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ABSTRACT

An audio fingerprint is a compact representation of the
perceptually relevant parts of audio content. A suitable
audio fingerprint can be used to identify audio files, even
if they are severely degraded due to compression or other
types of signal processing operations. When degraded, the
fingerprint closely resembles the fingerprint of the origi-
nal, but is not identical. We plan to use a fingerprint not
only to identify the song but also to assess the perceptual
quality of the compressed content. In order to develop
such a fingerprinting scheme, a model is needed to assess
the behavior of a fingerprint subject to compression. In
this paper we present the initial outlines of a model for
an existing robust fingerprinting system to develop a more
theoretical foundation. The model describes the stochastic
behavior of the system when the input signal is a station-
ary (stochastic) signal. In this paper the input is assumed
to be white noise. Initial theoretical results are reported
and validated with experimental data.

1. INTRODUCTION

Downloading music is very popular. Music identification
is usually done by searching in the metadata describing the
music content. Metadata like song title, artist, etc., how-
ever, is often incoherent or misleading, especially on Peer-
to-Peer (P2P) file-sharing networks, calling for content-
based identification. Identification, however, is often not
enough. The perceptual quality of a song compressed us-
ing MP3 at 32 kpbs is totally different from the percep-
tual quality of the CD-recording of the same song. There-
fore, a content-based indication for the perceptual quality
is needed. The Music2Share project proposes to use audio
fingerprints for both identification and quality assessment
of unknown content on a P2P network [1].

Audio fingerprints are compact representations of the
perceptually relevant parts of audio content that can be
used to identify music based on the content instead of the
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metadata. A fingerprinting system consists of two parts:
fingerprint extraction and a matching algorithm. The fin-
gerprints of a large number of songs are usually stored in a
database. A song is identified by comparing its fingerprint
with the fingerprints in the database. Well-known appli-
cations of audio fingerprinting are broadcast monitoring,
connected audio, and filtering for file sharing applications
[2], [3]. In this contribution we focus only on the finger-
print extraction.

For a well-designed fingerprint it holds that fingerprints
of two arbitrary selected pieces of music are very differ-
ent, while fingerprints originating from the same audio
file, encoded using different coding schemes or bit rates,
are only slightly different. We aim to exploit these small
fingerprint differences due to compression to assess the
perceptual quality of the compressed audio file.

By modelling a successful existing audio fingerprint-
ing scheme, we aim to gain more insight in the behavior
of fingerprint differences when the audio is compressed.
The fingerprint generation is modelled when the system is
subject to an input with known spectrum. Once this is bet-
ter understood, a differential model which gives an indi-
cation of the perceptual quality of the compressed version
with respect to the original will be made.

Several audio fingerprinting methods exist, using e.g.
spectral flatness features [4] or Fourier coefficients [2], [5]
and [6]. A good overview can be found in [3]. We choose
to model the Philips audio fingerprinting system [2] be-
cause it is well documented, highly robust against com-
pression and it can be modelled using stochastic models.

This paper consists of five sections: Section 2 presents
details of the audio fingerprinting system to be modelled,
Section 3 analyzes how to model the functional blocks of
the fingerprinting system, Section 4 describes initial re-
sults for the fingerprint of white noise, while Section 5
draws conclusions and outlines future work.

2. DETAILS OF THE EXISTING SYSTEM

Figure 1 shows an overview of the fingerprint extraction,
which is functionally equivalent to the Philips fingerprint-
ing system [2]; some blocks, however, have been reshuf-
fled to facilitate the modelling process described in the fol-
lowing sections. The audio signal is first segmented into
frames of 0.37 seconds with an overlap factor of 31/32,



Figure 1. Functional equivalent of the Philips audio fin-
gerprinting system [2].

weighted by a Hanning window. The compact represen-
tation of a single audio frame is called a sub-fingerprint.
In this way, it extracts 32-bit sub-fingerprints for every in-
terval of 11.6 ms. Due to the large overlap, subsequent
sub-fingerprints have a large similarity and slowly vary in
time. A song consists of a sequence of sub-fingerprints,
which are stored in a database. The system is capable of
identifying a segment of about 3 seconds of music - gener-
ating 256 sub-fingerprints - in a large database, even if the
segment is degraded due to signal processing operations.

To extract a 32-bit sub-fingerprint for every frame, 33
non-overlapping frequency bands are selected from the es-
timated Power Spectral Density (PSD). These bands range
from 300 Hz to 2000 Hz and are logarithmically spaced,
matching the properties of the Human Auditory System
(HAS). Haitsma and Kalker report that experiments have
shown that the sign of energy differences is a property that
is very robust to many kinds of processing [2].

Using the notation of [2], we denote the energy of fre-
quency band m of frame n by E(n,m). Differences in
these energies are computed in time and frequency:

ED(n,m) = E(n,m) − E(n,m+1) (1)

− (E(n−1,m) − E(n−1,m+1)).

