
TIME-WARPED LONGEST COMMON SUBSEQUENCE ALGORITHM
FOR MUSIC RETRIEVAL

AnYuan Guo Hava Siegelmann
University of Massachusetts, Amherst

Department of Computer Science

ABSTRACT

Recent advances in music information retrieval have en-
abled users to query a database by singing or humming
into a microphone. The queries are often inaccurate ver-
sions of the original songs due to singing errors and errors
introduced in the music transcription process. In this pa-
per, we present the Time-Warped Longest Common Sub-
sequence algorithm (T-WLCS), which deals with singing
errors involving rhythmic distortions. The algorithm is
employed on song retrieval tasks, where its performance is
compared to the longest common subsequence algorithm.

1. INTRODUCTION

In recent years, a large amount of music has been made
publicly available over the Internet. Various music collec-
tions come in formats such as MIDI, WAV, MP3, ABC,
and GUIDO, to name a few popular ones. Furthermore,
many programs exist that will convert between the differ-
ent formats [15, 8, 1]. The proliferation of music data
has driven up user demands for easy and efficient ways to
search databases for a song of interest. A user can input a
query via a keyboard or even by singing or humming into a
microphone [6, 9, 13]. The user may have inaccurate pitch
or rhythm, or may sing at a different speed than the orig-
inal rendition. We introduce an algorithm that deals with
rhythm and speed variations within the context of string-
matching based music similarity metrics.

A piece of music is composed of a series of symbols.
In this paper, we focus on monophonic music, in which
at most one note is played at any given time. This class
of music can be readily represented as a string over an
alphabet, where the alphabet includes all the pitches that
appeared within that piece of music. Given the represen-
tation of a piece of music as a string of symbols, the edit-
distance based string matching algorithms, already widely
employed in the speech and text processing communities
[3, 18, 5], naturally lend themselves to the formation of
plausible similarity measures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

One key strength common to string matching algorithms
is that they are designed to deal with insertions, deletions
and substitutions between the query string and the target,
a property much needed considering the different types of
errors that might be introduced in the retrieval process.
There could be inaccuracies in the user’s recall or inaccu-
racies in singing. Furthermore, errors are often introduced
in the transcription process when the acoustic signals are
turned into musical symbols [10]. Indeed, several string
matching algorithms, such as approximate string match-
ing, local alignment and the longest common subsequence
algorithm have been successfully employed in music in-
formation retrieval systems [17, 13]. However, these al-
gorithms do not have principled ways for handling speed
variations and inaccuracies in rhythm. In this paper, we
focus on extending the longest common subsequence al-
gorithm with these additional properties.

Given two sequences, the longest common subsequence
algorithm finds the longest subsequence the two have in
common. The subsequence itself can be dispersed arbi-
trarily among each of the strings with gaps of non-matching
symbols in between. Similarity measures based on this al-
gorithm have been used to perform content-based music
information retrieval [17]. It should be noted, however,
that edit-distance based algorithms cannot deal with trans-
posed matches [11].

According to studies in music recognition, the rhythm
of a piece of music is important to recognition tasks [4].
The inclusion of rhythmic information has shown to im-
prove music retrieval [17]. People often sing inaccurately
with respect to rhythm - some notes are shrunk, others
expanded. Furthermore, the rendition could be faster or
slower than the original score. In other words, the dura-
tion of the notes sung do not match the original song, some
nonlinear expansion/contractions could be introduced.
String matching techniques for song retrieval such as the
longest commons subsequence algorithm lack a principled
way to deal with the these variations [17] .

The contribution of this paper is the introduction of
the time-warped longest common subsequence (T-WLCS)
algorithm, which combines the desirable aspects of two
algorithms, the dynamic time warping algorithm (DTW)
and the longest common subsequence algorithm (LCS).
The T-WLCS algorithm augments the LCS algorithm with
the ability to account for songs played at different speeds,
with possibly non-uniform expansions/contractions. At



the same time, it retains the desirable properties of the
LCS algorithm, allowing for gaps between matching se-
quences. Finally, the algorithm is tested in a song retrieval
application.

2. BACKGROUND

Dynamic time warping (DTW) is an algorithm developed
by the speech recognition community to handle the match-
ing of non-linearly expanded or contracted signals [14].
The algorithm finds the optimal path through a matrix of
points representing possible time alignments between the
signals. The optimal alignment can be efficiently calcu-
lated via dynamic programming.

