
E6891 Replicating Computational Results 2014-02-12 - /17

Twelve Life Lessons from
Software Engineering

!

!

!

!

Dan Ellis
Dept. Electrical Engineering, Columbia University

dpwe@ee.columbia.edu http://www.ee.columbia.edu/~dpwe/e4896/
���1

1. Design	

2. Testing	

3. Reuse

EECS E6891 REPLICATING COMPUTATIONAL RESULTS

mailto:dpwe@ee.columbia.edu
http://labrosa.ee.columbia.edu

E6891 Replicating Computational Results 2014-02-12 - /17

“Software Engineering”
!

• Software DIY	

installing shelves at home	

!

!

• Software  
Engineering	

building a bridge  
or an airplane	

!

• Projects involving  
many people need management

���2

E6891 Replicating Computational Results 2014-02-12 - /17

My Life as a Programmer
• 1981 (High School): BASIC, 8-bit assembler	

• 1985 (College internship): C on a VT-100	

• 1988 (Job): APL on a GUI	

• 1990 (Grad school): C on a GUI (NeXT)	

• 1992 (Grad school): MATLAB  
 Unix, Make  
 Tcl/Tk	

• 1997 (Post-doc): C++ modules, libraries 
 Autoconf, RCS	

• 2001 (Faculty): MATLAB again	

• 2013 (Faculty): Python, Git
���3

E6891 Replicating Computational Results 2014-02-12 - /17

1. Writing Code is Writing
• Software is expressing an idea	

• There are many ways to do the same thing	

differences are “second order”	

• Aesthetic differences	

know when you’re setting traps	

minimal commenting

���4

E6891 Replicating Computational Results 2014-02-12 - /17

2. Think About the Future
• “DIY” is all about quick hacks	

something you need for now	

usually discarded tomorrow	

but not always	

• Many tools have grown  
far beyond original vision	

you never know  
when this will happen	

• Worth anticipating	

even if you are the only user

���5

E6891 Replicating Computational Results 2014-02-12 - /17

3. What Can Go Wrong
• We don’t know how to solve the problem	

• Program is too slow	

• Program doesn’t apply	

!

• Program has bugs	

programs are complicated  
machines	

sometimes we get in  
too deep	

we layer complexity  
until it fails

���6

E6891 Replicating Computational Results 2014-02-12 - /17

4. Modularity
• Decomposing a problem is  

the genius of engineering	

Software > Language > OS >  
Machine Code > Microcode >  
VLSI > Transistors > Physics	

• Decomposing a problem  
can make the problem disappear	

threshold of triviality	

• Modules help shape your thinking	

• Modules offer re-use	

• Top-down code composition	

http://software-carpentry.org/4_0/invperc/assembly.html

���7

http://software-carpentry.org/4_0/invperc/assembly.html

E6891 Replicating Computational Results 2014-02-12 - /17

5. Interfaces and Data Structures
• Program design has several parts	

modules	

data structures	

interfaces / APIs	

• The right representation  
can make all the difference	

frames the function of the modules	

• Opportunity to increase generality,  
future applications	

• Opens door to existing modules...

���8

E6891 Replicating Computational Results 2014-02-12 - /17

6. Use Libraries / Tools
• We are not working in a vacuum	

there are (probably) other people  
facing similar problems	

some of them have made huge investments in tools	

well-used tools/components are debugged	

• Using a library involves a learning curve	

it could be faster to write it yourself...	

... but it might still be better to use a tool	

• A judgement call

���9

E6891 Replicating Computational Results 2014-02-12 - /17

7. Create Libraries / Tools
• Be on the lookout for recurrent idioms	

• If you don’t find a library, it’s an opportunity	

to help the community (fame and glory)	

to increase your future productivity	

• Same issues as any sharing of code	

big investment	

but: code review, beta testers	

• Design becomes important	

but design is always good

���10

E6891 Replicating Computational Results 2014-02-12 - /17

8. Publish Your Code
• What is needed for a stand-alone

presentation of this code?	

minimal documentation	

sometimes have a target in mind	

but worthwhile even without	

your future self as the audience	

• E.g. Matlab “publish”	

combination of narrative & execution	

examples of execution	

(also, an implicit test case)

���11

E6891 Replicating Computational Results 2014-02-12 - /17

9. Version Control
• If other people are using your code,  

you can’t just change it	

edits may introduce bugs	

users may rely on parts you consider unimportant	

• Keep backups	

• Make it possible for people to quickly
identify which version they’re using	

• Maintain changelogs

���12

E6891 Replicating Computational Results 2014-02-12 - /17

10. Include Explicit Tests
• Often want to go back and tweak code	

danger! you think you know what’s going on	

“no need to check this...”	

• Automated tests	

in Make file	

as part of release process	

• Just the obvious cases	

• http://software-carpentry.org/4_0/test/
index.html

���13

http://software-carpentry.org/4_0/test/index.html

E6891 Replicating Computational Results 2014-02-12 - /17

10b. Will bugs be observable?
• Beware of cases  

where you don’t know  
what to expect	

!
you can’t tell if it’s doing  
what you think it was doing

���14

E6891 Replicating Computational Results 2014-02-12 - /17

11. Optimization
• One “second-order aspect”  

is execution speed	

factors governing speed are frequently mysterious:
cache size, compiler optimizations, parallelism	

• Execution time is frequently dominated by
one or two pieces - the “long pole”	

profiling to identify + prioritize	

• There’s usually 
 low-hanging  
fruit

���15

E6891 Replicating Computational Results 2014-02-12 - /17

12. Diminishing Returns
• Some people love programming	

your own private universe - “castles in the sky”	

• Be critical & aware	

the balance between  
programming for the future  
and getting the job done	

you can always fix it later

���16

E6891 Replicating Computational Results 2014-02-12 - /17

Summary
• Programming is serious	

it can take much, much longer than necessary	

getting hit by bugs is better than not noticing them	

• Try to emulate a professional	

even if you never plan to program professionally	

• Learn by doing	

i.e., the hard way

���17

E6891 Replicating Computational Results 2014-02-12 - /17

SAcC
• 2006: Student A re-implements  

a C-based system in Matlab	

• 2010: Student B re-uses code  
to develop a new feature	

• 2012: Feature is incorporated  
into DARPA program system	

Industrial research lab  
expects consistent releases	

Pressure to improve  
performance

���18

E6891 Replicating Computational Results 2014-02-12 - /17

SAcC
• Source release	

• Version tracking	

• Automated  
releases	

• Automated 
tests	

• Compiled  
target	

• Python port

���19

