A SEARCH METHOD FOR NOTATED POLYPHONIC MUSIC WITH
PITCH AND TEMPO FLUCTUATIONS

Rainer Typke, Frans Wiering, Remco C. Veltkamp
Utrecht University
Institute of Information and Computing Sciences

ABSTRACT A natural way of searching polyphonic music for the

Wi hods of . lodic si occurrence of a polyphonic pattern is to view the sym-
VY& compare tvyo methods of measuring melodic sim- bolically represented music as sets of notes, characterized
llarity for symbolically represented polyphonic music. by onset time, pitch, and duration, and search for pieces

Both e>$plo_it advantages of tra_nsp_o rtation_ distgnces .SUChthat are supersets of the query. This idea and some vari-
as continuity and partial matching in the pitch dimension. tions were explored by Michael Clausen et al. with the

By segmenting querigs and d_atat_)ase dqcumgnts, one ROMS/notify systemd], [4] and Lemstdm et al. with
the_m also offers partlal matchmg in the time dimension. .. ~_grahms systeng[, [9], [15]. For example, they
This method can find short queries in long database docu- ;o4 for supersets of (possibly fuzzy) queries, maxi-
ments and is more robust against pitch and tempo quC'mized the overlap of set elements, or searched for occur-

tua'ilr(])ndst;]n tthe qutenes ort dtgtabdgs;a docun‘;ents \t/r\;an th‘?’ences of monophonic patterns represented by a string in
method that uses transportation distances alone. vve Combolyphonic pieces represented by some parallel strings.

pare the use of transportation distances with and W|thout|vIost of these methods put some constraints on the data

segmentat!on for the RISM All collectl'o'n and fmd that that can be searched, such as the requirement that the mea-
segmentation improves recall and precision. With every- sure structure be known or the note durations and onset
thing else being equal, the segmented search found 8 imes be quantized

out of 114 relevant documents, while the method relying In our previous work 3], we describe how transporta-

solely on transportation distances found only 60. tion distances such as the Earth Mover’s Distance (EMD)
can be used for measuring melodic similarity. Transporta-
1. INTRODUCTION tion distances have the advantage of not requiring a quan-

i . ) _ tization or the knowledge of the measure structure; how-
Our goal is a search engine for notated polyphonic music gyer they work well only for comparing segments of mu-
that would allow musicologists to search large databasesgjc of corresponding length. Finding an occurrence of a

of notated music, to trace musical themes as they spreadsort query in a long piece cannot be done with transporta-
from composer to composer and as they develop over the;o, distances alone.

course of music history. Generally, once the “holy grail” Our Contribution.  Our new, segmented search

of music information retrieval, automatic polyphonic tran- - method, still uses the advantages of transportation dis-
scription from audio, is achieved, there will be an in- (ances. It overcomes many restrictions of Clausen’s and
creased need for an efficient and effective method for | o mstom’s methods 14]. By segmenting the music be-

searching notated music. Such a method should be ablgqre applying a transportation distance, we are able to
to deal with variations in tempo and pitch as they occur maich pieces of music of differing length, and the segmen-
with human performers. This would enable a search en-a(on also makes our method robust against tempo and
gine to deal with queries entered by humans or to searchy;ich fiuctuations. Our comparison of the new segmenting
databases of transcribed performances by humans. method with the old transportation distance method shows

Related Work. Byrd and Crawford 4] provide an 5 jmproved performance for the RISM A/l collection.

overview of the challenges of music information retrieval. We exploit the following advantages of transportation
They discuss symbolic retrieval and audio retrieval, and jistances:

they show that polyphonic matching is challenging. Most
methods for comparing monophonic sequences of notes, o Continuity: If differences between queries and

for example string matching, cannot be easily modified so database documents are small, transportation dis-
that they become also useful for polyphonic music. tances deliver accordingly small values. When a
guery is distorted, there is no point at which the dis-
Permission to make digital or hard copies of all or part of this work for tance would suddenly become larger.

personal or classroom use is granted without fee provided that copies ) ) ) )
are not made or distributed for profit or commercial advantage and that e Support for many distortions: Many kinds of dif-

