EECS E6891 REPLICATING COMPUTATIONAL RESULTS

Twelve Life Lessons from
Software Engineering

|. Design
2. Testing
3. Reuse

Dan Ellis

Dept. Electrical Engineering, Columbia University
dpwe@ee.columbia.edu http://www.ee.columbia.edu/~dpwe/e4896/

mailto:dpwe@ee.columbia.edu
http://labrosa.ee.columbia.edu

“Software Engineering”

® Software DIY

o installing shelves at home

® Software
Engineering
O bullding a bridge
or an airplane

® Projects involving
many people need management

My Life as a Programmer

1981 (High School): BASIC, 8-bit assembler
1985 (College internship): C on aVT1-100
1988 (Job): APL on a GUI

1990 (Grad school): C on a GUI (NeXT)
1992 (Grad school): MATLAB

Unix, Make
Tcl/Tk

1997 (Post-doc): C++ modules, libraries
Autoconf, RCS

2001 (Faculty): MATLAB again
2013 (Faculty): Python, Git

|.Writing Code is Writing

® Software is expressing an idea

® There are to do the same thing
o differences are ‘‘second order”

® Aesthetic differences
o know when you're setting traps
O minimal commenting

2. Think About the Future

® “DIY” is all about
o :
S()FT\EEthIrwgg >/C)LJ rWEEEECj fk)f“ now function [EB,A,T,EWU,FC] = bpfilthank (SR,
% [BE,A,T,EW,FC] = bpfilthank{SE,FHIN,EPO

O Usua”Y dlscarded tomorrow Feturns matrices B and A where e
definitions for an IIR constant-
O but not always

Their center freguencies range 1
FMIM with BPO bands per octave i
iz designed by iirbpfilt.m to ha

3
4
3
3
z and an order 23N, If TYPE i= p
A filters, If TYPE is 2, use Slan
3 the 'twoptwoz' filters, else use
4
3
3
4
3
3

® Many tools have grown
far beyond original vision

TYPE=4 is modified Slaney/Patter
T iz a vector of 'group delay' i
Ell iz a vector of bandwidths of
FC iz a vector of the actual cen
VERE=1 for messages

cpwe 1994 junZl, Uses iirbpfilt.m

O you never know
when this will happen

if nargin < 7; TYPE=0; end

® \Worth anticipating if nargin < 8: VERBOSE=0; end

O even If you are the On|>/ user FMAK = FMIN#exp(log (2)4BANDS/BPO);
if (FMIN <= 0) (|| FMAK <= FMIN)

ol =l bl

3.What Can Go Wrong

We don’t know how to solve the problem
Program is too slow

Program doesn’t apply

Program has bugs

O programs are complicated
machines

O sometimes we get Iin
too deep

o we layer complexity
until it fails

4. Modularity

a problem is
the genius of engineering
O Software > Language > OS >
Machine Code > Microcode >
VLS| > Transistors >

® Decomposing a problem
can make the problem disappear
o threshold of triviality

® Modules help shape your thinking

® Modules offer re-use

® Top-down code composition
O http://software-carpentry.org/4_0O/invperc/assembly.html

http://software-carpentry.org/4_0/invperc/assembly.html

5. Interfaces and Data Structures

® Program design has several parts
O modules

O data structures
o

® The right representation
can make all the difference
o frames the function of the modules

® Opportunity to increase generality,
future applications

® Opens door to existing modules...

6. Use Libraries / Tools

® \We are not wor

O there are (probab
facing similar prob

KIng In a vacuum
y) other people

ems

o some of them have made huge investments in tools
o well-used tools/components are debugged

® Using a library involves a learning curve
O it could be faster to write It yourself..
O ... but it might still be better to use a tool

® A judgement call

/. Create Libraries / Tools

® Be on the lookout for recurrent idioms

® [f you don’t find a library, it’s an opportunity
O to help the community (fame and glory)
O to Increase your future productivity

® Same issues as any sharing of code
O big investment
O but: code review, beta testers

® Design becomes important
O but design Is always good

8. Publish Your Code

® What is needed for a
presentation of this code!
O minimal documentation
o sometimes have a target in mind
o but worthwhile even without
O your future self as the audience

E.g. Matlab “publish”

O combination of narrative & execution
O examples of execution
O (also, an implicit test case)

9.Version Control

® |[f other people are using your code,

you can’t just change it
O edits may Introduce bugs
O users may rely on parts you consider unimportant

® Keep backups

® Make it possible for people to quickly
identify which version they’re using

® Maintain changelogs

1 0. Include Explicit Tests

® Often want to go back and tweak code
o danger! you think you know what's going on
O “no need to check this...”

® Automated tests
o In Make file
O as part of release process

® Just the obvious cases

® http://software-carpentry.org/4 O/test/
index.html

http://software-carpentry.org/4_0/test/index.html

|0b.Will bugs be observable!?

® Beware of cases
where you don’t know
what to expect

o you can't tell if it's doing
what you think it was doing

| |. Optimization

® One “second-order aspect”
is execution speed

O factors governing speed are frequently mysterious:
cache size, compliler optimizations, parallelism

® Execution time is frequently dominated by
one or two pieces - the “long pole”
o profiling to identify + prioritize

‘ There’s usual Iy Profile Summary

Generated 12-Feb-2014 15:31:42 using cpu time.
Calls Total Time Self Time* Total Time Plot

low-hanging e

2.304 s 0.025 s |
fru it SAcC_main 2.171s 0.058's
(itchtrac 1.492 s 0.041s
1.309 s 0.058s
0.937 s 0.265 s

0.332s 0.332s
0.249 s 0.025 s

I

I

I

u
0.497 s 0.166 s |

|

[

|2. Diminishing Returns

® Some people love programming
O your own - “castles in the sky”

® Be critical & aware

O the between
programming for the future
and getting the job done

O you can always fix It later

Summary

® Programming is serious
O it can take much, much longer than necessary
O getting hit by bugs Is better than not noticing them

® Try to emulate a professional
O even If you never plan to program professionally

® | earn by doing

O e, the hard way

SAcC

® 2006: Student A re-implements
a C-based system in Matlab

® 7010:Student B re-uses code
to develop a new feature

® 7012: Feature is incorporated

into DARPA program system
O Industrial research lab
expects consistent releases

O Pressure to Improve
performance

SAcC

Source release
Version tracking

A t m t d ® O O SAcC - Subband autocorrelation classification pitch tracker
u O a e LabROSA : Projects:
I 200 ——SAcC - Subband autocorrelation classification pitch tracker

100 SAcC is a (compiled) Matlab script that performs noise- robust pitch tracking by classifying the autocorrelations of a set of
subbands using an MLP neural network. It has good resistance to noise, and is highly resistant to octave errors. You can
read about it in our Interspeech 2012 paper, Noise Robust Pitch Tracking by Subband Autocorrelation Classification.

Pitch /Hz

Automated

Example Usage

Run it over our demo files

te StS Load one of the example files and plot its pitch track

Training a new classifier
Installation

Alternative Classifiers

Compiled
target

Acknowledgment

Example Usage

The Matlab script can be run from the Matlab prompt, or using the included Unix shell wrapper, run_SAcC.sh:

Pyth O n P O r’t Run it over our demo files

% (1) the previous default sr=16k,bpo=16,sb=48,kdim=10 trained on RATS
% SAcC files.list conf/rats_srlék bpolé_sb48_k10.config

% (2) the faster new config sr=8k,bpo=6,sb=24,kdim=10 trained on RATS
SAcC files.list conf/rats_sr8k_bpo6_sb24_k10.config

