
LEARNING TO ALIGN POLYPHONIC MUSIC

Shai Shalev-Shwartz Joseph Keshet Yoram Singer
{shais,jkeshet,singer}@cs.huji.ac.il

School of Computer Science and Engineering,
The Hebrew University, Jerusalem, 91904, Israel

ABSTRACT

We describe an efficient learning algorithm for aligning a
symbolic representation of a musical piece with its acous-
tic counterpart. Our method employs a supervised learn-
ing approach by using a training set of aligned sym-
bolic and acoustic representations. The alignment func-
tion we devise is based on mapping the input acoustic-
symbolic representation along with the target alignment
into an abstract vector-space. Building on techniques used
for learning support vector machines (SVM), our align-
ment function distills to a classifier in the abstract vector-
space which separates correct alignments from incorrect
ones. We describe a simple iterative algorithm for learn-
ing the alignment function and discuss its formal proper-
ties. We use our method for aligning MIDI and MP3 rep-
resentations of polyphonic recordings of piano music. We
also compare our discriminative approach to a generative
method based on a generalization of hidden Markov mod-
els. In all of our experiments, the discriminative method
outperforms the HMM-based method.

1. INTRODUCTION

There are numerous ways to represent musical recordings.
Typically, a representation is either symbolic (e.g. a mu-
sical score or MIDI events) or a digitized audio form such
as PCM. Symbolic representations entertain quite a few
advantages which become handy in applications such as
content-based retrieval. However, performances of musi-
cal pieces are typically recorded in one of the common
forms for coding of audio signals. Score alignment is
the task of associating each symbolic event with its actual
time of occurrence in the observed audio signal.

There are several approaches to the alignment problem
(see for instance [14, 16] and the references therein). Most
of the previous work on alignment has focused on gen-
erative models and employed parameter estimation tech-
niques in order to find a model that fits the data well. In
this paper we propose an alternative approach for learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

alignment functions that builds on recent work on discrim-
inative supervised learning algorithms. The advantage of
discriminative learning algorithms stems from the fact that
the objective function used during the learning phase is
tightly coupled with the decision task one needs to per-
form. In addition, there is both theoretical and empiri-
cal evidence that discriminative learning algorithms are
likely to outperform generative models for the same task
(cf. [4, 19]). To facilitate supervised learning, we need
to have access to a training set of aligned data, consisting
of symbolic representations along with the division of the
performance into the actual start times of notes.

There are numerous applications where an accurate and
fast alignment procedure may become handy. Soulez et
al. [16] describe few applications of score alignment such
as content-based retrieval and comparisons of different
performances of the same musical piece. In addition, the
ability to align between symbolic and acoustic represen-
tations is an essential first step toward a polyphonic note
detection system (see also [18, 20, 9]). The goal of a poly-
phonic note detection system is to spot notes in an audio
signal. This detection task is rather difficult if numer-
ous notes are played simultaneously (e.g. in polyphonic
pieces). There exist theoretical and empirical evidences
that supervised learning is effective also for complex de-
cision problems and is thus likely to be adequate for poly-
phonic note detection. However, supervised learning al-
gorithms rely on the existence of labeled examples. For-
tunately, the abundance of large acoustic and symbolic
databases together with an efficient alignment procedure
enables the construction of training set for the polyphonic
note detection problem.

Related work Music to score alignment is an important
research topic and has many applications. Most of the
previous work has focused on monophonic signals. See
for example [13, 5, 7] and the references therein. Several
recent works [16, 14] deal with more complex polyphonic
signals. In this paper, we suggest to automatically learn
an alignment function from examples using a discrimina-
tive learning setting. Our learning algorithm builds upon
recent advances in kernel machines and large margin clas-
sifiers for sequences [2, 1, 17] which in turn build on the
pioneering work of Vapnik and colleagues [19, 4]. The
specific form of the learning algorithm described in Sec. 3
stems from recent work on online algorithms [8, 3].