COpieS bear this notice and the full citation on the first page. ferences Such as grace noteS, d|ﬁerences in p|tch,
© 2004 Unversitat Pompeu Fabra. note durations, and rhythm are taken into account
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Figure 1. A polyphonic query for Bach’s Brandenburg concerto No. 5 (violin part plus the left hand of the cembalo).
Although the rhythm fluctuates, a segmented EMD search for this query brought up the monophonic incipit of the Bran-
denburg concerto shown in Figu2as the first match.

by transportation distances without the need for resented as one point whose coordinates are given by the
their explicit anticipation. onset time and pitch. The weight represents the note du-
ration. Depending on the information available, it is pos-
sible to make the weights depend on other features, such
as the inter-onset intervals, metric stress, melodic contour,
position within a measure, piece, or chord, accents, or a
combination of these and possibly other features. How-
ever, for this paper, we only make the weights depend on
e Flexibility: Transportation distances can be fine- note durations.

tuned to genres and human perception by modifying ~ Figure 2 shows an example of notated music and its

the weighting scheme and ground distance. associated point set. Rests are represented only implic-
. i . itly with the surrounding notes’ coordinates and weights.
We would like to benefit from these properties of trans- Therefore, the point set in Figugeonly contains one point

portation distances and improve on them in robustness anq‘or each note, but none that would represent the rest. Note

p"?‘”'a' matching n the ime dimension. In partl_culz_ar, W€ that the horizontal distance between the last two notes is
wish to be able to find occurrences of short queries in IargetWice that between any other pair of notes

pieces of music and make our method robust against pitch As pitch coordinates, we use Hewlett's base-40 rep-

and tempo fluctuations, like those in Figurewithout re- resentation 7], a number-line representation that distin-

gug:ng ex_pI|C|t tgn;p? tt;acklr;g. we f'rt'd .trlat sr?g;nentmlg guishes between notes with the same pitch but different
oth queries and database documents Into Short, over alohotation, such as anfaversus a b. For the time coordi-

ping groups does indeed imprave the results. nates, we arbitrarily assign 1 to the duration of a quarter
e Robustness against pitch and tempo fluctua- note. Because of the transformations described in Sec-
tions: If queries are entered by humans, the pitch tion 2.4 (scaling and translation) which we apply to point
and/or tempo frequently fluctuate. While such fluc- sets before calculating a transportation distance, it does
tuations can greatly distort a query, they either do not matter which number is associated with the duration of
not have a large impact on short segments, or only a quarter note, as long as the range of numbers in the pitch
on a few of them. dimension is similar enough to that in the time dimension.
This is important because it affects the way notes in one
f point set are matched with notes in the other. If the range
of time coordinates is too small in comparison with that of
the pitch coordinates, notes tend to be matched with notes
that occur much later or earlier, but have similar pitches.

e Partial Matching for any combination of poly-
phonic and monophonic music:With some trans-
portation distances, examples of which include the
EMD, any combination of monophonic and poly-
phonic music can be matched.

e Partial matching in the time dimension: Trans-
portation distances do not give meaningful results i
the durations of the compared pieces of music vary
too much. By matching segments of similar dura-
tions, we overcome this problem and are able to find

short queries in long pieces. ] ]
. ) 2.2. Transportation Distances
None of the previously known distance measures for no-

tated music combine all of these properties, and mostWe work with two transportation distances, the Earth
are discrete in some way. Our contribution is a continu- Mover’s Distance and the Proportional Transportation
ous distance measure that combines the desired propertieistance.
mentioned above.

2.2.1. The Earth Mover's Distance

2. MEASURING MELODIC SIMILARITY WITH

TRANSPORTATION DISTANCES The Earth Mover’s Distance (EMD) measures the mini-

mum amount of work needed to transform one weighted
point set into another by moving weight. Intuitively
speaking, a weighted point can be seen as an amount of
To be able to use transportation distances, we represenearth or mass; alternatively it can be taken as an empty
notated music as weighted point sets. Every note is rep-hole with a certain capacity. We can arbitrarily assign

2.1. Representing notes as weighted point set



the role of the supplier to one set and that of the re-
ceiver/demander to the other one, setting, in that way, the
direction of weight movement. The EMD then measures
the minimum amount of work needed to fill the holes with
earth (measured in weight units multiplied with the cov-
ered ground distance). See Cohen’s Ph.D. thé}ifof a
more detailed description of the EMD.
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Figure 2. The beginning of the violin 1 part of Bach’s

Brandenburg concerto No. 5, in common music nota-
tion (top) and as a set of weighted points in the two-
dimensional space of pitch and onset time (bottom).