Dynamic time warping operates as follows. Given two
time sequences X = 〈x1, x2, . . . , xm〉, and
Y = 〈y1, y2, . . . , yn〉, it fills an m by n matrix repre-
senting the distances of best possible partial path using a
recursive formula:

D(i, j) = d(i, j) + min







D(i, j − 1)
D(i − 1, j)
D(i − 1, j − 1)

(1)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, d(i, j) represents
the distance between xi and yj . D(1, 1) is initialized to
d(1, 1). The alignment that results in the minimum dis-
tance between the two sequences has value D(m,n).

Although DTW does have the flavor of the property
that we desire, namely, it matches non-linearly stretched
or compressed sequences, it is not directly applicable to
the class of music retrieval tasks we are interested in. DTW
aligns two sequences from beginning to end. Often, in
music retrieval tasks, we are only given partial songs. In
the next section, we will show how to augment the LCS
algorithm with the time stretching properties of DTW.

3. TIME-WARPED LONGEST COMMON
SUBSEQUENCE ALGORITHM

Due to inaccuracies and speed variations in singing, and
the errors introduced in the music transcription phase, the
query string and the stored song might differ. A desirable
matching algorithm thus needs to take these factors into
account.

String matching algorithms suitable for this task belong
to the edit-distance family, defined as algorithms that find
a minimum-weight sequence of edit operations (such as
deletions, insertions and substitutions) that transform one
string to the other. This family of algorithms is widely em-
ployed in real-life applications ranging from speech pro-
cessing to molecular biology [7, 19].

3.1. The Original Longest Common Subsequence Al-
gorithm

The longest common subsequence algorithm (LCS) be-
longs to this edit distance family of string matching algo-
rithms. Specifically, the LCS algorithm finds the longest

subsequence that two sequences have in common, regard-
less of the length and the number of intermittent non-
matching symbols. For example, the sequences “abcdefg”
and “axbydezzz” have a length four sequence “abde” as
their longest common subsequence.

Formally, the LCS problem is defined as follows. Given
a sequence X = 〈x1, x2, . . . , xm〉, and a sequence Y =
〈y1, y2, . . . , yn〉, find a sequence Z, such that Z is the
longest sequence that is both a subsequence of X , and a
subsequence of Y . The subsequence is defined as a se-
quence Z = 〈z1, z2, . . . , zk〉, where there exists a strictly
increasing sequence 〈i1, i2, . . . , ik〉 of indices of X such
that for all j = 1 . . . k, xij

= zj [2].
The solution to the LCS problem involves solving the

following recurrence equation, where the cost for the edit
operations is stored in c.

c(i, j) =































0 if i = 0 or
j = 0

c(i − 1, j − 1) + 1 if i, j > 0 and
xi = Yj

max[c(i, j − 1), c(i − 1, j)] if i, j > 0 and
xi 6= Yj

(2)

Using LCS as a similarity measure between two se-
quences has the advantage that the two sequences we are
comparing can be of different length and have intermittent
non-matches. In the context of music retrieval, this allows
for the use of partial and noisy inputs.

3.2. The new algorithm

When a piece of music is expanded or compressed, we
would like to recognize them as the same. For exam-
ple, if 44556677 were matched against 4567, the output
should be a high score. The LCS algorithm would out-
put 4, since the sequences have the subsequence 4567 in
common. Now, what if the sequences 42536172 and 4567
are given? The output of LCS is still 4, since the com-
mon subsequence is again 4567. But since the first pair of
sequences are just expanded/contracted versions of each
other, they should be considered as more similar than the
second pair. The LCS algorithm can not make this distinc-
tion.

As we noted earlier, the dynamic time warping algo-
rithm handles the expansion and contraction of the se-
quences but restricts the alignment to and end-to-end fash-
ion, and is poor at handling insertions/deletions that might
easily occur during music transcription. The LCS algo-
rithm, on the other hand, handles extra/skipped charac-
ters and is very flexible in the starting/end points of the
alignment, but does not deal with expansion/contraction.
We take the desirable properties of each and construct the
time-warped longest common subsequence algorithm (T-
WLCS) that can deal with both sets of issues.

The recurrence formula for T-WLCS is:



c(i, j) =















































0 if i = 0 or
j = 0

max[c(i, j − 1), c(i − 1, j), if i, j > 0 and
c(i − 1, j − 1)] + 1 xi = Yj

max[c(i, j − 1), c(i − 1, j)] if i, j > 0 and
xi 6= Yj

(3)

Here c(i, j) denotes the minimum cost T-WLCS path
leading to the entry i,j in the T-WLCS table. The T-WLCS
table is an n by m table that keeps track of the minimum-
cost T-WLCS path leading to each possible alignment so
far (see Figure 1 for an example LCS table and T-WLCS
table). A T-WLCS path specifies an alignment between
two strings. The optimal T-WLCS path is the one that
achieves the minimum cost alignment. This cost is stored
in the c(m,n) entry in the table. The optimal paths for
each of the examples are shown as highlighted squares in
the table (see Figure 2).

