowledge Management (CIKM'98), 1998.
[Hsu01] Hsu, J. L., C. C. Liu, and A. L. P. Chen, “Discovering Non-
trivial Repeating Patterns in Music Data,” IEEE Transactions on
Multimedia, Vol. 3, No. 3, 2001.
[Jone74] Jones, G. T., Music Theory, Harper & Row, Publishers,
New York, 1974.
[Krum90] Krumhansl, C. L., Cognitive Foundations of Musical Pitch,
Oxford University Press, New York, 1990.
[Meek01] Meek, C. and W. P. Birmingham, “Thematic Extractor,” in
Proc. of ISMIR, 2001.
[Narm90] Narmour, E., The Analysis and Cognition of Basic Melodic
Structures, The University of Chicago Press, Chicago, 1990.
[Pien02] Pienimaki, A., “Indexing Music Database Using Automatic
Extraction of Frequent Phrases, in Proc. of ISMIR 2002.
[Roll98] Rolland, P. Y., “FlExPat: A Novel Algorithm for Musical
Pattern Discovery,” in Proceedings of the 12th Colloquium on
Musical Informatics (XII CIM), 1998.
[Roll99] Rolland, P. Y. and J. G. Ganascia, “Musical Pattern
Extraction and Similarity Assessment,” in Miranda, E. (eds.),
Readings in Music and Artificial Intelligence, New York and London:
Gordon & Breach - Harwood Academic Publishers, 1999.
[Self98] Selfridge-Field, E., “Conceptual and Representational
Issues in Melodic Comparison,” in Hewlett, W. B. and E. Selfridge-
Field (eds.), Melodic Similarity: Concepts, Procedures, and
Applications (Computing in Musicology: 11), The MIT Press, 1998.
[Shih01] Shih, H.-H., S. S. Narayanan, and C.-C. Jay Kuo,
“Automatic Main Melody Extraction from MIDI Files with a
Modified Lempel-Ziv Algorithm,” in Proc. of Intl. Symposium on
Intelligent Multimedia, Video and Speech Processing, 2001.