Weights here represent note durations. In this and all other
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Figure 3. An example of a flow. This illustrates the dis-
tance calculation between the first segments of the poly-
phonic query shown in Figurd and the monophonic
database entry shown in Figueusing the EMD. The

diagrams, the weight is shown as the surface covered bypomt set representing the monophonic segment is shifted

the disks that represent points. Here we assign a weight of"

0.25 to a sixteenth note and 0.5 to an eighth note.

Definition Let A = {a1,a2,..,a,} be a weighted
point set such that; = {(z;,w;)},i = 1,..,m, where
z; € R*, with w; € R* U {0} being its corresponding
weight. Let W:Z;.'Ll w; be the total weight of sed.

The EMD can be formulated as a linear programming
problem. Given two weighted point set$, B and a
ground distancé, we denote ag;; the elementary flow of
weight fromz;; to y; over the distancé;;. If W, U are the
total weights ofA, B respectively, the set of all possible
flows F = [f;;] is defined by the following constraints:

1. fi; >0,i=1,..,m,j
2. 2?21 fij Swii=1,..,m
3.3 fij <wuj,j=1,...,n
4.3, Z?:l fij = min(W,U)

These constraints say that each particular flow is non-
negative, no point from the “supplier” set emits more
weight than it has, and no point from the “receiver” gets
more weight than it needs. Finally, the total transported
weight is the minimum of the total weights of the two sets.
The flow of weightf;; over a distancd;; is penalized
by its product with this distance. The sum of all these in-
dividual products is the total cost for transformidgnto
B. The EMD(, B) is defined as the minimum total cost
over F, normalized by the weight of the lighter set; a unit
of cost or work corresponds to transporting one unit of
weight over one unit of ground distance. That is:

minper 3Ly 35y fiidis
min(W,U)

1,...,n

EMD(A4, B) =

See Figure for an illustration of an optimal flow and the
matching of notes.

pwards in this picture to make the flow more visible. Its
six points are actually aligned with the six correspond-
ing points of the polyphonic segment so that most of the
flow components (and all flow components involving large
amounts of weight) have a ground distance close to zero.

Properties and Computation
The most important properties of the EMD can be sum-
marized as follows:

1. The EMD is a metric if the ground distandeis a
metric and if the EMD is applied on the space of
equal total weight sets.

. It is continuous. In other words, arbitrarily small
changes in position and/or weight of existing points
cause only arbitrarily small changes in its value.
Moreover, the addition of a point with an arbitrarily
small weight leads to an arbitrarily small change in
the EMD’s value.

3. It does not obey the positivity property if the sums
of the weights of the two sets are not equal. In that
case, some of the weight of the heavier distribution
remains unmatched. Therefore, the EMD allows for
partial matching. As a result, there are cases where
it does not distinguish between two non-identical
sets. This can be useful, for example when match-
ing a monophonic melody to a piece that contains
the same melody, but with an accompaniment.

. In the case of unequal total weights, the triangle in-
equality does not hold.

The triangle inequality is relevant for the indexing
method described in Sectign2

The EMD can be computed efficiently by solving the
corresponding linear programming problem, for exam-
ple by using a streamlined version of the simplex algo-



rithm for the transportation problem (Hillier and Lieber- This translation in the pitch dimension such that the
man 1990). We used Rubner's EMD functid?], which distance is minimized does not invalidate the triangle in-
implements Hillier's and Lieberman’s algorithm. Itis pos- equality.

sible that the simplex algorithm performs an exponen-

tial number of steps. One could use polynomial algo- ) ,

rithms like an interior point algorithm, but in practice that 2-4-2- Témpo invariance

would outperfor_m the _simplex algorithm qnly for VerY our segmenting method (see Sect®maims at cutting the
large problem sizes. Since the transportation problem IS usic into segments of corresponding duration. There-

a special case of the minimum cost flow problem in net- ¢, o "\ve can translate and scale all point sets to a constant
works, a polynomial time algorithm for that could be used range of time coordinates before comparing them by us-
as well. ing a transportation distance. After segmenting music, the
. _ _ time coordinate of the last note within a segment depends
2.2.2. The Proportional Transportation Distance on the tempo. By scaling segments so that the maximum

Giannopoulos and Veltkam®] proposed a modification ti:.ne- coordri]r_wa:je is aI(\jNays the same constant number, we
of the EMD in order to get a similarity measure based €!IMinate this dependence ontempo. .
on weight transportation such that the surplus of weight Note. that this scaling does not invalidate the triangle
between two point sets is taken into account and the trian-inequality.
gle inequality still holds, which is useful for the indexing
method described in Sectigh2 They call this modified
EMD the “Proportional Transportation Distance” (PTD)
because any surplus or shortage of weight is removed in : . . .