2. PROBLEM SETTING

In this section we formally describe the alignment prob-
lem. We denote scalars using lower case Latin letters (e.g.
x), and vectors using bold face letters (e.g. x). A sequence
of elements is designated by a bar (x̄) and its length is de-
noted by |x̄|.

In the alignment problem, we are given a digitized au-
dio signal of a musical piece along with a symbolic rep-
resentation of the same musical piece. Our goal is to gen-
erate an alignment between the signal and the symbolic
representation. The audio signal is first divided into fixed
length frames (we use 20ms in our experiments) and a d
dimensional feature vector is extracted from each frame
of the audio signal. For brevity we denote the domain of
the feature vectors by X ⊂ R

d. The feature represen-
tation of an audio signal is therefore a sequence of fea-
ture vectors x̄ = (x1, . . . ,xT), where xt ∈ X for all
1 ≤ t ≤ T . A symbolic representation of a musical piece
is formally defined as a sequence of events which repre-
sent a standard way to perform the musical piece. There
exist numerous symbolic representations. For simplicity
and concreteness we focus on events of type “note-on”.
Formally, each “note-on” event is a pair (p, s). The first
element of the pair, p ∈ P = {0, 1, . . . , 127} is the note’s
pitch value (coded using the MIDI standard). The second
element, s is assumed to be a positive integer (s ∈ N) as
it measures the start time of the note in a predefined dis-
crete units (we use 20ms in our experiments). Therefore,
a symbolic representation of a musical piece consists of
a sequence of pitch values p̄ = (p1, . . . , pk) and a corre-
sponding sequence of start-times s̄ = (s1, . . . , sk). Note
that the number of notes clearly varies from one musical
piece to another and thus k is not fixed. We denote by
P? (and similarly N

? and X ?) the set of all finite-length
sequences over P . In summary, an alignment instance is
a triplet (x̄, p̄, s̄) where x̄ is an acoustic representation of
the musical piece and (p̄, s̄) is a symbolic representation
of the piece. The domain of alignment instances is de-
noted by Z = X ? × (P × N)

?. An alignment between
the acoustic and symbolic representations of a musical
piece is formally defined as a sequence of actual start-
times ȳ = (y1, . . . , yk) where yi ∈ N is the observed
start-time of note i in the acoustic signal.

Clearly, there are different ways to perform the same
musical score. Therefore, the actual (or observed) start
times of the notes in the perceived audio signal are very
likely to be different from the symbolic start-times. Our
goal is to learn an alignment function that predicts the
observed start-times from the audio signal and the sym-
bolic representation, f : Z → N

?. To facilitate an
efficient algorithm we confine ourselves to a restricted
class of alignment functions. Specifically, we assume
the existence of a predefined set of alignment features,
{φj}

n
j=1. Each alignment feature is a function of the form

φj : Z × N
? → R . That is, each alignment feature

gets acoustic and symbolic representations of a musical
piece z = (x̄, p̄, s̄), together with a candidate alignment

ȳ, and returns a scalar which, intuitively, represents the
confidence in the suggested alignment ȳ. We denote by
φ(z, ȳ) the vector in R

n whose jth element is φj(z, ȳ).
The alignment functions we use are of the form

f(z) = argmax
ȳ

w · φ(z, ȳ) , (1)

where w ∈ R
n is a vector of importance weight that we

need to learn. In words, f returns a suggestion for an
alignment sequence by maximizing a weighted sum of the
scores returned by each feature function φj . Note that the
number of possible alignment sequences is exponentially
large. Nevertheless, as we show below, under mild con-
ditions on the form of the feature functions φj , the opti-
mization in Eq. (1) can be efficiently calculated using a
dynamic programming procedure.