3.3. Examples

Example 1 S1 = “41516171”, S2 = “4567”. Compare
the output of the two algorithms on the sequences S1 and
S2. LCS(S1, S2) = 4, T-WLCS(S1, S2) = 4.

For the example above, the two algorithms give iden-
tical results, since “4567” is the string they have in com-
mon. The T-WLCS table showing the run of the algorithm
is shown in Figure 1(a).

Example 2 S1 = “44556677”, S2 = “4567”. Compare
the output of the two algorithm on the sequences S1 and
S2. LCS(S1, S2) = 4, and T-WLCS(S1, S2) = 8.

Here, the T-WLCS gives this matching a higher score
than the pair in Example 1. This makes sense since this
pair is actually more similar, because one is just a doubly
stretched version of the other. The T-WLCS table is shown
in Figure 1(b).

Example 3 S1 = “4455661111177”, S2 = “4567”, com-
pared the output of the two algorithms on sequences S1
and S2. LCS(S1, S2) = 4, T-WLCS(S1, S2) = 8.

This shows that T-WLCS retains the advantage of the
original LCS algorithm in that it can skip a section of text
and match in a non-continuous fashion. The T-WLCS ta-
ble for this example is shown in Figure 1(c).

4. EXPERIMENTS

We tested the effectiveness of our similarity measure cal-
culated by the T-WLCS algorithm on a music informa-
tion retrieval task. Songs from the Digital Tradition col-
lection were used because this collection consists entirely

Query Sequence

S
to

re
d

 S
eq

u
en

ce

S
to

re
d

 S
eq

u
en

ce

S
to

re
d

 S
eq

u
en

ce

Query Sequence

2

2 3

2 2

2

2 5 6 6

2 2

1 2 6 7

5

1 4 4 4 4 4

4 1 5 1 1

4

5 6 7 7

6 7 1

5

6

7

1 1 1 1 1 1 1 1

1 1 2 2 2 2 2

1 1 2 3 3 3

1 1 2 2 3 3 4 4

4 4 5 5 6 6 7 7

1 2 2 2 2 2

1 3 4 4 4 4 4

1 3 4 6

1 2 3 4 5 6 7 8

4

5

6

7

4

5

6

7

1 2 2 2 2 2 2 2 2 2 2

2 3 4 4 4 4 4

1 2 3 4 6 6 6 6 6 6 6

3 4 5 6 6 6 6 6 8

Query Sequence

4 1 1 15 6 1 14

6

(c)

(b)(a)

Figure 1. The T-WLCS tables containing c(i, j) values
for Examples 1, 2 and 3

of folk songs that are monophonic in nature. A subset
of two hundred songs were randomly selected to be used
in query/retrieval. For each song, we tested a range of
possible query versions that simulate various types of er-
rors. We stretched out the song by factors of up to four,
also shortened and lengthened randomly selected notes
to simulate inaccuracies in rhythm. Random insertions
and deletion of notes were also made to simulate both
singing errors and errors that are introduced during the
music transcription process when acoustic signals are con-
verted to musical notes. Different length queries were
tested. Chunks ranging from 40 to 100 percent of the orig-
inal song were randomly selected to use as query strings
before the error simulations described above were used to
perturb the songs.

The T-WLCS algorithm is used to calculate similarity
scores between a given query sequence and each stored
song in the database. The effectiveness of the retrieval
system is measured by comparing the ranking of the orig-
inal song (that the query is derived from) to all other songs
in the database.

We compared the performances of the T-WLCS algo-
rithm with the traditional LCS algorithm and found that
the retrieval is more accurate when the T-WLCS algo-
rithm is used to calculate the similarity score between two
songs. See Figure 2 for details.

5. CONCLUSION AND FUTURE WORK

In this work, we presented the T-WLCS algorithm, which
calculates similarity scores betweens songs, allowing for
variations in speed and inaccuracies in the rhythm between
the query and the stored music. The algorithm was em-
ployed on song retrieval tasks and compared favorably to
the original LCS algorithm.