X The aims of segmenting are to improve partial match-
a way that the proportions are preserved before the EMD. = . . X : . :
is calculated. The PTD is calculated by first dividing, for ing in the time dimension, to increase robustness against

. - ! . . , pitch and/or tempo fluctuations, and to ensure that the
both point sets, every point's weight by its point sets to- transportation distances are applied to comparable groups
tal weight, and then calculating the EMD for the resulting P pp P group

. of notes. With “comparable”, we mean that the groups
point sets. of notes should contain similar numbers of consecutive
The PTD is a pseudo-metric. In particular, it obeys

: . . . .. notes, and not too many.
the triangle inequality. It still does not have the positivity . .
property since the distance between positionally coincid- We are _not necessarily concerned .W'th segments that
ing sets with the same percentages of weights at the samén_ake musical sense. . For our experiments, we worked
positions is zero. However, this is the only case in which with segment lengths in the range from 6 to 9 consecu-

the distance between two non-identical point sets is zero.?Ve notes.h Se?hm(tents ;;th'i Iert\gt]th are usualtlyhd|s;|nc-
The PTD will distinguish between two sets which differ tve €M0Ugh SO that we did not get toc many malches from

in only one point. It has all other properties that the EMD pieces that are not really similar, but still short enough
has for equal total weight sets for getting the desired robustness against tempo and pitch

fluctuations.

Our segmenting algorithm must fulfill certain condi-
tions for our method to work properly. We would like to be
For all results in this paper, we use the Euclidean distanceable to process manually recorded MIDI queries with free,
as ground distance. Thus, the distance between two notegossibly fluctuating tempo and unknown measure struc-

3. SEGMENTING

2.3. Ground Distance

with the coordinatest(, p;) and ¢;, p;) is ture. Also, we want the segmenting results to be largely
independent of how many voices are present at the same
dij = \/(ti — ;)2 + (pi — pj)2- time. Therefore, we cannot just take a certain number of

notes and declare them a segment. Rather, we must look
A variation possibly interesting for polyphonic music at a certain number of consecutive notes.
would be to make the distance in the pitch dimension de-  We work with overlapping segments to reduce the in-
pend on harmony instead of just calculating the difference fluence of the position of a query within a piece, and we
between pitches. create multiple segments with different lengths, but the
same starting point, in order to be able to match single
2.4. Transformations used for achieving transposition ~ long notes with corresponding multiple shorter notes.
and tempo invariance For our experiments, we segmented queries and
database documents as follows:
First, we set a pointer to the onset time of the first note
In order to achieve transposition invariance, we calculate that is to become part of the next segment. This is the
the minimum distance for a range of transpositions. Be- beginning time of a new segment.
cause we store pitch as discrete values, there are only Then, we move the pointer to the next end of any note
finitely many transpositions with a constant upper bound whose onset time lies within the current new segment,
that we need to try. then to the next beginning of a note. We do this until

2.4.1. Transposition invariance



we have the desired number of consecutive notes in thethe individual comparisons become simpler since smaller
segment. point sets need to be compared, and the size of point sets
We include all notes with an onset time within the is bounded. The number of comparisons grows linearly.
closed interval from the beginning of the segment to the If we segment as illustrated in Figure the number of
current pointer position in the next segment. segments is always less than or equal to the number of
For example, segment number 1 in Figdrés found consecutive notes times 4/3 (every 3 notes, there are up
like this: First, we move a pointer to the onset time of note to 4 beginnings of a segment). The actual search time
number 1, the first note we want to include in the segment. grows only logarithmically if one uses the vantage index-
Then, we move the pointer to the end of the longest note ing method described in Sectidn2
in the beginning chord (the lowest note), because that is
the next ending of any note whose onset time lies in the
current segment. Now we move the pointer to the begin-
ning of note 2 since this is the next onset time after the .
. . . Our database contains pre-calculated segments of all
pointer. This way, we have included the whole chord at . .
LT . pieces. To answer a query, we segment it, then for each
the beginning in the new segment, but count it as only one
. 4 query segment, we search the set of all segments for the
out of six steps. The next five steps work the same way LS ) :
; most similar ones, and finally combine the results of the
(go to the next end of any note after the pointer, then to

the next onset time). As a reslt, we identify the first seg- SegEn;EEtsze?rrg:ﬁZearch ields a list of pieces that contain
ment as shown in Figuré with its 9 notes as a segment 9 y P

