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ABSTRACT 

The automatic analysis of singing from music is an 
important and challenging issue within the research 
target of content-based retrieval of music information. As 
part of this research target, this study presents a first 
attempt to automatically identify the language sung in a 
music recording. It is assumed that each language has its 
own set of constraints that specify which of the basic 
linguistic events present in a singing process are allowed 
to follow another. The acoustic structure of individual 
languages may, thus, be characterized by statistically 
modeling those constraints. To this end, the proposed 
method employs vector clustering to convert a singing 
signal from its spectrum-based feature representation into 
a sequence of smaller basic phonological units. The 
dynamic characteristics of the sequence are then 
analyzed by using bigram language models. Since the 
vector clustering is performed in an unsupervised manner, 
the resulting system does not use sophisticated linguistic 
knowledge and, thus, is easily portable to new language 
sets. In addition, to eliminate the interference of 
background music, we leverage the statistical estimation 
of a piece’s music background so that the vector 
clustering is relevant to the solo singing voices in the 
accompanied signals. 

1. INTRODUCTION 

Recent advances in digital signal processing tech-
nologies, coupled with what are essentially unlimited 
data storage and transmission capabilities, have created 
an unprecedented growth of music material being 
produced, distributed, and made available universally. 
On the other hand, our ever-increasing appetite for 
music has provided a major impetus for the development 
of various new technologies. However, as the amount of 
music-related data and information continues to grow, 
finding the desired item from the innumerable options 
can, ironically, become more and more difficult. This 
problem has consequently motivated research into 

developing techniques for automatically extracting 
information from music. Specific topics such as melody 
spotting [1], instrument recognition [5], music score 
transcription [11], and genre classification [19], are 
being extensively studied within the overall context of 
content-based retrieval of music information. More 
recently, research in this area has made a foray into the 
problem of extracting singing information from music, 
such as lyric recognition [20] – decoding what is sung; 
and singer identification [10] – determining who is 
singing. In tandem with the above research, this study 
presents a first attempt to identify the singing language 
of a song. Specifically, it aims to determine which 
among a set of candidate languages is sung in a given 
music recording.  

Singing Language IDentification (singing LID) is 
useful for organizing multilingual music collections that 
are unlabeled or insufficiently labeled. For instance, a 
song titled in English, but not sung in English, is 
commonplace in popular music, and very often it is not 
easy to infer the language of a song simply from its title. 
In such a case, singing LID can be deployed to 
categorize music recordings by language, without 
needing to refer to the lyrics or other information 
attached textually to the recordings. This function could 
support preference-based searches for music and may 
also be useful for assisting other techniques for 
classifying music, such as genre classification. Singing 
LID can also be used to distinguish between songs that 
have the same tune, but different languages. Such a case 
exists commonly in cover versions of songs, in which a 
singer performs a song written or made famous by a 
different artist. Since popular songs are often translated 
from one language to another and the titles are changed 
accordingly, singing LID could aid a melody-based 
music retrieval system for better handling of multilingual 
music documents.  

Relatedly, copious amounts of research have been 
performed on spoken language identification (spoken 
LID) [12,16], which aims to identify the language being 
spoken from a sample of speech by an unknown speaker. 
Spurred by the market trend and the need to provide 
services to a wide public, spoken LID has been gaining 
in importance as a key step toward multilingual 
automatic systems such as multilingual speech 
recognition, information retrieval, and spoken language 
translation. Various methods [7,8,21] have been 
proposed in attempts to mimic the ability of humans to 



  

 

 

distinguish between languages. From a linguistic 
standpoint, spoken languages can be distinguished from 
one another by the following traits. 

• Phonology. Phonetic inventories are different from 
one language to another. Even when languages have 
nearly identical phones, the frequency of the 
occurrence of phones and the combinations of phones 
differ significantly across languages.  

• Prosody. Significant differences exist in the duration 
of phones, speech rate and the intonation across 
different languages. 

• Vocabulary. Each language has its own word roots 
and lexicons, and the process of word formation is 
also different from one language to another.  

• Grammar. The syntactic and semantic rules which 
govern the concatenation of words into spoken 
utterances can vary greatly from language to language. 