As mentioned above, we would like to learn the func-
tion f from examples. Each example containing an align-
ment is composed of an acoustic and a symbolic represen-
tation of a musical piece z = (x̄, p̄, s̄) ∈ Z together with
the true alignment between them, ȳ. Let ȳ′ = f(z) be the
alignment suggested by f . We denote by γ(ȳ, ȳ′) the cost
of predicting the alignment ȳ′ where the true alignment is
ȳ. Formally, γ : N

? × N
? → R is a function that gets two

alignments and returns a scalar which is the cost to predict
the second input alignment where the true alignment is the
first. We assume that γ(ȳ, ȳ′) ≥ 0 and that γ(ȳ, ȳ) = 0.
An example for a cost function is,

γ(ȳ, ȳ′) =
1

|ȳ|

|ȳ|
∑

i=1

|yi − y′
i| .

In words, the above cost is the average of the absolute
difference between the predicted alignment and the true
alignment. In our experiments, we used a variant of the
above cost function and replaced the summands |yi − y′

i|
with max{0, |yi − y′

i| − ε}, where ε is a predefined small
constant. The advantage of this cost is that no loss is in-
curred due to the ith note if yi and y′

i are within a distance
of ε of each other. The goal of the learning process is
to find an alignment function f that attains small cost on
unseen examples. Formally, let Q be any (unknown) dis-
tribution over the domain of alignment examples, Z×N

?.
The goal of the learning process is to minimize the risk
of using the alignment function, defined as the expected
error of f on alignment examples, where the expectation
is taken with respect to the distribution Q,

risk(f) = E(z,ȳ)∼Q [γ(ȳ, f(z))] .

To do so, we assume that we have a training set of align-
ment examples each of which is identically and indepen-
dently distributed (i.i.d.) according to the distribution Q.
(Note that we only observe the training examples but we
do not know the distribution Q.) In the next section we
show how to use the training set in order to find an align-
ment function f which achieves small cost on the training
set and that with high probability, achieves small average
cost on unseen examples as well.

The paper is organized as follows. In Sec. 3 we de-
scribe an efficient algorithm that learns an alignment func-
tion f from examples. The learning algorithm assumes
that f is as described in Eq. (1). A specific set of acous-
tic features and feature functions is discussed in Sec. 4. In
Sec. 5 we describe a dynamic programming procedure that
efficiently calculates f . In Sec. 6 we describe an alterna-
tive method for alignment which is based on a generative
model. In Sec. 7 we report experiments on alignment of
polyphonic piano musical pieces and compare our method
to the generative method. Finally, some future directions
are discussed in Sec. 8.

3. DISCRIMINATIVE LEARNING ALGORITHM

Recall that a supervised learning algorithm
for alignment receives as input a training set
S = {(z1, ȳ1), . . . , (zm, ȳm)} and returns a weight
vector w defining an alignment function f given
in Eq. (1). In the following we present an iterative
algorithm for learning the weight vector w. We denote
by wt the weight vector after iteration t of the algorithm.
We start with the zero vector w0 = 0. On iteration t
of the algorithm, we first receive a triplet z = (x̄, p̄, s̄)
representing the acoustic and symbolic representations
of one of the musical pieces from our training set. Next,
we use the current weight vector wt for predicting the
alignment between x̄ and (p̄, s̄) as in Eq. (1). Let ȳ′

t be the
predicted alignment. We then receive the true alignment
ȳ from the training set and suffer cost γ(ȳ, ȳ′

t). If the
cost is zero we continue to the next iteration and keep
wt intact, hence wt+1 = wt. Otherwise, we update the
weight vector to be

wt+1 = wt +

√

γ(ȳ, ȳ′
t) − wt · at

‖at‖2
at , (2)

where at = φ(z, ȳ) − φ(z, ȳ′
t). In words, we add to wt

a vector which is a scaled version of the difference be-
tween the alignment feature vector resulting from the true
alignment φ(z, ȳ) and the one obtained by the alignment
function φ(z, ȳ′

t). It is simple to show that wt+1 is the
minimizer of the following projection problem

min
w

‖w − wt‖
2 s.t. (3)

w · φ(z, ȳ) ≥ w · φ(z, ȳ′
t) +

√

γ(ȳ, ȳ′
t)

Therefore, after updating w, the score of the true align-
ment ȳ is larger than the score of the predicted alignment
ȳ′

t by at least
√

γ(ȳ, ȳ′
t). Moreover, among all weight vec-

tors w that satisfy the inequality in Eq. (3), wt+1 is clos-
est to the vector wt. After each update of w, we find the
largest alignment error on the training set

ε = max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} .