With 6 consecutive notes. at Iea_st one .matchin.g segment. The overa!l result should
be a list of pieces with many closely matching segments.
For this, we need to compute a distance for each piece that
10 —_ occurs in at least one segment search result. To do this,
12 = we first determine the maximum distance M that occurs
in any segment search result. For each segment search re-
9 11 = sult in which a piece P occurs, we add the distance of the
highest ranked segment of P to the overall score for P. For
each segment search result in which P does not occur, we
do not know the distance of the corresponding segments
11 , because it was high enough for the segment of P to not oc-
21 I cur in this result list. Therefore, it is at least the maximum
31 I distance in this result list, but probably clearly higher. We
41 1 get good results if we add twice M to the overall score for
' P in such cases. For each segment search result without a
segment from P that is both preceded and followed by seg-
l ment search results with segments from P, we add 4 times
M to the overall score for P. If the query is really a subset
of the database document P, there should not be a section
within P that does not match, therefore there should be a
Figure 4. The first ten segments of the polyphonic query higher penalty for missing segments within the query than
shown in Figurel. for missing segments at the beginning or end of a query.
The resulting overall score is a distance measure. It
As illustrated in Figurel, we generate overlapping seg- is zero if for every segment of the query a matching seg-
ments that are three notes apart, and at every starting pointnent with distance zero was found in the same database
we create segments of length 6, 7, 8, and 9. All of those document P. The distance measure grows with the indi-
are scaled to the same distance between the onset times ofidual distances of segments and with the number of seg-
the first and last note, as described in Secfigh2 before ~ ments for which no matches were found. While the un-
transportation distances are applied. Because every note igerlying transportation distance is symmetric, the result-
the last note of some segment, there are no leftover notedng distance measure is not. The triangle inequality does
at the end that would not be part of any segment. not hold, and it is not always positive for unequal pieces
In order to correctly recognize consecutive legato notes Of music. Therefore, it is not a metric.
in MIDI queries as consecutive (for getting a legato ef-
fect, the player releases piano keys only after the follow- 4 1 adjusting the search radius for different seg-
ing note has started), it was sufficient to treat all notes asyanis
if they were only 80% of their length for the purpose of
segmenting. For each segment, we perform annearest-neighbours
By segmenting queries and database documents, wesearch up to a given maximum search radius
increase the number of comparisons of point sets that When using the vantage indexing method (see Section
are necessary for answering a query. On the other hand4.2), we cannot directly search far nearest neighbours,

4. SEARCHING
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but need to work with a search radius. This radius has tonorm calculations, which is more expensive for sensible
be different for different segments if we want to retrieve numbers of vantage objects (a largewill allow us to
similar numbers of neighbours. For typical musical pat- rule out more database objects).
terns, like many repeated notes within one segment, there
tend to be many more neighbours within a small radius  Only for the objects that could not be ruled out based
around the segment than for very distinctive patterns of on the triangle inequality do we have to compute the trans-
notes. portation distance. With our constant segment length, the
We do not want to impose the task of selecting an ap- complexity isO(k), wherek is the number of reported
propriate search radius for each segment on the user, wh®bjects.
should not need to be aware of the segmenting in the first
place. Our search engine, therefore, adjusts the search ra- In practice, searching the RISM A/ll collection usu-
dius during the search as follows: The search starts withally takes a few minutes on a PC with 1 GB of main
a given low initial value which is unlikely to be too large memory. The most important factors determining how
for any segment. If during the search we find more than long the search really takes are the number of segments
n neighbours with distance zero, the segment is not dis-in the query and whether previous queries were similar.
tinctive enough to be considered at all, and this segmentIn that case, the contents of the cache containing part of
search can be stopped immediately. There are segmentthe database indices are useful, and the search takes only
that do not contain enough characteristic musical materiala few seconds. The large impact of caching effects makes
for being helpful. If at the end of the search, not enough it seem that with enough main memory for holding the
matches (less than thenearest neighbours we are look- database indices, response times of a few seconds would
ing for) were found within the search radius, we increase be possible for all queries. We use two tables, one contain-
the radius and search again. In this case, it is sufficienting the distances to vantage objects for every segment and
to search the area outside the original search radius, bupne containing the weighted point sets for all segments.
within the new, enlarged one. We do this only while the Together, these tables including the MySQL indices take
search radius is less than the given maximum search raup about 1.7 GB of space, so with about 2 GB of main
diusm. memory, there would be a good chance of attaining search
times of a few seconds.