Although humans identify the language of a speech 
utterance by using one or a multiple of the traits 
described above, spoken-LID research to date has not 
exhaustively exploited all of these traits. Instead, it has 
developed methods which are reliable, computationally 
efficient, and easily portable to new language sets. In 
particular, phonological and prosodic information are the 
most prevalent cues exploited for spoken LID, since they 
are easily extracted from the acoustic signal without 
requiring too much language-specific knowledge. More 
particularly, a very promising and feasible way for 
spoken LID [8,14] is the stochastic modeling of the so-
called phonotactics, i.e., the dependencies inherent in the 
phonetic elements of utterances. A spoken-LID system 
based on phonotactics commonly consists of a phonetic 
element recognizer, followed by a set of n-gram-based 
language models. There are also various modifications 
thereof [6,14,21]. Other combinations that use other 
language-discriminating information [2,4,7], and do not 
involve complex linguistic knowledge, are also being 
studied to improve spoken-LID performance. 

Intuitively, singing LID might be performed using 
the methods for spoken LID. However, singing differs 
from speech in many ways, including various 
phonological modifications employed by singers, 
prosodic shaping to fit the overall melody, and the 
peculiar wordings used in lyrics. Moreover, interference 
caused by the background music is often inevitable in 
most popular songs. As a result, porting a well-developed 
technique of spoken LID to the singing LID may present 
its own set of problems. For example, in using 
phonotactic information for singing LID, it is rather 
difficult and cost prohibitive to build a phone recognizer 
capable of handling accompanied singing signals with 
satisfactory accuracy and reliability. In addition, existing 
spoken-LID methods based on prosodic information 
might fail in the singing-LID task, since the original 
prosodic structures of spoken language are largely 
submerged by the overall melody. Therefore, to better 
handle the singing-LID problem, this study attempts to 
develop a data-driven method for singing LID, which 

does not involve the cumbersome task of phone 
recognition and can be robust against the interference of 
the background music. 

The rest of this paper is organized as follows. The 
overview of the proposed method is introduced in 
Section 2. The details of the singing-LID components, 
including vocal/non-vocal segmentation, language 
characteristic modeling, and stochastic matching, are 
presented in Sections 3, 4, and 5, respectively. Finally, 
the experimental results are discussed in Section 6, and 
conclusions are drawn in Section 7. 

2. METHOD OVERVIEW 

A singing-LID system takes as input a test music 
recording and produces as output the identity of the 
language sung in that music recording. Since the vast 
majority of music is a mixture of assorted sound sources, 
a prerequisite for designing a successful singing-LID 
system is to extract, model, and compare the 
characteristic features of language acoustics without 
interference from non-language features. Toward this end, 
a singing-LID process as shown in Figure 1 is proposed. 
It consists of two phases: training and testing.  
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Figure 1. Illustration of the singing-LID process. 
 

In the training phase, a music database containing all 
the languages of interest sung by plenty of singers must 
be acquired beforehand. The database is used to establish 
a characteristic representation of individual languages. 
Since singing language is irrelevant to accompaniment, 
the training procedure begins with a segmentation of 
each music recording into vocal and non-vocal regions, 
where a vocal region consists of concurrent singing and 
accompaniment, whereas non-vocal regions consist of 
accompaniment only. In our implementation, the 
vocal/non-vocal segmentation of the training data is 
performed manually. Then, the acoustic characteristics of 
the vocal and non-vocal regions are stochastically 
modeled in order to automate the segmentation 
procedure in the testing phase. On the other hand, a 
stochastic modeling technique is performed in an attempt 



  

 

 

to extract the underlying characteristics of singing 
language in the vocal segments by specifically 
suppressing the characteristics of the background. After 
that, each language is represented by a language-specific 
parametric model.  

During testing, the vocal and non-vocal segments of 
an unknown music recording are automatically located 
and marked as such. The vocal segments are then 
examined using each of the language-specific parametric 
models. Finally, the language of the model deemed best 
matching the observed vocal segments is taken as the 
language of that test recording. 

3. VOCAL/NON-VOCAL CHARACTERISTIC 
MODELING AND SEGMENTATION 

The basic strategy applied here follows our previous 
work [18], in which a stochastic classifier is constructed 
for distinguishing vocal from non-vocal regions. This 
classifier consists of a front-end signal processor that 
converts digital waveforms to spectrum-based feature 
vectors, e.g., cepstral coefficients, followed by a backend 
statistical processor that performs modeling and 
matching.  