If ε is lower than a termination parameter, denoted ε0, we
stop and return the last value of w. A pseudo-code of the
learning algorithm is given in Fig. 1.

Input: A training set S = {(z1, ȳ1), . . . , (zm, ȳm)} ;
accuracy parameter ε0

Initialize: Set w = 0 ;
(z, ȳ) = arg max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} ;
ε = γ(ȳ, f(z))

While ε ≥ ε0 do:

Predict: ȳ′ = f(z) = argmax
ȳ

w · φ(z, ȳ)

Pay Cost: γ(ȳ, ȳ′)

Set: a = φ(zi, ȳi)− φ(zi, ȳ
′)

Update: w← w +

√

γ(ȳi, ȳ′)−w · a

‖a‖2
a

Choose next example:
(z, ȳ) = arg max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} ;
ε = γ(ȳ, f(z))

Output: Final weight vector w

Figure 1. The alignment learning algorithm.

The following theorem bounds the number of iterations
performed by the above learning algorithm. Our analysis
assumes that there exists a weight vector w

? ∈ R
n such

that the following inequality holds for all examples in the
training set (z, ȳ) ∈ S and for all ȳ′

w
? · φ(z, ȳ) ≥ w

? · φ(z, ȳ′) +
√

γ(ȳ, ȳ′) . (4)

Note that if we use w
? in Eq. (1) then γ(ȳ, f(z)) = 0 for

all the examples in the training set. A modification of the
algorithm to the case where such vector does not exist can
be derived using a similar technique to the one described
in [3].

Theorem 1. Let S = {(z1, ȳ1), . . . , (zm, ȳm)} be a set
of training examples. Assume that there exists a weight
vector w

? ∈ R
n such that Eq. (4) holds for all (zt, ȳt)

and ȳ′. In addition, assume that for all t and for all ȳ′ we
have ‖φ(zt, ȳ

′)‖ ≤ 1/2. Let f be the alignment function
obtained by running the algorithm from Fig. 1 on S with
accuracy parameter εo. Then the total number of itera-
tions of the algorithm is at most ‖w?‖2/ε0.

The proof of the theorem is provided in a long version
of the paper [15]. Thm. 1 states that the number of itera-
tions of the algorithm does not depend on the number of
examples. Therefore, only a small part of the examples
in the training set actually effects the resulting alignment
function. Intuitively, we can view the examples which do
not effect the resulting alignment function as a validation
set. By construction, the error of the alignment function
on this validation set is small and thus it is very likely that
the true risk of the alignment function (on unseen data) is
also small. The following theorem formalizes this intu-
ition.

Theorem 2. Let S = {(z1, ȳ1), . . . , (zm, ȳm)} be a train-
ing set of examples identically and independently dis-
tributed according to an unknown distribution Q. As-
sume that the assumptions of Thm. 1 hold. In addition,
assume that γ(ȳ, ȳ′) ≤ L for all pairs (ȳ, ȳ′) and let k be

the smallest integer such that k ≥ ‖w?‖2/ε0. Let f be
the alignment function obtained by running the algorithm
from Fig. 1 on S. Then for any 0 ≤ δ ≤ 1 the following
bound holds with a probability of at least 1 − δ

risk(f) ≤ ε0 + L

√

k ln(em/k) + ln(1/δ)

2(m − k)
.

The proof of this theorem is also provided in a long
version of the paper [15]. In summary, Thm. 2 states that
if we present the learning algorithm with a large number of
examples, the true risk of the resulting alignment function
is likely to be small.