The bits of the sub-fingerprint are derived by

F (n,m) =

{

1 ED(n,m) > 0

0 ED(n,m) ≤ 0
, (2)

where F (n,m) denotes the mth bit of the sub-fingerprint
of frame n.

Figure 2(a) shows an example of a fingerprint. White
parts indicate positive energy differences, black parts in-
dicate negative energy differences. The small side of the
fingerprint block is the frequency direction, consisting of
the 32 bits corresponding to the differences between the
33 frequency bands. The long side of the block corre-
sponds to the temporal dimension.

The bit error rate between the extracted fingerprint and
the fingerprint in the database is used as the similarity
measure. When the song is subject to signal degradations
such as compression, the fingerprint changes slightly. To
indicate the effect of MP3 compression on the fingerprint
extraction, Figure 2 shows the difference pattern of the
fingerprint of a recording at different bit-rates relative to

(a) (b) (c) (d) (e)

Figure 2. Fingerprints for an excerpt of ’Anarchy in the
U.K.’ by the Sex Pistols. Fingerprints of (a) the original
and (b) of an MP3 compressed version encoded at 128
kbps; (c-e) Differences between the fingerprints of the
original and an MP3 compressed version encoded at (c)
128 kpbs (d) 80 kpbs and (e) 32 kbps. The black positions
mark the differences.

the fingerprint of the CD-quality recording of the same
song. The black sections mark the fingerprint differences
due to compression, white positions indicate similarity be-
tween the fingerprints. Generally speaking, compression
at a lower bit rate increases the number of fingerprint bit-
errors. The bit-error pattern also shows a significant num-
ber of bursts of errors.

3. PROPOSED MODEL

We analyze the behavior of the system when it is subject
to the input of a well-understood, stationary signal such as
white noise or a p th order auto-regressive (AR-p) process.
From this analysis we will derive a fingerprint model.

Although for these kinds of signals the PSD is well-
known, we need to keep two things in mind. First, the
PSD is estimated using the periodogram, which has cer-
tain statistical properties. Second, we have to take into ac-
count the strong overlap between the subsequent frames,
which causes the slow time-variation of the fingerprint.
Therefore, even the fingerprint of a white noise process is
non-white. In fact, white noise fingerprints look similar to
the fingerprint shown in Figure 2(a).

The outcome of our proposed model is the probability
that a fingerprint bit is equal to one, given the previous
fingerprint bit corresponding to the same frequency posi-
tion m, the frame length L, frame overlap length L−∆L,
the number of frequency bands N and the autocorrelation
function of the input signal R(l):

P
(

F (n,m) = 1
∣

∣

∣
F (n−1,m);L,∆L,N,R(l)

)

(3)

Other parameters, such as frequency range and sampling
frequency are kept similar to the original system [2] (in
this system L = 0.37 seconds and ∆L = 11.6 ms).



The modelling procedure leading to equation (3) follows
the steps show in Figure 1. Ignoring the (Hanning) win-
dow function, the periodogram estimator of the PSD of
frame n is given by:

S(n, k) =
1
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, (4)

k = 0, . . . , L − 1

The energy difference between two successive (overlap-
ping) frames per spectral sample is given by:

EDs(n, k) = S(n, k) − S(n − 1, k) (5)

The differential energy within a single frequency band m
is then obtained by summing the samples belonging to that
frequency band:

E(n,m) − E(n − 1,m) =
∑

k∈Bm

EDs(n, k), (6)

where Bm indicates the set of samples belonging to fre-
quency band m. From EDs(n, k) the energy differences
between frequency bands can be computed by:

ED(n,m) =
∑

k∈Bm

EDs(n, k) −
∑

k∈Bm+1

EDs(n, k) (7)

The fingerprint bits are derived according to Equation (2).

The statistical properties of four steps of the fingerprint
generation expressed by equations (4)-(7), can be described
in terms of Probability Density Functions (PDFs), starting
with the PDF describing the statistical behavior of individ-
ual samples within the periodogram estimate of the PSD:

fS(n,k)(y). (8)

We may use this to derive a PDF for samples in EDs(n, k):

fEDs(n,k)(y). (9)

From this we can extend the analysis to the statistical be-
havior of samples from successive energy difference spec-
tra. This analysis leads to a PDF of the form

fEDs(n,k),EDs(n+1,k)(y, z). (10)

Introducing frequency bands leads to the following PDF:

fED(n,m),ED(n+1,m)(y, z). (11)

We can easily convert this PDF into probabilities for the
fingerprint bits in two successive sub-fingerprints, e.g.:

P [F (n,m)=1, F (n+1,m)=1] (12)

=

∫ ∞

0

∫ ∞

0

fED(n,m),ED(n+1,m)(y, z)dydz.