In modeling the acoustic characteristics of the vocal 
and non-vocal classes, a set of Gaussian mixture models 
(GMMs) is used. For each of the languages of interest, a 
GMM is created using the feature vectors of the 
manually-segmented vocal parts of music data sung in 
that language. Thus, L vocal GMMs Λ1, Λ2 ,…, ΛL are 
formed for L languages. On the other hand, a non-vocal 
GMM ΛN is created using the feature vectors of all the 
manually-segmented non-vocal parts of music data. 
Parameters of the GMMs are initialized via k-means 
clustering and iteratively adjusted via expectation-
maximization (EM) [3]. When an unknown music 
recording is present, the classifier takes as input the T-
length feature vectors X = {x1, x2, ..., xT} extracted from 
that recording, and produces as outputs the frame 
likelihoods p(xt|ΛN) and p(xt|Λl), 1 ≤ l ≤ L, 1 ≤ t ≤ T. 
Since singing tends to be continuous, classification can 
be made in a segment-by-segment manner. Specifically, a 
W-length segment is hypothesized as either vocal or non-
vocal using 
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where k is the segment index. 

4. LANGUAGE CHARACTERISTIC MODELING 

This section presents a stochastic method for 
representing the characteristics of singing languages. 
The method can be implemented without involving 
complicated linguistic rules and pre-prepared phonetic 
transcriptions. 

4.1. Vector Tokenization Followed by Grammatical 
Modeling 
Our basic idea is to explore the phonotactics-related 
information of individual languages by examining the 
statistical dependencies of sound events present in a 
singing signal. In contrast to the conventional 
phonotactic modeling approach, which relies on phone 
recognition as a front-end operation, we use an 
unsupervised classification method to derive the basic 
phonological units inherently in a singing process. This 
allows us to circumvent the cumbersome task of 
segmenting singing into linguistically meaningful 
elements 

Given a set of training data consisting of spectrum-
based feature vectors computed from the manually-
segmented vocal parts of music, the procedure for 
language characteristic modeling comprises two stages 
as shown in Figure 2. In the first stage, vector clustering 
is employed on all feature vectors pertaining to a 
particular language, and a language-specific codebook, 
consisting of several codewords for characterizing the 
individual clusters, is formed. Each of the feature 
vectors is then assigned a codeword index of its 
associated cluster. It is assumed that each of the clusters 
represents a certain vocal tract configuration 
corresponding to a fragment of a broad phonetic class, 
such as vowels, fricatives, or nasals. The concatenation 
of different codeword indices in a singing signal may 
follow some language-specific rules resembling 
phonotactics, and hence the characteristics of the singing 
languages may be extracted by analyzing the generated 
codeword index sequences.  
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Figure 2.  Language characteristic modeling. 

 

To reflect the fact that a vocal tract configuration 
cannot change suddenly, the generated codeword index 
sequences are smoothed in the time domain. For 
smoothing, an index sequence is first divided into a 
series of consecutive, non-overlapping, fixed-length 
segments, and each segment is assigned the majority 



  

 

 

index of its constituent vectors. After that, adjacent 
segments are further merged as a homogeneous segment 
if they have the same codeword index. Each 
homogeneous segment is regarded as a basic 
phonological unit. Accordingly, a vocal part of music is 
tokenized into a sequence of basic phonological units.  

In the second stage, a grammatical model is used to 
characterize the dynamics of the generated basic 
phonological unit sequences. There are many choices to 
do this. In our implementation, bigram language models 
[9] are used. Parameters of a bigram language model, 
consisting of interpolated bigram probabilities, are 
estimated using the relative frequency method: 
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where wt and wt-1 denote two successive basic 
phonological units, α is an interpolating factor subject to 
0 ≤ α ≤ 1, K is the codebook size, ni is the number of 
basic phonological units assigned as codeword i, and nij 
is the number of two successive basic phonological units 
assigned as codewords i and j, respectively. Note that 
the transition between two separate vocal regions in a 
music recording is not taken into account in the 
computation of bigram probabilities. In summary, a 
language-specific model consists of a codebook and a 
bigram language model. 

4.2. Solo Voice Codebook Generation 

The effectiveness of the language characteristic 
modeling described above crucially depends on whether 
the vector tokenization truly relates to the notion of 
phonology. Since the vast majority of popular music 
contains background accompaniment during most or all 
vocal passages, directly using conventional vector 
clustering methods, such as k-means algorithm on the 
accompanied singing signals, may cause that the 
generated clusters are not only related to the vocal tract 
configurations, but also to the instrumental types. To 
alleviate this problem, we develop a codebook 
generation method for vector clustering based on an 
estimation of the stochastic characteristics of the 
underlying solo voices from accompanied singing 
signals.  