4. FEATURES

In this section we describe the alignment feature functions
{φj}

n
j=1. In our experiments we used n = 10 alignment

features as follows.
The first 9 alignment features take the following form,

φj(x̄, p̄, s̄, ȳ) =

|p̄|
∑

i=1

φ̂j(xyi
, pi) , 1 ≤ j ≤ 9 (5)

where each φ̂j : X × P → R (1 ≤ j ≤ 9) is a set of local
templates for an alignment function. Intuitively, φ̂j is the
confidence that a pitch value pi starts at time index yi of
the signal.

We now describe the specific form of each of the above
local templates, starting with φ̂1. Given the tth acous-
tic feature vector xt and a pitch value p ∈ P , the lo-
cal template φ̂1(xt, p) is the energy of the acoustic sig-
nal at the frequency corresponding to the pitch p. For-
mally, let Fp denote a band-pass filter with a center fre-
quency at the first harmony of the pitch p and cut-off fre-
quencies of 1/4 tone below and above p. Concretely, the
lower cut-off frequency of Fp is 440 · 2

p−57−0.5

12 Hz and

the upper cut-off frequency is 440 · 2
p−57+0.5

12 Hz, where
p ∈ P = {0, 1, . . . , 127} is the pitch value (coded us-
ing the MIDI standard) and 440 · 2

p−57

12 is the frequency
value in Hz associated with the codeword p. Similarly,
φ̂2(xt, p) and φ̂3(xt, p) are the output energies of band-
pass filters centered at the second and third pitch harmon-
ics, respectively. All the filters were implemented using
the fast Fourier transform.

The above 3 local templates {φ̂j}
3
j=1 measure energy

values for each time t. Since we are interested in identify-
ing notes onset times, it is reasonable to compare energy
values at time t with energy values at time t−1. However,
the (discrete) first order derivative of the energy is highly
sensitive to noise. Instead, we calculate the derivatives of
a fitted second-order polynomial of each of the above lo-
cal features. (This method is also a common technique
in speech processing systems [11].) Therefore, the next
6 local templates {φ̂j}

9
j=4 measure the first and second

derivatives of the first 3 local templates.
While the first 9 alignment features measure confi-

dence of alignment based on spectral properties of the

Input: Acoustic-symbolic representation z = (x̄, p̄, s̄) ;
An alignment function defined by a weight vector w

Initialize: ∀(1 ≤ t ≤ |x̄|), D(0, t, 1) = 0
Recursion:
For i = 1, . . . , |p̄|
For t = 0, . . . , |x̄|
For µ ∈M

If (si − si−1 > τ)
D(i, t, µ) = max

µ′∈M
D(i−1, t−l, µ

′)+w · φ̂(xt, pi, µ, µ
′),

where l = µ′(si − si−1)
Else [If (si − si−1 ≤ τ)]

D(i, t, µ) = max
l∈L

D(i−1, t−l, µ) + w · φ̂(xt, pi, µ, µ),

where L = {−τ,−τ + 1, . . . , τ − 1, τ}
Termination: D

? = max
t,µ

D(|p̄|, t, µ)

Figure 2. The procedure for calculating the best alignment.

signal, the last alignment feature captures the similarity
between s̄ and ȳ. Formally, let

µi =
yi − yi−1

si − si−1
(6)

be the ratio between the ith interval according to the obser-
vation to the interval of the corresponding symbolic rep-
resentation. We also refer to µi as the relative tempo. The
sequence of relative tempo values is presumably constant
in time, since s̄ and ȳ represent two performances of the
same musical piece. However, in practice the tempo ratios
often differ from performance to performance and within
a given performance. The local template φ̂10 measures the
local change in the tempo,

φ̂10(µi, µi−1) = (µi − µi−1)
2

,

and φ10 is simply the cumulative sum of the changes in
the tempo,

φ10(x̄, p̄, s̄, ȳ) =

|s̄|
∑

i=2

φ̂10(µi, µi−1) . (7)