Equation (12) yields the model outlined in Equation (3).
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Figure 3. Laplace variance as function of the ratio ∆L/L,
both for rectangular windows and for Hanning windows.

4. WHITE NOISE FINGERPRINT

The section describes the statistical behavior of the finger-
print generation of a white noise input signal in terms of
the PDFs and probabilities of Equations (8)-(12). The fin-
gerprint generation process of white noise is worth mod-
elling for three reasons. First, the spectrum of an AR-
p process is the filtered version of corresponding white
noise process. Second, differences in the audio spectrum
due to compression might be modelled as (filtered) noise.
Third, fingerprint generation proces of white noise is the
most simple example that still provides insight and shows
the generally applicable fingerprint behavior.

This section is organized as follows: Section 4.1 gives
an expression for the marginal PDF fEDs(n,k)(y); Section
4.2 investigates the joint-PDF for frequency band energies
is successive frames, fED(n,m),ED(n+1,m)(y, z). It shows
that this distribution can be approximated well by a Gaus-
sian PDF, resulting in the P [F (n,m), F (n+1,m)]. Rect-
angular windows are assumed unless stated otherwise.

4.1. Marginal Distribution

Leon-Garcia shows that when the input signal x(i) is white
noise, (x(i) thus is a zero-mean, Gaussian random vari-
able (RV) with variance σ2

X ), the samples of the peri-
odogram estimate of the PSD using rectangular windows
are uncorrelated and follow an exponential distribution:

fS(n,k)(y) =
1

σ2
X

e−y/σ2
X , y ≥ 0. (13)

Using this result and two properties of the Laplace distri-
bution [8], it can be shown that the samples of EDs(n, k)
follow a Laplace PDF [9]. In terms of the parameters in
Section 3:

fEDs(n,k)(y | L,∆L,R(l) = σ2
Xδ(l)) =

1

2s
e−|y|/s (14)

with the variance of the Laplace distribution, 2s2:

VAR[EDs(n, k)] = 2s2 = 2σ4
X

(2L − ∆L)∆L

L2
(15)
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Figure 4. Analytical (dashed) and experimental (solid)
probability P [F (n,m) = 1, F (n + 1,m) = 1] for white
noise input using windows.

Equations (14) and (15) have been verified experimen-
tally. Figure 3 shows the variance as a function of the
ratio ∆L

L . The same graph also shows the behavior of the
variance when Hanning windows are used. The behavior
is slightly different, the derivation of (and the expression
for) the variance much more complex [9].

4.2. Bivariate Distribution: Gaussian approximation

Deriving an analytical expression for the bivariate PDF
fEDs(n,k),EDs(n+1,k)(y, z) is very difficult and not nec-
essary. Experiments confirm the suitability of the Gaus-
sian approximation of fED(n,m),ED(n+1,m)(y, z). This
approximate PDF is then fully defined by the marginal
variances σ2

ED(n,m) = σ2
ED(n+1,m) and the correlation

coefficient ρ. Inspection of the system learns that the cor-
relation between ED(n,m) and ED(n + 1,m) can be
expressed in terms of variances:

ρ =
1

2

VAR[ED(n,m)|2∆L]

VAR[ED(n,m)|∆L]
− 1 (16)

So, expressing the variance of ED(n,m) in terms of ∆L
L

fully defines the Gaussian approximation. To compute
this variance, however, we also have to take the correla-
tion between the samples of EDs(n, k) into account. Full
derivations and expressions for this correlation function
and the resulting variance can be found in [9].

Now we can compute the marginal variances and the
correlation coefficient of the Gaussian approximation, the
probabilities P [F (n,m), F (n + 1,m)] can be computed
according to Equation (12). Figure 4 shows the computed
probabilities P [F (n,m) = 1, F (n + 1,m) = 1] along
with its experimental counterparts. This clearly shows the
suitability of the Gaussian approximation for our purpose.

5. CONCLUSION AND FUTURE WORK

This paper presents initial outlines and results for a stochas-
tic model of a state-of-the-art audio fingerprinting system.
The longer-term aim of the modelling is to assess the per-
ceptual quality of a compressed song with respect to the
original high quality recording by using its fingerprint.

A model for the fingerprint generation of white noise
input signals is presented. Its relevance lies in its possi-
ble extension to AR-p signals, the possible modelling of
compression effects by additive (filtered) noise and its rel-
ative simplicity. It provides analytical expressions and ap-
proximations for the statistics of the individual steps of the
fingerprint generation process, resulting in fingerprint-bit
probabilities assuming rectangular windows.

Future work concerning the white noise model will be
the extension to Hanning windows and the incorporation
of the correlation of fingerprint-bits in the spectral dimen-
sion. Future work concerning the overall model will be the
extension to AR-p input signals and the modelling of fin-
gerprint differences when the input signal is compressed.
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The Laplace Distribution and Generalizations.
ISBN 3-7643-4166-1, Birkhäuser, 2001.
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