Let X = {x1, x2,..., xT} denote all the feature 
vectors computed from the vocal regions of music 
recordings. Due to the existence of accompaniment, X 
can be considered as a mixture of a solo voice S = {s1, 
s2, ..., sT} and a background music B = {b1, b2, ..., bT}. 
More specifically, S and B are added in the time domain 
or linear spectrum domain, but both of them are 
unobservable. Our aim is to create a codebook for 
representing the generic characteristics of the solo voice 
signal S, such that the vector tokenization can be 
performed on the basis of this codebook. Under the 
vector clustering framework, we assume that the solo 
voice signal and background music are, respectively, 
characterized by two independent codebooks Cs = {cs,1, 

cs,2,…, cs,Ks} and Cb = {cb,1, cb,2,…, cb,Kb}, where cs,i, 1 ≤ 

i ≤ Ks, and cb,j, 1 ≤ j ≤ Kb, are the codewords. To better 
represent the acoustic feature space, each cluster is 
modeled by a Gaussian density function. Therefore, a 
codeword consists of a mean vector and a covariance 
matrix, i.e., cs,i = {µs,i, Σs,i} and cb,j = {µb,j, Σb,j}, where 
µs,i and µb,j are mean vectors, and Σs,i and Σb,j are 
covariance matrices. The vector clustering can be 
formulated as a problem of how to best represent X by 
choosing and combining the codewords from Cs and Cb. 
To measure how well the vector clustering is performed, 
we compute the following conditional probability: 
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where p(xt |cs,i, cb,j) accounts for one of the possible 
combination of the solo voice and background music 
which can form an instant accompanied voice xt. If the 
accompanied signal is formed from a generative function 
xt = f (st, bt), 1 ≤ t ≤ T, the probability p(xt | cs,i, cb,j) can 
be computed by 
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       (4) 
where G(⋅) denotes a multi-variant Gaussian density 
function. In using such a measurement, vector clustering 
is considered as effective if the probability p(X|Cs,Cb) 
can be as large as possible. 

In most popular music, substantial similarities exist 
between the non-vocal regions and the accompaniment of 
the vocal regions. Therefore, although the background 
music B is unobservable, its stochastic characteristics 
may be approximated from the non-vocal regions. This 
assumption enables us to estimate the background music 
codebook Cb directly, using the k-means clustering 
algorithm on the feature vectors from the non-vocal 
regions. Accordingly, from the available background 
music codebook Cb and the observable accompanied 
voice X, it is sufficient to derive the solo voice codebook 
Cs via a maximum likelihood estimation as follows: 
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Equation (5) can be solved using the EM algorithm, 
which starts with an initial codebook Cs and iteratively 
estimates a new codebook 

sĈ  such that p(X|
bs CC ,ˆ ) ≥ 

p(X|Cs,Cb). It can be shown that the need of increasing 
the probability p(X|

bs CC ,ˆ ) can be satisfied by 

maximizing the auxiliary function 
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Letting ∇Q )ˆ( ss CC  ,  = 0 with respect to each parameter to 

be re-estimated, we have 
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where the prime operator (′) denotes vector transpose, 
and E{⋅} denotes expectation. The details of the 
Equations (8) and (9) required for implementation can be 
found in [13,17,18]. Figure 3 summarizes the procedure 
for the solo voice codebook generation. 
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Figure 3. Procedure for a solo voice codebook 
generation. 

5. STOCHASTIC MATCHING AND DECISION 

This section is concerned with the testing phase of the 
proposed singing-LID system. As shown in Figure 4, a 
test music recording is first segmented into vocal and 
non-vocal regions, and the feature vectors from the non-
vocal regions are used to form a codebook Cb, which 
simulates the characteristics of the background accom-
paniment in the vocal regions. For each of the L 
candidate languages, the associated solo voice codebook 
Cs,l, 1 ≤ l ≤ L, along with the background music 
codebook Cb, are used to tokenize the feature vectors of 
the vocal regions {x1, x2,..., xT} into a codeword index 
sequence V (l) = {v1

(l), v2
(l),…, vT

(l)}, where T is the total 
length of the vocal regions, and vt

(l), 1 ≤ t ≤ T, is 
determined by 
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Each of the codeword index sequences V (l), 1 ≤ l ≤ L, is 
then converted into a basic phonological unit sequence 