The relative tempo of Eq. (6) is ill-defined whenever
si − si−1 is zero (or relatively small). Since we deal
with polyphonic musical pieces, very short intervals be-
tween notes are rather relevant. Therefore, we define the
tempo µi as in Eq. (6) but confine ourselves to indices i
for which si−si−1 is greater than a predefined value τ (in
our experiments we set τ = 60 ms). Finally, we denote by
φ̂(xt, p, µ, µ′) the vector in R

10 of local templates, whose
jth element is φ̂j(xt, p) if 1 ≤ j ≤ 9 and whose 10th
element is φ̂10(µ, µ′).

5. EFFICIENT CALCULATION OF THE
ALIGNMENT FUNCTION

So far we have put aside the problem of evaluation time of
the function f . Recall that calculating f requires solving
the following optimization problem,

f(z) = argmax
ȳ

w · φ(z, ȳ) .

A direct search for the maximizer is not feasible since the
number of possible alignment sequences ȳ is exponential
in the length of the sequence. Fortunately, as we show
below, by imposing a few mild conditions on the struc-
ture of the alignment feature functions, the best alignment
sequence can be found in polynomial time.

For simplicity, we describe an efficient algorithm for
calculating the best alignment using the feature functions
φj described in Sec. 4. Similar algorithms can be con-
structed for any feature functions that can be described as
a dynamic Bayesian network (c.f. [6, 17]).

We now turn to the description of a dynamic pro-
gramming procedure for finding the best alignment given
an alignment function defined by a weight vector w.
Let M be the set of potential tempo ratios of the form
(yi − yi−1)/(si − si−1). For a given ratio µ ∈ M , de-
note by D(i, t, µ) the score for the prefix of the notes
sequence 1, . . . , i assuming that their actual start times
are y1, . . . , yi−1 and for the last note yi = t with µ =
(yi − yi−1)/(si − si−1). This variable can be computed
efficiently in a similar fashion to the forward variables cal-
culated by the Viterbi procedure in HMMs (see for in-
stance [12]). The pseudo code for computing D(i, t, µ)
recursively is shown in Fig. 2. The best sequence of ac-
tual start times, ȳ′, is obtained from the algorithm by
saving the intermediate values that maximize each ex-
pression in the recursion step. The complexity of the
algorithm is O(|p̄| |x̄| |M |2), where |M | is the size of
the set M . Note that |M | is trivially upper bounded by
|x̄|2. However, in practice, we can discretize the set of
tempo ratios and obtain a good approximation to the ac-
tual ratios. In our experiments we chose this set to be
M = {2−1, 2−0.5, 1, 20.5, 21}.

6. GENERATIVE METHOD FOR ALIGNMENT

We compare our discriminative method for alignment to
a generative method based on the Generalized Hidden
Markov Model (GHMM) [10]. In the generative setting,
we assume that the acoustic signal x̄ is generated from the
symbolic representation (p̄, s̄) as follows. First, the ac-
tual start times sequence ȳ is generated from s̄. Then, the
acoustic signal x̄ is generated from the pitch sequence p̄
and the actual start time sequence ȳ. Therefore,

Pr [x̄|p̄, s̄] =
∑

ȳ

Pr [x̄, ȳ|p̄, s̄]

=
∑

ȳ

Pr [ȳ|s̄] Pr [x̄|ȳ, p̄] .

We now describe the parametric form we use for each of
the terms in the above equation. As in [14], we model
the probability of the actual start-times given the sym-
bolic start time by Pr [ȳ|s̄] =

∏|ȳ|
i=1 Pr [µi|µi−1], where

µi is as defined in Sec. 4. In our experiments, we esti-
mated the probability Pr [µi|µi−1] from the training data.
To model the probability Pr [x̄|ȳ, p̄] we use two Gaussian
Mixture Models (GMM). The first GMM approximates

GHMM-1 GHMM-3 GHMM-5 GHMM-7 Discrim.