4.2. Nearest neighbour searches with the vantage in-

dexing method By using the vantage indexing method, we do not

change the search result, we just calculate it faster. When

Since it would be prohibitively time consuming to com- working with a transportation distance for which the trian-
pute a transportation distance to a query point set for all gle inequality holds, e. g. the PTD, calculating the trans-
point sets in the database, we use the vantage indexingortation distances only for the candidates with similar
method described by Vleugels and Veltkan][ If the distances to vantage objects yields the same result as an
triangle inequality holds for the transportation distance, exhaustive database search. One might argue that human
this method allows us to rule out almost all database similarity measures are not even symmetric and usually
objects without having to calculate the time consuming also do not obey the triangle inequality, therefore using
transportation distance. We can rule out all objects whosea method that relies on the triangle inequality for index-
distance to any of the vantage objects differs by more thaning seems suspect. However, our distance measure as de-
our search radius from the distance of the query object toscribed in this section does not obey the triangle inequality
the same vantage object. although it is based on the PTD. It performs well in exper-

Before searching, we pick some vantage objects, foriments where human experts judge its result§.[We do
examplev randomly selected point sets that are already in not reduce the quality of our results by exploiting the fact
the database. Then, for each point set in the database, wehat for the underlying transportation distance, the PTD,
calculate the transportation distance to each of the vantagehe triangle inequality holds.
objects.

For the search, we first determine the distance of the  For the EMD, not even a weak triangle inequality such
query object to each vantage object. If the query object as EMD(A,B)< k (EMD(A,C) + EMD(C,B)) holds (with
is in the database, these distances are already calculated: > 0). Counterexamples exist where EMD(AB),
Otherwise, we calculate them now. Then, we retrieve EMD(A,C)=0, and EMD(B,C)=0; see Figuie
all database objects whose distance to the query object,
measured with the . norm in thev-dimensional space However, our experiments show that with the RISM
of distances to vantage objects, is less than or equal toA/II[ 11] collection, when using the vantage indexing
the search radius. This can be done with an approximatemethod with the EMD, usually all matches within a
nearest-neighbour search with(klogn) L, norm cal- third of the search radius are retrieved. Hence if the
culations [] plus k£ expensive transportation distance cal- search radius is increased accordingly, the vantage index-
culations, wherek is the number of reported point sets. ing method can still be used for polyphonic searches with
If one prefers an exact nearest neighbour search, one cathe EMD, albeit without a guarantee for the completeness
guery av-dimensional kd-tree usin@(nlﬁ + k) Leo of the matches.



A B C were listed only once. These lists were not sorted by
method or by the ranks of documents, but by the library
o 10 o0 . .
holding the source manuscripts. Therefore, for every rel-
o0 L X o0 evance decision it was very hard to tell which method had
EMD(A.C) = EMD(B.C) = 0 rgtrieved the document in question. The relevance deci-
EMD(A:B) >0 ’ sions were ta_lken by two pe_ople, each of \_Nhom covered
half the queries. As Mllensiefen et al. point outl[],
“subjects with stable similarity judgements seem to have
the same notion of melodic similarity”. Thus, a high num-
ber of human experts making the similarity judgements is
not always necessary.
Since for our comparison, we searched the RISM A/ll
5. COMPARISON collection for pieces similar to queries taken from the
same collection, there were no pitch or rhythm distortions.
To see how well the segmented search method works, weTherefore, this comparison does not show all strengths of
manually entered rhythmically distorted queries using a the segmented search method. But the segmented search
MIDI keyboard. For example, a segmented EMD search still performs better than the non-segmented one.
finds the monophonic incipit shown in Figu2es the first See Figures for a recall-precision graph. For the pur-
match for the query shown in Figutewhen we search  pose of this graph, we assumed that all relevant documents
the RISM A/ll collection with about half a million of mu-  were retrieved by one of the two methods. Among all doc-
sical incipits (incipits are the beginnings of pieces, typi- uments that any method retrieved, 114 were judged to be