W (l)  = {w1
(l), w2

(l),…, )(
)(

l

N lw } by smoothing and merging 

the adjacent identical indices. 
For each language l, the dynamics of the basic 

phonological unit sequence W(l) are examined using a 
bigram language model λ(l), in which a log-likelihood 
log p(W(l)|λ(l)), that W(l) tests against λ(l), is computed 
using 
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Note again that the transitions between vocal regions are 
not taken into account when computing Equation (11). 
According to the maximum likelihood decision rule, the 
identifier should decide in favor of a language satisfying 
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 Figure 4. Procedure for hypothesizing the language of 
an unknown test music recording. 

6. EXPERIMENTS 

To test the validity of the proposed singing-LID method, 
computer simulations must be conducted with music data 
covering various languages, music styles, singers, and so 
on. However, during the initial development stage, the 
performance of our singing-LID system was only 



  

 

 

evaluated using the task of distinguishing between 
English and Mandarin pop songs, due to the difficulty of 
collecting and annotating multilingual music data. In our 
experiments, emphasis was put on examining if the 
characteristics of individual languages can be extracted 
from the singing in a music recording. 

6.1 Music Database 

Our music database consisted of 224 tracks (112 per 
language) from pop music CDs. The average length of 
tracks was around three minutes. All the tracks were 
manually labeled with the language identity and the 
vocal/non-vocal boundaries. Among the 224 tracks, there 
were 32 pairs of tracks involving cover/original versions 
of songs, each pair of which contained two same-tune 
songs, one in English and one in Mandarin. These 32 
pairs of tracks, denoted as a subset DB-C, were used for 
evaluating the performance of the proposed singing-LID 
system. Genders of the singers in DB-C were almost 
balanced, and 15 out of 32 pairs of tracks were 
performed by 15 bilingual singers, i.e., each of the 15 
singers performed two same-tune songs, one in English 
and one in Mandarin. As DB-C was composed, we 
attempted to avoid the bias arising from tunes, singers, or 
music styles which may affect the objectivity of assessing 
a singing-LID system. 

Aside from DB-C, the remaining 160 tracks (80 per 
language) in our database were mutually distinct in terms 
of tunes, lyrics, and singers. These 160 tracks were 
further divided into two subsets, respectively, denoted as 
DB-T and DB-R. The DB-T, containing 60 tracks per 
language, was used as training data for creating 
vocal/non-vocal models, language-specific codebooks, 
and bigram language models, while the DB-R, containing 
the rest 20 tracks per language, was used as another 
testing data besides DB-C. None of the singers in one of 
the three subsets appeared in another. All music data 
were down-sampled from the CD sampling rate of 44.1 
kHz to 22.05 kHz, to exclude the high frequency 
components beyond the range of normal singing voices. 
Feature vectors, each consisting of 20 Mel-scale 
frequency cepstral coefficients, were computed using a 
32-ms Hamming-windowed frame with 10-ms frame 
shifts. 

6.2 Experimental Results 

Our experiments began with an evaluation for the 
vocal/non-vocal segmentation of the music data in DB-C 
and DB-R. Segmentation performance was characterized 
by a frame-based accuracy computed as the percentage 
of correctly-hypothesized frames over the total number 
of test frames. In view of the limited precision with 
which the human ear detects vocal/non-vocal changes, all 
frames that occurred within 0.5 seconds of a perceived 
switch-point were ignored in the accuracy computation. 
Using 64 mixture components per GMM along with 60-
frame analysis segments (empirically the most accurate 
configurations), the segmentation accuracies resulted on 
DB-R and DB-C were 78.1% and 79.8%, respectively. 

Then, the singing-LID performance was evaluated 
with respect to different length of test recording. Each of 
the tracks in DB-R and DB-C was divided into several 
overlapping clips of T feature vectors. A 10-sec clip 
corresponds to 1000 feature vectors, and the overlap of 
two consecutive clips was 500 feature vectors. Each clip 
was treated as a separate music recording. The singing-
LID experiments were conducted in a clip-by-clip 
manner, and the singing-LID accuracy was computed as 
the percentage of correctly-identified clips over the total 
number of test clips. In the training phase, the number of 
codewords used in each language-specific solo voice 
codebook and the background music codebook were 
empirically determined to be 32 and 16, respectively. In 
the testing phase, an online-created background music 
codebook was empirically set to have 4 codewords, if the 
number of the non-vocal frames exceeds 200; otherwise, 
no background music codebook was used. The segment 
length for smoothing the generated codeword index 
sequences was empirically set to be 5, and the 
interpolating factor α in Equation (2) was set to be 0.1. 
For performance comparison, we also performed singing 
LID without using any background music codebook. 