1 10.0 188.9 49.2 69.7 8.9
2 15.3 159.7 31.2 20.7 9.1
3 22.5 48.1 29.4 37.4 17.1
4 12.7 29.9 15.2 17.0 10.0
5 54.5 82.2 55.9 53.3 41.8
6 12.8 46.9 26.7 23.5 14.0
7 336.4 75.8 30.4 43.3 9.9
8 11.9 24.2 15.8 17.1 11.4
9 11473 11206 51.6 12927 20.6

10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 12.4
12 13.4 14.5 13.8 28.1 9.6

mean 1000.1 998.1 30.3 1106.4 14.4
std 3159 3078.3 14.1 3564.1 9.0

median 15.8 54.2 28.5 25.8 10.7

Table 1. Summary of the LOO loss (in ms) for different algo-
rithms for alignment.

the probability of xt given that a pitch p starts at time
t. We denote this probability function by Pr [xt|p]. The
second GMM approximates the probability of xt given
that a pitch p does not start at time t. This probabil-
ity is denoted by Pr [xt|¬p]. For a given time t, let
Pt = {p ∈ P : ∃i, yi = t, pi = p} be the set of all
pitches of notes that start on time t, and let Pt = P\Pt be
the completion set. Using the above definitions the prob-
ability of the acoustic signal x̄ given the actual start time
sequence ȳ and the pitch sequence p̄ can be written as

Pr [x̄|ȳ, p̄] =

|x̄|
∏

t=1

∏

p:Pt

Pr [xt|p]
∏

p:Pt

Pr [xt|¬p] .

We estimated the parameters of the GMMs from the train-
ing set using the Expectation Maximization (EM) algo-
rithm. The best alignment of a new example (x̄, p̄, s̄) from
the test set is the alignment sequence ȳ′ that maximizes the
likelihood of x̄ according to the model described above. A
detailed description of the dynamic programming proce-
dure for finding the best alignment is provided in a long
version of this paper [15].

7. EXPERIMENTAL RESULTS

In this section we describe experiments with the algo-
rithms described above for the task of alignment of poly-
phonic piano musical pieces. Specifically, we compare
our discriminative and generative algorithms. Recall
that our algorithms use a training set of alignment ex-
amples for deducing an alignment function. We down-
loaded 12 musical pieces from http://www.piano-
midi.de/mp3.php where sound and MIDI were
both recorded. Here the sound serves as the acous-
tical signal x̄ and the MIDI is the actual start times
ȳ. We also downloaded other MIDI files of the
same musical pieces from a variety of other web-
sites and used these MIDI files for creating the se-
quences p̄ and s̄. The complete dataset we used
is available from http://www.cs.huji.ac.il/∼
shais/alignment .

We used the leave-one-out (LOO) cross-validation
procedure for evaluating the test results. In the LOO

setup the algorithms are trained on all the training ex-
amples except one, which is used as a test set. The
loss between the predicted and true start times is com-
puted for each of the algorithms. We compared the re-
sults of the discriminative learning algorithm described
in Sec. 3 to the results of the generative learning algo-
rithm described in Sec. 6. Recall that the generative al-
gorithm uses a GMM to model some of the probabilities.

GHMM−1 GHMM−3 GHMM−5 GHMM−7 Disc.
0

20

40

60

80

Lo
ss

[m
s]

Figure 3. The average loss
of all the LOO experiments ex-
cluding the best and worst re-
sults.