Figure 5. For the EMD, not even the weak triangle
inequality holds. In this example, EMD(A,By» &k
(EMD(A,C) + EMD(C,B)) for allk > 0.

cally about 20 notes long). _ relevant. The comparison of whole incipits produced 60
We also compared the original method described by relevant documents, while the segmented search found 80.
Typke et al. in [L3] to our improved method using the The increased retrieval performance of the segmented

RISM A/Il collection. To avoid any bias, we randomly search is largely due to the improved partial matching in

selected 16 incipits out of the database as queries. Folthe time dimension. Figuré shows an example where
each of them, we used both methods for retrieving the 25this matters.

most similar incipits. As transportation distance, we used

the PTD since the collection is mostly monophonic, and

the EMD’s partial matching in the pitch dimension is not %

needed. This gave us a total of 800 matches (with some%ﬁﬂ—-—'—ﬁ EE=SSS=SS==

overlap), for each of which we decided whether it was

melodically similar to the query and therefore relevant.  Figure 7. Query (top): John Dowland, “If fluds of tears
could clense my follies past”. A segmented search finds

Interpolated Recall-Precision Averages the match (bottom) by Josephus Fodor, a violin duet. This
=g match is not found by the search method relying purely on
09 . . .
o e the transportation distance because although the melodies
o7 S S are similar, the durations of the incipits do not correspond.
g 06 ha S
:% 05 ) .y = Segmented
é" 04 o« 8 ¢ Whole
03 A 6. CONCLUSIONS
02 e 5
o1 e = A
. o e Our comparison of segmented and non-segmented
© o1 02 03 04 05 06 07 08 09 1 searches using the RISM A/l collection showed that the

Recall improved partial matching in the time dimension, which

is achieved by segmenting, improves precision and recall.
Figure 6. Interpolated recall-precision averages. Since We have also used segmented searches with transporta-
every guery was contained in the database, and both methtion distances for matching polyphonic queries with fluc-
ods correctly recognize identity, the difference is small for tuating tempo with similar monophonic incipits from the
very similar documents. The advantages of segmentingRISM A/ll collection with constant tempo as illustrated
become apparent for documents that are less similar, buwith Figuresl and2. This method supports any combina-
still similar enough to be considered relevant. tion of monophonic and polyphonic notated music with or

without pitch and tempo fluctuations.

We decided about the relevance in a way that mini-  The same indexing methods can be used for searches
mized the influence of any bias towards one method. Forwith or without segmenting. For segmented searches, in-
each query, we created one combined result list that con-dexing is very important since without it, the number of
tained all documents which were returned by any of the transportation distance calculations gets unbearably high.
two search methods. Those that were returned by bothFor example, with segment lengths of 6, 7, 8 and 9 and a



distance of 3 notes between beginnings of segments, we

need about 4.5 million segments for covering approx. 0.5

million incipits in the RISM A/Il collection. A typical

query is cut into 20 segments. Without indexing, this
would mean almost 100 million transportation distance

calculations just for answering one query.
Possible improvements

There are some ways in which our method could still be

improved:

In order to improve the ranking of the retrieved can-

[7]

didates for matches, we could add a second ranking step 8]

after deciding which documents should be listed at all. In

this second step, we could also take those segments into

account that did not lead to the candidates’ inclusion be-

cause they were either not similar enough to any segment

in the query or not distinctive enough to be considered.
Also, we could work with a finer overlap (start a new seg-

ment at every note instead of just every three notes) and [9]
more segment lengths for the final step, where the added

effort would not be very noticeable.

Figure3 shows that transportation distances sometimes
match notes with multiple other notes, some of which
It is conceivable that a trans-
portation distance that would only take the flow compo-
nent to the closest point in the receiving point set into
account would perform better. Such a transportation dis-
tance, however, would introduce discontinuities whenever
points are added or removed. It would still be continuous

can be quite far away.

if only weights and positions of points are modified.
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