Figure 5 shows the singing-LID results with respect 
to T = 3000 (30 sec), 6000 (60 sec), 9000 (90 sec), and 
entire track, in which the T-length clips that fully labeled 
as non-vocal were not used for testing. Here, the singing-
LID performance achieved with the manual vocal/non-
vocal segmentation may serve as an upper bound for that 
obtained using automatic segmentation. We can see that 
as expected, the accuracy gains as the clip length 
increases. It is also clear that the performance of the 
singing LID based on the usage of solo voice codebooks 
is noticeably better than that of the method without 
taking background music into account. Such a 
performance gap is particularly visible when the test 
music recordings are long, mainly because more 
information about the background music can be 
exploited for assisting the construction of a reliable solo 
voice codebook. Using the automatic vocal/non-vocal 
segmentation, the best singing-LID accuracies of 80.0% 
and 70.0% were achieved when testing the entire tracks 
in DB-R and DB-C, respectively. The results indicate 
that the task of identifying the languages of the songs 
made originally in another language is more difficult. 

Table 1 shows the confusion probability matrix from 
the best results of the singing LID based on the automatic 
vocal/non-vocal segmentation. The rows of the matrix 
correspond to the ground-truth of the tracks while the 
columns indicate the hypotheses. It can be found that the 
majority of errors are misidentifications of English songs. 
We speculate that such errors might be attributed to the 
louder background music usually existing in English pop 
songs, compared to Mandarin music, which often mix 
vocals louder to ensure that Mandarin syllables can be 
heard and understood semantically with the lack of tone 
information. The lower vocal-to-background ratio may 
cause the English model to be relatively ill-generated, 
and therefore, to poorly match the associated test music 



  

 

 

recording. Another reason for the bias towards Mandarin 
in identifying the tracks in DB-C is likely because a large 
proportion of the singers in DB-C are Chinese. The 
accents of those Chinese singers might be different 
significantly from those of the singers in DB-T, who are 
mainly American, and hence the resulting discrepancy in 
phonological realizations may also lead the English 
model to match the test music recording poorly. One way 
to solve such problems is to use a wider variety of music 
data for training language-specific models, but this is not 
yet investigated at the initial stage of this study.  
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(a) Experiments on DB-R 

 

3000 6000 9000
Test Recording Length (# frames)

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

S
in

gi
ng

-L
ID

 A
cc

ur
ac

y 
(%

)

Using Solo Voice Codebooks; Manual Seg.

Using Solo Voice Codebooks; Automatic Seg.

Without Background Music Codebooks; Manual Seg.

Without Background Music Codebooks; Automatic Seg.

Entire
 

(b) Experiments on DB-C 

Figure 5. Singing-LID results. 

The above experimental results indicate that though 
the singing-ID performance achieved with our proposed 
method still leaves much room for improving, a 
successful automatic singing-LID system should be 
feasible based on some possible extensions of the 
framework developed in this study. 

 
Hypothesized 

Actual English Mandarin 
English 0.75 0.25 

Mandarin 0.15 0.85 

(a) Experiments on DB-R 

 
Hypothesized 

Actual English Mandarin 
English 0.63 0.37 

Mandarin 0.22 0.78 

(b) Experiments on DB-C 

Table 1. Confusion probability matrix of the 
discrimination of Mandarin and English songs. 

7. CONCLUSIONS 

This study has examined the feasibility of automatically 
identifying the singing language in a popular music 
recording. It has been shown that the acoustic 
characteristics of a language can be extracted from 
singing signals via grammatical modeling of the basic 
phonological unit sequences output from the vector 
tokenization of spectrum-based features. To eliminate the 
interference of background music, we have proposed a 
reliable codebook generation method for vector 
clustering based on an estimation of the solo voice 
characteristics.  

Though this study showed that the language sung in 
a music recording could be distinguished from one 
another, the proposed method and the conducted 
experiments can only be regarded as a very preliminary 
investigation in the singing-LID problem. To further 
explore this problem, the essential work is to scale up the 
music database, which covers a large number of 
languages, singers with a wider variety of accents, and 
rich music styles or genres. 
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