We plan to extend this work in several directions. First,
we would like to fine tune the algorithm to include limits
on the amount of allowable distortion between songs. On
the application side, we would like to investigate the ap-
plicability of the T-WLCS algorithm to polyphonic music



2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factors of expansion

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)
Retrieval of Expanded versions of original

 song with random deletion noise

2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factors of expansion

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)

Retrieval of Expanded versions of original 
song with random insertion noise

2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factors of expansion

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)

Retrieval of Expanded versions of original 
song with random repetition noise

0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

Fraction of the original song used for retrieval

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)

Retrieval using a fraction of the original 
song with random deletion noise

0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fraction of the original song used for retrieval

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)

Retrieval using a fraction of the original 
song with random insertion noise

0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fraction of the original song used for retrieval

%
 o

f s
on

gs
 w

ith
 h

ig
h 

re
tr

ie
va

l r
an

ki
ng

 (
to

p 
5%

)

Retrieval using a fraction of the original
 song with random repetition noise

using LCS scoring metric
using T−WLCS scoring metric

using LCS scoring metric
using T−WLCS scoring metric

using LCS scoring metric
using T−WLCS scoring metric

using LCS scoring metric
using T−WLCS scoring metric

using LCS scoring metric
using T−WLCS scoring metric

using LCS scoring metric
using T−WLCS scoring metric

Figure 2. Experimental comparison between the LCS al-
gorithm and the T-WLCS algorithm on song retrieval

retrieval. Since the algorithm inherently operates on linear
sequences, we will experiment with methods that “flatten”
out a polyphonic score to a linear theme [16, 12]. We also
plan to apply the algorithm to clustering tasks that involve
music recordings, for which rhythmic differences could
also play an important part in the similarity measure.

6. REFERENCES

[1] Innovative music systems, inc. wav to
midi, mp3 to midi converter - intelliscore.
http://www.intelliscore.net/.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduc-
tion to Algorithms. The MIT Press, Cambridge, MA,
1990.

[3] F. Damerau. A technique for computer detection and
correction of spelling errors. Comm. of the ACM,
7(3):171–176, 1964.

[4] D. Deutsch. Grouping mechanisms in music. In Psy-
chology of Music, Orlando, 1982. Academic Press.

[5] J. French, A. Powell, and E. Schulman. Applica-
tions of approximate word matching in information
retrieval. In Proceedings of ACM CIKM’97, pages
9–15, 1997.

[6] A. Ghias, J. Logan, D. Chamberlin, and B. Smith.
Query by humming - musical information retrieval
in an audio database. In ACM Multimedia 95 - Elec-
tronic Proceedings, 1995.

[7] D. Gusfield. Algorithms on Strings, Trees and Se-
quences. Cambridge University Press, 1997.

[8] K. Hamel. The salieri project - guido music notation.
http://www.salieri.org/guido/impl.html.

[9] T. Kageyama, K. Mochizuki, and Y. Takashima.
Melody retrieval with humming. In ICMC Proceed-
ings 1993, 1993.

[10] A. Klapuri. Automatic transcription of music. In
Proceedings of Stockholm Music Acoustics Confer-
ence, 2003.

[11] K. Lemstrom. String Matching Techniques for Music
Retrieval. PhD thesis, University of Helsinki, 2000.

[12] A. Marsden. Modelling the perception of musi-
cal voices: a case study in rule-based systems. In
Computer Representations and Models in Music,
pages 239–263, London/San Diego, 1992. Academic
Press.

[13] R. McNab, L. Smith, I. Witten, C. Henderson, and
S. Cunningham. Towards the digital music library:
Tune retrieval from acoustic input. In Proceedings
of the Digital Libraries Conference, 1996.

[14] H. Sakoe and S. Chiba. Dynamic programming al-
gorithm optimization for spoken word recognition.
IEEE Trans. Acoustics, Speech and Signal Process-
ing, ASSP-26(1):43–49, 1978.

[15] S. Shlien and B. Vreckem. The abc music project
- abcmidi. http://abc.sourceforge.net/abcMIDI/,
2003.

[16] A. Uitdenbogerd and J. Zobel. Manipulation of mu-
sic for melody matching. In B. Smith and W. Ef-
felsberg, editors, Proceedings of the ACM Multime-
dia Conference, pages 235–240, Bristol, UK, Sept.
1998.

[17] A. L. Uitdenbogerd and J. Zobel. Matching tech-
niques for large music databases. In D. Bulterman,
K. Jeffay, and H. J. Zhang, editors, Proceedings of
the ACM Multimedia Conference, pages 57–66, Or-
lando, Florida, Nov. 1999.

[18] R. Wagner and M. Fisher. The string to string cor-
rection problem. Journal of the ACM, 21:168–178,
1974.

[19] T. Yap, O. Frieder, and R. Martino. High per-
formance computational methods for biological se-
quence analysis. Kluwer Academic Publishers,
1996.