The number of
Gaussians used
by the GMM
needs to be
determined. We
used the values
of 1, 3, 5 and 7
as the number
of Gaussians
and we denote
by GHMM-n
the resulting
generative
model with n
Gaussians. In
addition, we
used the EM algorithm to train the GMMs. The EM
algorithm converges to a local maximum, rather than to
the global maximum. A common solution to this problem
is to use a random partition of the data to initialize the
EM. In all our experiments with the GMM we used
15 random partitions of the data to initialize the EM
and chose the one that leads to the highest likelihood.
The LOO results for each of the 12 musical pieces are
summarized in Table 1. As seen from the table, the
discriminative learning algorithm outperforms all the
variants of generative algorithms in all of the experiments.
Moreover, in all but two of the experiments the loss of the
discriminative algorithm is less than 20 ms, which is the
length of an acoustic frame in our experiments, thus it is
the best accuracy one can hope for this time resolution.
It can be seen that the variance of the LOO loss obtained
by the generative algorithms is rather high. This can be
attributed to the fact that the EM algorithm converges
to a local maximum which depends on initialization of
the parameters. Therefore, we omitted the highest and
lowest loss values obtained by each of the algorithms and
re-calculated the average loss over the 12 experiments.
The resulting mean values along with the range of the
loss values are depicted in Fig. 3.

8. FUTURE WORK

We are currently pursuing a few extensions. First, we are
now working on applying the methods described in this
paper to other musical instruments. The main difficulty
here is to obtain a training set of labeled examples. We are
examining semi-supervised methods that might overcome
the lack of supervision. Second, we plan to automatically
generate large databases of aligned acoustic-symbolic rep-

resentations of musical pieces. These datasets would serve
as a necessary step towards the implementation of a poly-
phonic note detection system.
Acknowledgements Thanks to Ofer Dekel, Nir Kruase, and Mo-
ria Shalev for helpful comments on the manuscript. This work
was supported by EU PASCAL Network Of Excellence.

9. REFERENCES

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden
Markov support vector machines. In ICML, 2003.

[2] M. Collins. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron
algorithms. In EMNLP, 2002.

[3] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer.
Online passive aggressive algorithms. In NIPS, 2003.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines. Cambridge University Press, 2000.

[5] R. Dannenberg. An on-line algorithm for real-time accom-
paniment. ICMC, 1984.

[6] T. Dean and K. Kanazawa. A model for reasoning about
persistent and causation. Computational Intelligence,
5(3):142–150, 1989.

[7] A. S. Durey and M. A. Clements. Melody spotting using
hidden Markov models. In ISMIR, 2001.

[8] M. Herbster. Learning additive models online with fast
evaluating kernels. In COLT, 2001.

[9] A. Klapuri, T. Virtanen, A. Eronen, and J. Seppanen. Auto-
matic transcription of musical recordings. In CRAC, 2001.

[10] L.T. Niles and H.F. Silverman. Combining hidden Markov
model and neural network classifiers. In ICASSP, 1990.

[11] L. Rabiner and B.H. Juang. Fundamentals of Speech
Recognition. Prentice Hall, 1993.

[12] L.R. Rabiner and B.H. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, 3(1):4–16, Jan.
1986.

[13] C. Raphael. Automatic segmentation of acoustic musical
signals using hidden Markov models. IEEE trans. on Pat-
tern Analysis and Machine Intelligence, 21(4), April 1999.

[14] S. Shalev-Shwartz, S. Dubnov, N. Friedman, and Y. Singer.
Robust temporal and spectral modeling for query by
melody. In SIGIR, 2002.

[15] S. Shalev-Shwartz, J. Keshet, and Y. Singer. Learn-
ing to align polyphonic music. Long version.
http://www.cs.huji.ac.il/∼shais/ShalevKeSi04long.ps .

[16] F. Soulez, X. Rodet, and D. Schwarz. Improving poly-
phonic and poly-instrumental music to score alignment. In
ISMIR, 2003.

[17] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov
networks. In NIPS, 2003.

[18] R. Turetsky and D. Ellis. Ground-truth transcriptions of
real music from force-aligned MIDI syntheses. In ISMIR,
2003.

[19] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[20] P.J. Walmsley, S.J. Godsill, and P.J.W. Rayner. Polyphonic
pitch tracking using joint Bayesian estimation of multiple
frame parameters. In Proc. Ieee Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, October
1999.

